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Pathogenic trypanosomatids (Trypanosoma cruzi, Trypanosoma brucei, and Leishmania
spp.) are protozoan parasites that cause neglected diseases affecting millions of people
in Africa, Asia, and the Americas. In the process of infection, trypanosomatids evade
and survive the immune system attack, which can lead to a chronic inflammatory
state that induces cumulative damage, often killing the host in the long term. The
immune mediators involved in this process are not entirely understood. Most of the
research on the immunologic control of protozoan infections has been focused on
acute inflammation. Nevertheless, when this process is not terminated adequately,
permanent damage to the inflamed tissue may ensue. Recently, a second process,
called resolution of inflammation, has been proposed to be a pivotal process in
the control of parasite burden and establishment of chronic infection. Resolution of
inflammation is an active process that promotes the normal function of injured or infected
tissues. Several mediators are involved in this process, including eicosanoid-derived
lipids, cytokines such as transforming growth factor (TGF)-β and interleukin (IL)-10, and
other proteins such as Annexin-V. For example, during T. cruzi infection, pro-resolving
lipids such as 15-epi-lipoxin-A4 and Resolvin D1 have been associated with a
decrease in the inflammatory changes observed in experimental chronic heart disease,
reducing inflammation and fibrosis, and increasing host survival. Furthermore, Resolvin
D1 modulates the immune response in cells of patients with Chagas disease. In
Leishmania spp. infections, pro-resolving mediators such as Annexin-V, lipoxins, and
Resolvin D1 are related to the modulation of cutaneous manifestation of the disease.
However, these mediators seem to have different roles in visceral or cutaneous
leishmaniasis. Finally, although T. brucei infections are less well studied in terms of
their relationship with inflammation, it has been found that arachidonic acid-derived
lipids act as key regulators of the host immune response and parasite burden. Also,
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cytokines such as IL-10 and TGF-β may be related to increased infection. Knowledge
about the inflammation resolution process is necessary to understand the host–parasite
interplay, but it also offers an interesting opportunity to improve the current therapies,
aiming to reduce the detrimental state induced by chronic protozoan infections.

Keywords: resolution of inflammation, prostaglandins, leukotrienes, resolvins, lipoxins, Trypanosoma cruzi,
Trypanosoma brucei spp., Leishmania spp.

OVERVIEW OF ARACHIDONIC ACID
METABOLISM AND THE
PRO-RESOLVING LIPID MEDIATORS

Inflammation is a pathophysiologic process that occurs in
the context of broad spectra of stimuli and diseases including
arthritis, asthma, trauma, and infection. During acute infection,
inflammation is protective, but if it is excessive or prolonged,
it harms the host, damaging tissues and impairing proper
repair, and in extreme cases, it can be lethal. Repair and
restoration of normal organ function are essential after an
infectious disease, and these processes are accomplished
after the inflammatory events are appropriately resolved.
However, resolution of inflammation is a more intricate
process than the mere dissipation of chemoattractant signals.
It includes a set of complex events mediated by several
signals, including negative feedback regulation of Toll-like
receptor (TLR) signaling, production of anti-inflammatory
cytokines such as interleukin (IL)-10, and biosynthesis of
a superclass of novel mediators. These newly discovered
mediators include biochemical species derived from lipids
such as lipoxins (LXs), resolvins (Rvs), protectins (PDs),
and maresins (Serhan, 2005), proteins such as Annexin A1
(Sugimoto et al., 2016) and Galectin-1 (Sundblad et al., 2017),
anti-inflammatory neuropeptides such as melanocortin (MC)
peptide (Delgado and Ganea, 2008; Alessandri et al., 2013),
and gasotransmitters such as hydrogen sulfide and carbon
monoxide (Wallace et al., 2015; Shinohara and Serhan, 2016).
The concerted actions of these molecules stop leukocyte
recruitment, modify cytokine production, facilitate efferocytosis,
switch macrophages to a non-phlogistic phenotype, and
finally, promote healing to restore organ function (Serhan,
2014).

Specialized pro-resolving mediators (SPMs), including the
pro-resolving lipids, are produced via cell–cell interactions within
the inflammatory exudates that control the magnitude and
duration of local inflammation (Serhan and Chiang, 2013). SPMs
are all products of the lipoxygenase (LO) pathway, though the
lipid substrates vary (Figure 1).

SPMs Synthesis
Lipoxins
Lipoxins are eicosanoids derived from omega-6 arachidonic
acid (AA), which is oxygenated at position 15 by 15-LO
activity to produce 15S-hydroperoxyeicosatetraenoic acid
(15S-H(p)ETE). The product of 5-LO’s action on 15-
HpETE is a 5S-hydroperoxy,15S-hydro(peroxy)-DiH(p)ETE,
which is rapidly converted to 5(6)-epoxytetraene. In turn,
5(6)-epoxytetraene is rapidly hydrolyzed to lipoxin A4 (LXA4)
and LXB4 (Serhan, 2005). Alternatively, acetylsalicylic acid
(ASA)-acetylated cyclooxygenase 2 (COX-2) produces 5-R-
Hydroxyeicosatetraenoic acid (5-RHETE) from AA. 5-RHETE
is a substrate of 5-LO that can be converted to 15-epi-lipoxin
A4 (15-epi-LXA4), which is also named ASA-triggered lipoxin
(ATL) (Serhan, 2005).

Resolvins
On the other hand, Rvs, PDs, and maresins are derived from
omega-3 polyunsaturated fatty acids. There are two series of Rvs
depending on the lipid substrate and enzyme activities: Rv D and
E. The RvD1–4 series, as well as PDs and maresins, are derived
from docosahexaenoic acid (DHA) metabolism involving 12-LO
and 15-LO, and the E-series Rvs are derived from the activity
of ASA-acetylated COX-2 using eicosapentaenoic acid (EPA) as
a substrate (Serhan, 2007). Nevertheless, ASA can also trigger
the COX-2-mediated conversion of DHA to 17R-HDHA, which

FIGURE 1 | Biosynthetic pathways of specialized pro-resolving mediators.
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5-LO can covert to ASA-triggered Resolvin D1–4 (AT-RvD1–4)
(Serhan, 2007).

Drug Induction of SPMs
As mentioned, ASA modifies COX-2 activity allowing
15-epi-LXA4 and AT-RvD1–4 production. Indeed,
ASA-triggered resolving lipids are more stable than the
endogenous molecules and could serve as anti-inflammatory
drugs. Another fascinating group of drugs, statins, can also
increase the production of pro-resolving lipids, in a way that is
similar to the process mediated by ASA. Just as the acetylation
of COX-2 by ASA causes a metabolic switch in COX-2, statins
produce the same metabolic switch by nitrosylation. Recently,
Serhan’s group reported the presence of another subtype of
Rvs, 13-series Rvs, which provide protective activity against
Escherichia coli infections. These lipids are produced by COX-2
in a process involving a neutrophil–endothelium interaction,
and their production can also be triggered by nitrosylation
induced by atorvastatin (Dalli et al., 2015). Thus, the change in
COX-2 activity explains, at least in part, the anti-inflammatory
properties of ASA and statins.

The Inflammation Resolution Crossroad
It is remarkable how the same enzymatic array participates in the
generation of both inflammatory and resolving mediators. COX
and LO activities, which are responsible for the production of
prostaglandins (PGs) and leukotrienes, respectively, can switch
to the production of LX, Rvs, PDs, and maresins. Indeed, AA
derivatives, PGs E2 (PGE2), prostacyclin (PGs I2, PGI2), and
leukotriene B4 (LTB4), participate in leukocyte recruitment to
the damaged site. However, as acute inflammation progresses,
a metabolic switch occurs, and LX synthesis begins. The exact
moment when this switch happens is unclear; however, the
dampening of the inflammatory signals may be part of the input
needed to promote the metabolic changes (Gilroy and De Maeyer,
2015). These switches are accomplished by transcriptional
or posttranslational modifications, which involve PGE2 and
PGs D2 (PGD2) (Frolov et al., 2013; Croasdell et al., 2015).
COX-mediated production of PGD2 by human PGD2 synthase
(hPGD2s) activates the PGD2 receptor, DP1 (a G-protein coupled
receptor [GPCR]), which in turn stimulates the production of
IL-10 (an anti-inflammatory cytokine), which then blocks the
path to chronic inflammation. PGD2 can also be converted
to PGs J2 (PGJ2) and 15-deoxy-1(12,14)-PGs J2 (15-D-PGJ2)
products that activate peroxisome proliferator-activated receptor
(PPAR)-γ to promote resolution (Croasdell et al., 2015).

SPMs Mode of Action
The actions of LXA4 are mediated by a GPCR called formyl
peptide receptor 2/lipoxin A4 receptor (FPR2/ALXR), via
several signaling pathways, including the p38/mitogen-activated
protein kinase (MAPK)-activated protein kinase (APK)/heat
shock protein 27 (HSP27), c-Jun N-terminal kinase (JNK),
and phosphatidylinositol 3-kinase (PI3K) pathways (Cooray
et al., 2013), depending on the cell type. In monocytes and
macrophages, LXA4 triggers the synthesis of IL-10 (Souza
et al., 2007), a cytokine responsible for driving the resolution

of inflammation, and enhances non-phlogistic phagocytosis
of apoptotic cells (Maderna et al., 2010). Also, some effects
of LXA4 are related to its ability to activate the cytosolic
aryl hydrocarbon receptor (AhR), inducing the expression of
suppressor of cytokine signaling (SOCS) (Machado et al., 2006).

The action of Resolvin E1 (RvE1) is intricate because it is
an agonist of the seven-pass transmembrane GPCR ChemR23.
Naturally, the activation of ChemR23 by low concentrations
of chemerin, its natural agonist, favors chemoattraction of
monocytes/macrophages and immature dendritic cells (DCs).
Activation of ChemR23 increases intracellular calcium release
and inhibits cAMP and MAPK extracellular signal-regulated
protein kinases 1/2 (ERK1/2)-mediated signaling, by Gi/o
protein (a G protein subtype) recruitment. Consequently, it
leads to up-regulation of the PI3K/Akt signaling pathway and
down-regulation of nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB) (Mariani and Roncucci, 2015). RvE1, via
a different set of G proteins, stimulates Akt phosphorylation and
ribosomal protein S6 kinase (Ohira et al., 2010). Also, RvE1 is a
partial agonist of the LTB4 receptor 1 (BLT1) and competes with
LTB4 for binding (Arita et al., 2007).

RvD1 can activate FRP2/ALXR and the G protein-coupled
receptor 32 (GPR32) (Krishnamoorthy et al., 2012).
The activation of the FPR2/ALX receptor by RvD1
suppresses cytosolic calcium and decreases activation of the
calcium-sensitive kinase calcium-calmodulin-dependent protein
kinase II (CaMKII). CaMKII inhibition suppresses activation of
p38 and the MAP kinase-APK 2 (MAPK-APK2), which reduces
Ser271 phosphorylation of 5-LO and shifts 5-LO from the nucleus
to the cytoplasm (Fredman et al., 2014). Moreover, LXA4 and
RvE1 counter-regulate the LTB4/LL-37 proinflammatory circuit,
which is partially mediated by FPR2/ALX (Wan et al., 2011).

Physiologic Actions of SPMs
LXA4 decreases polymorphonuclear leukocyte (PMN)-mediated
tissue damage, angiogenesis, and PMN proliferation and
adhesion, increasing non-phlogistic phagocytosis and IL-10
production (Chandrasekharan and Sharma-Walia, 2015). RvE1
increases PMN apoptosis, LXA4 production, and microbial
killing, and decreases IL-12 production, PMN transendothelial
migration, and PMN infiltration; also, it inhibits NF-κB reporter
gene activation and reduces organ fibrosis (Arita et al., 2007;
Campbell et al., 2007; El Kebir et al., 2012). RvD1 decreases
reactive oxygen species (ROS) generation and the production of
pro-inflammatory cytokines. RvD1 also reduces organ fibrosis
(Qu et al., 2012; Miyahara et al., 2013). RvD2 increases microbial
killing and clearance, as well as the production of nitric oxide
(NO•) and PGI2 in endothelial cells (Spite et al., 2009; Chiang
et al., 2012). PD1 decreases COX-2 expression, T-cell migration,
and cytokine production, including that of TNF, IFN-γ, and
microglial cell cytokines (Ariel et al., 2005; Qu et al., 2015). Also,
PD1 has neuroprotective actions (Serhan et al., 2015). Maresins
increase tissue regeneration, stimulating phagocytosis and the
killing of oral pathogens by human leukocytes, and also promote
the macrophage phenotype switch from M1 to M2 (Wang et al.,
2015a). It is important to emphasize that both Rvs and LXs
promote bacterial clearance; thus, they both constitute a pathway

Frontiers in Microbiology | www.frontiersin.org 3 August 2018 | Volume 9 | Article 1961

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-01961 August 18, 2018 Time: 18:55 # 4

López-Muñoz et al. Inflammatory/Pro-resolving Lipids in Trypanosomatid Infections

that impedes microorganism evasion of the immune response.
Thus, the concert of the SPMs in the inflammatory broth give
a change of helm heading toward a calmer environment, where
leukocyte and macrophage hyperactivity decline, promoting a
favorable environment for the repair.

Role of SPMs in Chronic Infectious
Diseases
Infections may progress toward chronicity due to dysregulation
of the inflammatory process. Thus, extensive damage may
occur involving irreversible structural alterations. Furthermore,
it has been shown that in chronic inflammatory states such
as Alzheimer’s disease (Wang et al., 2015b), periodontitis (Van
Dyke, 2017), peripheral artery disease (Miyahara et al., 2013),
or cystic fibrosis (Karp et al., 2004), the levels of pro-resolving
factors such as LXA4, or ATLs are decreased. Therefore, it is
suggested that a deficit of resolutory ability promotes chronic
inflammatory states. Evidence of the participation of lipid
pro-resolving mediators in infectious diseases is abundant.
For example, in experimental models of lung infections (e.g.,
disseminated influenza A), there is low expression of LX
(Cilloniz et al., 2010), and exogenous administration of PD1
improves survival (Morita et al., 2013). Moreover, when
inflammation persisted in a respiratory syncytial virus lung
infection, and exogenous administration of LXs or Rvs reverses
the inflammation (Shirey et al., 2014). In a self-resolving murine
model of E. coli pneumonia, exogenous AT-RvD1 administration
enhanced the clearance of E. coli and Pseudomonas aeruginosa
in vivo, and lung macrophage phagocytosis ex vivo (Abdulnour
et al., 2016). These findings were similar to the results of
a lung coinfection model with Streptococcus pneumoniae and
influenza A virus (Wang et al., 2017), which showed that
AT-RvD1 decreased the inflammatory drive by acting on the
FPR2/ALX receptor and antagonizing the effect of serum amyloid
A, which is an agonist of this receptor. Thus, there is a
clear relationship between bacterial or viral infection and SPMs
generation.

However, the LXs-bacterial interplay in a chronic infection
may be more complicated. In a mouse model of Mycobacterium
tuberculosis infection, 5-LO knockout mice were more likely
to survive compared with wild-type mice, which had a more
protracted disease evolution. Administration of LXA4 inhibited
the development of a Th1 response, which is protective in
the tuberculosis model (Bafica et al., 2005). Bacteria may also
inhibit the resolution of infectious processes. A recent report
demonstrated that chronic P. aeruginosa infections in cystic
fibrosis patients promote the hydrolysis of an endogenous
epoxide-containing eicosanoid 14,15-epoxyeicosatrienoic acid
(14,15-EET) to its corresponding diol, thereby destroying the
signal that triggers increased biosynthesis of 15-epi-LXA4 and
preventing the activation of resolution pathways that could help
to eradicate the infection (Flitter et al., 2017).

Specialized pro-resolving mediators may contribute to
eradicate infections and terminate the inflammatory input,
as it is suggested by murine sepsis models, where there was
reported that LXA4 decreased plasma IL-6, chemokine (C–C
motif) ligand 2 (CCL2), IL-10, and NF-κB activity in peritoneal

macrophages, reduced neutrophil migration, and increased the
clearance of bacteria by neutrophils without the production of
excessive free radicals (Walker et al., 2011; Wu et al., 2015).
Furthermore, LX may increase the production of antibacterial
proteins. Bactericidal/permeability-increasing protein (BPI)
is increased in an in vitro model of Salmonella typhimurium
infection when LXs are administered (Canny et al., 2002).
Thus, LX may have a role in the clearance of pathogenic
microorganisms. Interestingly, LXA4 decreases the release of the
exotoxin pyocyanin by P. aeruginosa, reducing its pathogenicity
(Wu et al., 2016). Thus, LXA4 also affects infective agents.
Furthermore, RvD1 and RvD5 were shown to decrease the dose
of antibiotics needed to treat E. coli or Staphylococcus aureus
infections (Chiang et al., 2012). Thus, RvD1 and RvD5 can help
to clear bacteria and, most importantly, this research provides
new insight into how to circumvent antibiotic resistance (Chiang
et al., 2012).

In addition to its action in bacterial infections, LXA4 plays
a role in acute and chronic parasitic infections. However, it
is controversial because in murine models of cerebral malaria,
LXA4 is associated with a lower parasite burden, less cerebral
inflammation, and better survival (Shryock et al., 2013). However,
in a murine model of Toxoplasma gondii infection, although
LXA4 production is increased and there is less cerebral
inflammation (due to decreased IL-12 levels), the immune
response against the parasite is dampened (Aliberti et al., 2002).
Probably, this despair results are due to the distinct causative
organism or by the inflammatory context where LXA4 was
produced.

Trypanosoma cruzi INFECTIONS

Trypanosoma cruzi is a flagellate protozoan that causes Chagas
disease (CD). The life cycle of the parasite includes survival inside
muscle cells, including cardiac muscle and smooth muscle of the
gastrointestinal tract (Rassi et al., 2012). The infection process
involves an intense inflammatory response, which is coordinated
by pro-inflammatory mediators such as PGs (Celentano et al.,
1995; Cardoni and Antunez, 2004), leukotrienes, cytokines,
and chemokines that increase the expression of endothelial
cell adhesion molecules (ECAMs), allowing the migration of
immune cells to the infection site (Golias et al., 2007). The
increase in ECAMs induces vascular permeability and leukocyte
recruitment (Gomes et al., 2014). These events are pivotal in the
pathogenesis of chronic Chagas cardiomyopathy (CCC, the most
lethal form of CD) because they facilitate leukocyte adhesion to
cardiac endothelial cells and cause endothelial dysfunction. In
turn, endothelial dysfunction is associated with focal ischemic
events and microvascular abnormalities. Additionally, in CCC,
the observed microvascular damage is worsened by platelet
aggregation, which is activated by thromboxane A2 (TXA2),
promoting a procoagulant environment that could exacerbate
the focal ischemia (Cardoni and Antunez, 2004; Abdalla
et al., 2008; Rossi et al., 2010; Prado et al., 2011). Thus, if
left untreated, low-grade myocarditis initially ensues and the
infection progresses from the acute to the chronic stage without
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necessarily involving clinical manifestations. As the infection
and endothelial dysfunction persist, a myocardial remodeling
process is launched, establishing CCC. Consequently, 30% of
infected individuals develop cardiac complications, which can
induce death by heart failure (Rassi et al., 2012; Ribeiro et al.,
2012).

Role of SPMs in Acute Chagas Disease
Among the acute inflammatory mediators, AA derivatives have
been described as essential drivers of the acute infection process
and the chronic cardiac damage induced by the parasite.
Experimental in vivo models of infection with T. cruzi showed
an increase in the expression of COX-2 (Molina-Berrios et al.,
2013a) and PGs E receptor 2 (EP2) in cardiac tissue (Guerrero
et al., 2015). These proteins are involved in the synthesis
and activity of AA derivatives, such as PGE2, TXA2, PGF2α,
6-oxo-PGF1α, LTB4, and other eicosanoids that have been
observed increased after T. cruzi infection. Consequently, cells
derived from T. cruzi-infected mice shows elevated levels of
PGE2 (Celentano et al., 1995; Borges et al., 1998; Freire-de-Lima
et al., 2000; Guerrero et al., 2015). Also, PGE2, TXA2, PGI2,
PGF2α, and LTB4 levels have been found increased in plasma
of mice infected with T. cruzi (Cardoni and Antunez, 2004;
Molina-Berrios et al., 2013a,b; Sharma et al., 2013). Also, it is
well-documented that T. cruzi itself can synthesize AA derivatives
like TXA2, PGE2, and PGF2α by the action of the T. cruzi
old yellow enzyme (TcOYE) (Kubata et al., 2002; Ashton et al.,
2007). There is evidence that both, host- and parasite-derived
autacoids contribute importantly to cardiac remodeling. In fact,
COX-2, PLA2γ, or 5-LO deficient mice, infected with T. cruzi,
exhibited improved survival rate and reduced cardiac tissue
inflammation when compared with wild-type mice (Celentano
et al., 1995; Borges et al., 1998; Cardoni and Antunez, 2004).
Furthermore, there is evidence indicating that T. cruzi induces
the formation of lipid bodies, specialized organelles where PGs
synthesis occurs, being an important strategy for parasite growth
and survival (Melo et al., 2003; D’Avila et al., 2011). The effect of
the host or parasite-derived AA derivatives in the acute infection
onset has been reviewed extensively elsewhere (Machado et al.,
2011).

15-D-PGJ2 Is Pro-resolving in T. cruzi
Infection
An aspect of growing interest is the implication of the PPAR-γ
pathway in the modulation of inflammatory processes in chronic
infections (Kim et al., 2015). In this regard, this pathway is
related to the decrease in the transcription of genes controlled by
NF-κB and the activator protein-1 (AP-1). It is well known that
15-D-PGJ2, which is a pro-resolving lipid derived from PGD2,
acts as an agonist of PPAR-γ (Paumi et al., 2004). Therefore,
it may have a role in pro-resolving processes in conjunction
with other SPMs. Consequently, 15-D-PGJ2 has been tested as a
modulator of acute and chronic heart inflammation in T. cruzi
infection. 15-D-PGJ2 (1 mg/kg) decreases the inflammatory
infiltrate and amastigote nest count and significantly increases the
IL-10 levels (Rodrigues et al., 2010). Also, 15-D-PGJ2 attenuates

acute liver damage induced by T. cruzi in mice. In this model,
15-D-PGJ2 was able to decrease fibrosis and liver damage without
influencing the course of the infection itself (Penas et al.,
2016). Moreover, a preliminary report from the same group
suggested that treatment with 15-D-PGJ2 could regulate the
number of intracellular amastigotes in the cardiac tissue via
PPAR-γ-dependent and PPAR-γ-independent pathways (Penas
et al., 2013).

Acetylsalicylic Acid in Acute and Chronic
Chagas Disease
Due to the role of AA derivatives in T. cruzi infection,
inhibition of COX activity has been proposed as a strategy
for controlling parasite-induced disease. Although several
non-steroidal anti-inflammatory drugs (NSAIDs), such as
indomethacin, meloxicam, and celecoxib, have been assayed in
mouse models of T. cruzi infection (Freire-de-Lima et al., 2000;
Michelin et al., 2005; Abdalla et al., 2008; Hideko Tatakihara
et al., 2008), the most studied NSAID is ASA, also known as
aspirin. Interestingly, the effect of ASA seems to be mouse-species
dependent. When T. cruzi-resistant mice (C57BL/6 or CD-1) are
treated with ASA, parasitemia and mortality increases (Michelin
et al., 2005; Hideko Tatakihara et al., 2008; Mukherjee et al.,
2011). On the other hand, Balb/c mice, which are sensitive to
T. cruzi infection, become healthy when ASA is administrated
(Freire-de-Lima et al., 2000; Paiva et al., 2007; Hideko Tatakihara
et al., 2008). Importantly, C57BL/6 mice generate more NO• than
Balb/c mice after T. cruzi infection, and ASA treatment induces
NO• production in Balb/c mice infected with T. cruzi (Hideko
Tatakihara et al., 2008). Furthermore, in murine macrophages
infected with T. cruzi, the inhibition of NO• synthesis partially
prevents the effect of ASA (Lopez-Munoz et al., 2010), suggesting
an important role for this mediator in the ASA effect.

More importantly, the effect of ASA has an important
relationship with its dose. Most studies investigating ASA have
been performed using a fixed dose of 25–50 mg/kg. However,
studies using higher doses (>75 mg/kg) have shown no effect,
or they have shown that ASA aggravates the damage caused
by intraperitoneal or oral T. cruzi infection (Molina-Berrios
et al., 2013a; Cossentini et al., 2016). The fact that ASA has an
antichagasic effect only at doses <50 mg/kg has been associated
to the production of 15-epi-LXA4, an ASA-triggered LX found
in patients treated with low doses of ASA (Chiang et al.,
2004). In Balb/c T. cruzi-infected mice, 25 and 50 mg/kg of
ASA induced a significant increase in 15-epi-LXA4 production
without modification of LTB4 levels. At these doses, the
mice had prolonged survival, decreased mortality, and less
cardiac inflammatory infiltrate. Additionally, the administration
of 25 mg/kg exogenous 15-epi-LXA4 significantly decreased
the parasitemia peaks and cardiac parasite load, improved
the survival of the infected mice, and partially reversed the
detrimental effect of high-dose ASA (Molina-Berrios et al.,
2013a). Low doses of ASA also improve the vascular reactivity
of mice infected with T. cruzi. Molina-Berrios et al. (2013b)
evaluated the effect of ASA at 2 and 40 mg/kg and found that
both regimens decreased ECAM expression and the TXA2 level.
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Also, 2 mg/kg/day ASA reduced the inflammatory infiltrate in
mice hearts and improved the cardiac histology at 90 days post
infection. Furthermore, in in vitro cardiac cells infected with
T. cruzi, low doses of aspirin increased IL-1β and NO• release,
and decreased transforming growth factor (TGF)-β release,
and these effects disappeared when ASA concentrations were
increased (Malvezi et al., 2014b).

Consistently, ATLs not only participate in the resolution of
the damage produced by T. cruzi but also in the clearance of the
pathogen. In an in vitro model of T. cruzi-infected macrophages,
the addition of 0.3–1.25 mM of ASA significantly decreased the
internalization of T. cruzi without altering macrophage viability
(Carvalho de Freitas et al., 2017). Also, it has been reported
that 0.625–2.5 mM of ASA decreased the internalization of
T. cruzi and increased the release of IL-15 and NO•. However,
co-administration of celecoxib (a COX-2 selective inhibitor)
reverted the ASA effect and restored the invasive capacity of
trypomastigotes, suggesting that functional COX-2 is necessary
for the ASA effect. Furthermore, Boc-2 (a specific antagonist of
the FRP2/ALX receptor) prevented the ASA effect, suggesting
that the inhibition of invasion depends on the synthesis of
15-epi-LXA4 (Malvezi et al., 2014a).

The effects of other SPMs triggered by ASA have been studied.
Ogata et al. (2016) evaluated the effect of AT-RvD1 on peripheral
mononuclear cells (PBMCs) from patients with Chagas heart
disease at stage B1, that is, with few heart abnormalities.
Stimulation of PBMCs with a T. cruzi-derived antigen increased
the production of INF-γ, TNFα, IL-10, and IL-13, while the
pre-treatment of PBMCs with AT-RvD1 (100 nM) significantly
reduced the production of INF-γ, with no changes in TNFα,
IL-10, and IL-13. As INF-γ polarizes the immune response to
a type Th1 response, and a low level of IL-10 indicates loss
of the Treg response, both phenomena could be associated
with the development of heart damage in CD. Therefore,
decreasing INF-γ using AT-RvD1 has a beneficial role in chagasic
cardiomyopathy. Furthermore, AT-RvD1 was able to reduce
the percentage of necrotic PBMCs and their proliferation after
stimulation with a T. cruzi antigen (Ogata et al., 2016).

Recently, an elevated plasma level of RvD1 has been found in
T. cruzi-infected CD-1 mice. Also, RvD1, RvD5, and RvE2 (but
not LXs, maresins, or PDs) were found in the lysates of T. cruzi
trypomastigotes. Interestingly, there were no Rvs found in the
lysates of T. cruzi epimastigotes or other protozoan parasites
such as T. gondii, suggesting that the trypomastigotes themselves
synthesize these SPMs (Colas et al., 2018). However, there was no
direct evidence for a metabolic switch involving TcOYE or a yet
unknown enzymatic activity that could explain a T. cruzi origin
of these SPMs. There is currently no evidence of a T. cruzi 5-LO
enzyme or another enzyme for SPM synthesis.

Statins and SPMs in Chronic Chagas
Disease
15-epi-LXA4 can also be produced by statins. Birnbaum et al.
(2006) showed that statins stimulate 15-epi-LXA4 release from
myocardial tissue. This effect of statins over COX-2 could be
mediated by the overexpression of inducible NO• synthase

(iNOS), which in turns nitrosilates COX-2 at the Cys526 residue,
giving COX-2 the ability to generate the 15R-HETE intermediate
metabolite, which is cleaved by 5-LO to generate 15-epi-LXA4
(Kim et al., 2005). This 15-epi-LXA4 production also requires
that 5-LO remains in the cytoplasm. Thus, 5-LO, phosphorylated
by protein kinase A (PKA) is attached to the nuclear membrane,
where it is committed to leukotriene synthesis (Ye et al., 2008).

In T. cruzi-infected human endothelial cells, simvastatin
induces the synthesis of 15-epi-LXA4 and decreases the
ECAM expression induced by the parasite. This effect was
reversed by the addition of AA-861 (a 5-LO inhibitor) and
replicated when using exogenous 15-epi-LXA4. Interestingly,
15-epi-LXA4 inhibited NF-κB pathway activation, decreasing the
phosphorylation of the NF-kappa-B inhibitor (IκB) and the IκB
kinase (IKK), and preventing NF-κB p65 nuclear translocation.
Thus, the action of 15-epi-LXA4 in T. cruzi-infected endothelial
cells involves the NF-κB signaling pathway (Campos-Estrada
et al., 2015). In addition, in a murine model of CCC,
40 mg/kg/day simvastatin decreased endothelial activation,
inflammatory infiltration, and fibrosis in heart tissue, an
effect that persisted for a long time after treatment stopped.
When simvastatin was administered to 5-LO-deficient mice, the
anti-inflammatory effect was not observed unless exogenous
15-epi-LXA4 was also administered. Thus, there is an association
between simvastatin administration, 15-epi-LXA4 production,
and cardiac improvement. Furthermore, 15-epi-LXA4 was
still detectable 30 days post administration, suggesting that
15-epi-LXA4 is stable in serum and is associated with the
observed sustained effects (Gonzalez-Herrera et al., 2017).

Table 1 summarizes the experimental evidence showing
the effect of pro-resolving mediators in T. cruzi infections
in vivo. The findings support the idea that ASA and simvastatin
have a positive impact on the resolution pathways, producing
novel pro-resolving lipids such as 15-epi-LXA4 or AT-RvD1,
modulating the inflammatory response, and decreasing ECAMs,
leukocyte recruitment, and inflammatory infiltration. Also, the
SPMs increase the survival rate in animal models of CD.

Leishmania spp. INFECTIONS

Leishmania spp. infections have become a paradigm to explain
how the balance between Th1 and Th2 immune responses can
effectively fight an intracellular parasite. In these infections, the
Th1 response (mediated by TNF-α, IL-2, IL-12, and IFN-γ) exerts
a protective role, while the Th2 response (mediated by IL-4,
IL-5, and IL-10) is known as a disease promoter (reviewed in
Maspi et al., 2016). The clinical manifestations of leishmaniasis
are divided into three forms: cutaneous, mucocutaneous, and
visceral leishmaniasis (VL).

Cutaneous Leishmaniasis
Cutaneous leishmaniasis (CL) is the most common form
of leishmaniasis around the world. CL is characterized by
self-limiting skin lesions located in body areas where sandflies
usually bite, such as the face, neck, and limbs. The disease
progression varies between different world regions. The
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TABLE 1 | Experimental evidence on the role of pro-resolving mediators in Chagas disease.

Pro-resolving mediator Experimental model Beneficial role in Chagas disease Reference

15-epi-LXA4 (ASA-triggered) Chronic model of Chagas
cardiomyopathy

↑ Survival
↓ Cardiac parasite load
↓ Number of amastigote nests
↓ Inflammatory infiltration

Molina-Berrios et al., 2013a

Peritoneal macrophages
infected with T. cruzi

↓ Internalization of T. cruzi into
macrophages

Malvezi et al., 2014a

15-epi-LXA4
(simvastatin-triggered)

Endothelial cells infected with
T. cruzi

↓ CAM expression
↓ Cellular recruitment Effect dependent
on NF-κB pathway

Campos-Estrada et al., 2015

Chronic model of Chagas
cardiomyopathy

↓ CAM expression
↓ Inflammatory infiltration and fibrosis
↓ Cardiac parasite load Effect
dependent on 5-LO

Gonzalez-Herrera et al., 2017

AT-Resolvin D1 PBMC from patients with
Chagas disease

↓ INF-γ
↓ Necrotic cells
↓ Proliferation

Ogata et al., 2016

15-D-PGJ2 Acute model of mice infected
with T. cruzi

↓ Number of amastigote nests
↓ Inflammatory infiltration ↑ IL-10
↓TNF-α, IL-6, IL-1β, and NF-κB
activation
↓ Liver fibrosis, CTGF, and TGF-β

Rodrigues et al., 2010; Penas et al.,
2013, 2016

CAM, cellular adhesion molecules; 5-LO, 5-lipoxygenase; INF-γ, interferon-γ; TNF-α, tumor necrosis factor-α; IL, interleukin; NF-κB, nuclear factor kappa-light-chain-
enhancer of activated B cells; PBMC, peripheral blood mononuclear cell; CTGF, connective tissue growth factor.

old-world CL (caused by Leishmania major or Leishmania
tropica) progresses over weeks to months to form a dry ulcer,
but healing occurs over several months or years, leaving a
scar or depigmentation of the skin. On the other hand, the
new-world CL (caused by Leishmania mexicana, Leishmania
amazonensis, or several parasites from the Vianna subspecies,
such as L. [V] braziliensis) produces a wet ulcer that is associated
with lymphadenitis or lymphadenopathy and may involve
mucosal manifestations. New-world leishmaniasis is also called
tegumentary leishmaniasis (TL), which can be localized or
disseminated (de Vries et al., 2015).

In patients with TL, there is a different pattern of expression
of the genes involved in the AA cascade between patients
with localized CL (LCL) and mucocutaneous leishmaniasis
(MCL). Patients with MCL (the most inflammatory form, with
a lower parasite burden per lesion) have decreased expression
of the genes for PGE2 synthesis enzymes (PTGS1 and PGES),
whereas the expression of the gene for 5-LO (ALOX5) is
increased. This divergent expression pattern correlates with
the decreased levels of PGE2 and increased levels of LTB4
found in patients with MCL. Also, in this study, patients
with MCL have increased expression of PTGER3, the gene
coding for the PG receptor EP3 (Franca-Costa et al., 2016).
This finding suggests a role for LTB4 in MCL-induced
inflammation. However, studies on the role of the inflammatory
AA derivatives (such as PGE2 or LTB4) at the molecular level
show that this effect is highly Leishmania species-dependent
(Figure 2).

In the 1980s, it was reported that higher levels of PGE2
relate to reduced lymphocyte proliferation in the spleens of
mice infected with L. major (Farrell and Kirkpatrick, 1987).
Moreover, the increase in PGE2 and LTB4 levels induced a

reduction in the Th1 cytokines TNF-α and IFN-γ, and an
increase in the Th2 cytokine IL-4. This effect has been linked
to the overexpression of the PG receptors EP1 and EP3 (Milano
et al., 1996). Indeed, in macrophages from Balb/c mice infected
with L. major, there is an increase in these receptors and
downregulation of EP2 and EP4 receptors. Furthermore, agonists
of EP1 and EP3 favor infection, whereas selective agonists of
EP2 and EP4 decrease infection (Penke et al., 2013). PGE2 also
affects the role of B-1 cells. B-1 cells modulate the phagocytic
activity of macrophages; this action is dependent on IL-10 release,
which in turn modulates the PGE2 levels in the media (Arcanjo
et al., 2017). Also, PGE2 (via IL-10 production) increases the
phagocytic activity of Balb/c mice-derived B-1CDP cells (a
particular B-1 cell type with phagocytic ability; Borrello and
Phipps, 1999), but it impairs the ability of the mice to resist the
infection (Arcanjo et al., 2015). Finally, in a model involving
human PMNs co-stimulated with ionomycin or LPS/N-formyl-
methionyl-leucyl-phenylalanine (LPS/fMLP), L. major was also
able to increase LTB4 release, which in turn induced a rapid
and sustained decrease in LXA4 production (Plagge and Laskay,
2017).

In contrast, in mouse models of L. amazonensis infection,
higher levels of LTB4 and PGE2 enhance the parasite-killing
ability of murine macrophages, an effect that is dependent of
NO• production and IL-10 reduction (Guimaraes et al., 2006;
Serezani et al., 2006). The high levels of LTB4 from macrophages
can also be induced by ATP, via P2X7 receptor activation (Chaves
et al., 2014). LTB4 also has a role in neutrophil-dependent
L. amazonensis killing. LTB4 activates its BLT1 receptor, inducing
neutrophil degranulation, the release of metalloproteinase 9
(MMP-9) and myeloperoxidase (MPO), ROS production, and
overexpression of TLR2. All these phenomena may be associated
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FIGURE 2 | Overview of the regulation of inflammatory arachidonic acid (AA) derivatives after Leishmania major or Leishmania amazonensis infections. Cutaneous
leishmaniasis causative parasites (L. major and L. amazonensis) induce the production of AA derivatives with opposite roles, depending on the Leishmania species.
In L. major infection models (upper panel) the parasite induces the production of PGE2 and LTB4. Also, the expression of the EP1 and EP3 receptor is increased. The
activation of these receptors by PGE2 leads to parasite survival. PGE2 also increases the release of IL-10 by the B1 cells, reducing the phagocytic activity of
macrophages. On the other hand, L. amazonensis (lower panel) phagocytosis and killing by macrophages is increased by LTB4 and PGE2, and this effect is
mediated by the NO• increase. Also, L. amazonensis increase the degranulation of neutrophils, increasing the anti parasitic activity of the immune system.

with the activation of NF-κB, PI3K, ERK, and protein kinase C
(PKC) signaling (Tavares et al., 2014).

Table 2 resumes all current available evidence regarding the
role of pro-resolving lipids in Leishmania spp. infections. Of
note, most of the researches have been focused in CL. Regarding
the role of these pro-resolving lipids in CL, RvD1 increases
in patients with diffuse CL (DCL), in comparison with those
with LCL, who had lower levels of RvD1 and higher levels
of RvD2. This RvD1 pattern in DCL patients correlates with
higher levels of Arginase-I and TGF-β and lower levels of
TNF-α (Malta-Santos et al., 2017). In an in vitro model of

Leishmania infection based on human cells, RvD1 increased
phagocytosis of the Leishmania parasites by human macrophages.
The increase of RvD1 in L. amazonensis-infected macrophages is
reversed by baicalein, an inhibitor of 15-LO (Malta-Santos et al.,
2017).

RvD1 and LXA4 also target AhR, a transcription factor
activated by several tryptophan metabolites and some AA
derivatives. AhR has been identified in Treg cells, Th17 cells,
and DCs, and its activation induces the expression of IL-10 and
TGF-β (Gutierrez-Vazquez and Quintana, 2018). In L. major
infections, the deletion of this receptor accelerates the disease
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TABLE 2 | Experimental evidence on the role of pro-resolving mediators in Leishmania spp infections.

Leishmania-induced
disease

Host/infection model Pro-resolving lipid/receptor Associated inflammatory
markers/outcomes

Reference

Cutaneous/mucocutaneous
leishmaniasis

DCL patients serum ↑ RvD1 and ↓ RvD2 ↑ Arginase-I and TGF-β
↓ TNF-α
↑ Number of lesions

Malta-Santos et al., 2017

LCL patients serum ↓ RvD1 and ↑ RvD2 ↓ Arginase-I
↑ TNF-α Low number of lesions

Malta-Santos et al., 2017

Ex vivo model of infection with
L. amazonensis

RvD1 treatment ↑ Leishmania phagocytosis by
human macrophages.

Malta-Santos et al., 2017

C57BL/6 mice (KO for AhR
receptor) infected with L. major

↓ LXA4 ↑ TNF-α
↓ IL-12

Elizondo et al., 2011

Human PMNs infected with
L. major

↓ LXA4 ↑ LTB4 Plagge and Laskay, 2017

Balb/c mice infected with
L. braziliensis and serum of ML
patients

↑ Annexin A1 ↑ NF-κB phosphorylation Oliveira et al., 2017

Visceral leishmaniasis Balb/c mice and golden
hamster infected with
L. donovani

15-D-PGJ2 treatment ↓ Parasite load
↓ IL-10 and TGF-β
↑ TNF-α and IL-12

Vishwakarma et al., 2016

DCL, diffuse cutaneous leishmaniasis; LCL, localized cutaneous leishmaniasis; ML, mucocutaneous leishmaniasis; RvD1, Resolvin D1; RvD2, Resolvin D2; LXA4,
Lipoxin A4; AhR, aryl hydrocarbon receptor; TNF-α, tumor necrosis factor-α; IL, interleukin; NF-κB, nuclear factor κ-light-chain-enhancer of activated B cells; PMN,
polymorphonuclear leukocyte; 15-D-PGJ2, 15-deoxy-1(12,14)-prostaglandin J2.

progression, increasing TNF-α production, and decreasing IL-12
and LXA4 synthesis (Elizondo et al., 2011).

Annexin A1 is a 37-kDa protein that is expressed under the
control of glucocorticoids and activates FPR2/ALXR, increasing
IL-10 and IL-6 in experimental models of inflammation
(reviewed by Perretti and D’Acquisto, 2009). In mice infected
with Leishmania [V] braziliensis, Annexin A1 expression
is correlated with the lesion size, being higher 2 weeks
after infection. Annexin A1 is important to control the
inflammatory response while not impairing the immune system’s
parasite-killing ability. Indeed, Annexin A1-KO mice display
more phosphorylation of NF-κB after L. braziliesis infection.
Also, Annexin A1 is increased in patients with the mucosal form
of the disease, but not in those with the localized cutaneous
form (Oliveira et al., 2017). In addition, the synthesis of LXA4,
the primary agonist of FPR2/ALXR, is decreased in PMNs
infected with L. major (Plagge and Laskay, 2017). LXA4, via
FPR2/ALXR activation, enhances the phagocytic activity of
PMNs in a dose- and time-dependent manner (Wenzel and Van
Zandbergen, 2009).

Visceral Leishmaniasis
More than 30 years ago, it was reported that Leishmania
donovani induces the synthesis of PGE2 and LTB4 in infected
macrophages (Reiner and Malemud, 1984, 1985). The interaction
of L. donovani with the TLR2 receptor in macrophages
induces activity in the PI3K/Ca+2 axis, activating the cytosolic
phospholipase A2 enzyme (cPLA2) enzyme, which release AA
from membranes. Also, the Ca+2 increase activates the nuclear
factor of activated T-cells (NFAT2), a transcription factor
which translocates into the nucleus and induces the expression
of COX-2. Both AA release and COX-2 overexpression
are responsible for the resultant increased PGE2 release
(Bhattacharjee et al., 2016). PGE2 is anti-inflammatory, leading to

parasite survival via EP2 receptor activation. This EP2 activation
triggers cAMP synthesis, with subsequent PKA activation. This
second messenger cascade allows the release of IL-10 and
TGF-β and reduces the levels of the inflammatory cytokines
TNF-α, IL-12, and IL-17 (Figure 3). Consequently, the inhibition
of COX-2 or EP2-mediated activation of PKA enhances the
antiparasitic ability of immune cells in vitro and in vivo (Saha
et al., 2014).

15-D-PGJ2, a pro-resolving lipid that acts as an activator of
PPAR-γ receptors (Croasdell et al., 2015), decreases the parasite
load in vitro and in vivo (Table 2). This antiparasitic activity
correlates with a significant decrease in IL-10 and TGF-β, and
a slight increase in the proinflammatory cytokines TNF-α and
IL-12, suggesting that 15-D-PGJ2 favors the Th1 response against
L. donovani (Vishwakarma et al., 2016).

Nevertheless, as in CL, the effect of AA derivatives is also
Leishmania strain-dependent (Figure 3). Leishmania infantum is
a parasite that infects a broad variety of dog populations, inducing
canine VL (CVL). This parasite can also infect humans, thus
dogs are a reservoir of the disease in large endemic areas of
South America (Romero and Boelaert, 2010). Dogs infected with
L. infantum show lower levels of PGE2 and LTB4 compared with
uninfected animals. Moreover, lower levels of PGE2 and LTB4
correlate with an increase in the severity of CVL presentation
(Solca et al., 2016).

At the cellular and molecular level, PGE2 increases parasite
killing in macrophages infected with L. infantum; this effect is
dependent on NO• release (Brandonisio et al., 2001; Panaro
et al., 2001). Lymph node-derived leukocytes from dogs infected
with L. infantum produce higher levels of NO•, TNF-α, and
PGE2. Consequently, the pharmacological inhibition of PGE2
synthesis using indomethacin reduces TNF-α release from these
cells (Venturin et al., 2016). This PGE2 release is stimulated by
the activation of TLR1/2 receptors by the lipophosphoglycans of
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FIGURE 3 | Overview of the regulation of inflammatory arachidonic acid (AA) derivatives after Leishmania infantum or Leishmania donovani infections. Visceral
leishmaniasis causative parasites (L. infantum and L. donovani) induce the production of AA derivatives with opposite roles, depending of the Leishmania species.
L. infantum infection (right panel) induce the release of TNF-α, IL-12, MCP-1 and PGE2 from macrophages. PGE2, in turn, induce the production of NO•, enhancing
parasite killing. In contrast, L. donovani (left panel) increase the production of PGE2 by magrophages, through the activation of the PI3K pathway and the NFAT2
transcription factor. This augmented PGE2 activates the EP2 receptor in macrophages, inducing the release of regulatory cytokines such as TGF-β and IL-10, thus
impairing the immune response against the parasite.

L. infantum, which induces the PKC-ERK1/2 pathway, causing
the release of the Th1 cytokines TNF-α, IL-12, and monocyte
chemoattractant protein-1 (MCP-1). In a dog model, PPAR-γ
agonists, such as rosiglitazone, inhibit the cytokine storm
induction. The fact that Th1 cytokine overexpression is associated
with the inhibition of PPAR-γ (Lima et al., 2017) concurs with
the fact that NSAIDs not only inhibit COX activity but can
also activate this transcription factor (Lehmann et al., 1997),
adding another possible mechanism of action for the antiparasitic
activity of NSAIDs in in vivo L. infantum infections (Figure 3)
(Panaro et al., 2001; Venturin et al., 2016). Conversely, in an
L. infantum-resistant mouse model, the animals became sensitive
when the activity of 5-LO was prevented. Spleen cells obtained
from these mice showed that the IL-17-producing CD4+ T
cells were significantly impaired, with a consequent reduction of
cytokine release related to the Th17 axis (Sacramento et al., 2014).

In humans presenting with VL, the pattern of cytokines
and lipids that drives the inflammatory response is diverse.
In a cohort of patients from an endemic area in Brazil,
patients with VL had elevated levels of IL-10, IL-6, IL-
8, IL-12, RvD1, LTB4, and PGF2α. Also, these patients
had lower levels of TGF-β1 and TNF-α. Moreover, this
pattern of immune modulators reverted after treatment with
antimonial compounds, increasing the levels of TGF-β1 and
decreasing the levels of LTB4, RvD1, IL-6, IL-8, and IL-10.
This study also showed that TNF-α levels were not modified
by chemotherapy treatment, indicating that the inflammatory
response to kill the parasite remained unaltered (Araujo-Santos
et al., 2017).

Trypanosoma brucei INFECTIONS

Trypanosoma brucei subsp. are responsible for human African
trypanosomiasis (HAT), also known as sleeping sickness.

Currently, HAT is the most neglected disease among the
so-called Tri-Tryp (T. brucei, T. cruzi, and Leishmania spp.)
and the volume of research on the inflammatory aspects
of the disease are below those for other trypanosomatids.
HAT progresses from a hemolymphatic early stage, which is
characterized by the presence of parasites in the bloodstream, to
a meningoencephalitic or late stage, where the parasite crosses
the blood–brain barrier and causes an inflammatory encephalitic
reaction that ultimately causes the death of the human host.
The early stage (1–3 weeks) begins when the tsetse fly bites
its host, depositing parasites held within its saliva on the
human skin. Later, the parasites spread to various peripheral
organs and tissues via the lymph and blood, inducing symptoms
that include general malaise, anemia, weakness, and weight
loss. The late stage coincides with the parasite invasion of
the central nervous system (CNS), and it is associated with
neurological alterations such as sleep disorders, confusion, and
mental discoordination. Neuropsychiatric symptoms increase in
frequency and severity with disease progression and untreated
patients progress to a final stage involving seizures, drowsiness,
coma, and death (Sternberg and MacLean, 2010; Büscher et al.,
2017).

Although symptoms are common for both T. brucei
rhodesiense- and T. brucei gambiense-associated HAT, the clinical
presentation depends on which of the two subtypes of T. brucei
is involved in the infection. T. brucei gambiense is associated with
a slow-progressing form of HAT, whereas T. brucei rhodesiense
is related to a faster-progressing form that can cause CNS
damage within a few weeks of infection (Büscher et al., 2017).
The interplay between the host immune response and parasite
subspecies virulence patterns determines the progression and
severity of the disease for each particular patient (Ponte-Sucre,
2016).

The initial response against the parasite mainly involves a
Th1 pro-inflammatory cytokine profile including TNF-α, IL-6,
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NO•, IL-1, and IL-12 (Schleifer and Mansfield, 1993). At the
same time, T. brucei gambiense activates a Th-dependent B-cell
response against the main antigenic molecule of T. brucei, variant
surface glycoprotein (VSG), allowing clearance of the organisms
from the blood (Mansfield and Paulnock, 2005). As reviewed
by Ponte-Sucre (2016), the presence of VSG allows the immune
system to exert a lytic antibody response against T. brucei, but
the parasite’s ability to switch to new VSG coats generates a
parasite population that are not recognized by the previously
generated antibodies. Although VSG is considered the primary
antigenic molecule of T. brucei, parasite DNA is released into
the plasma of infected mice, acting as a pathogen-associated
molecular pattern (PAMP). This DNA activates macrophages in
the first days post infection, increasing IL-12 levels, probably to
induce a response to control the parasite levels by enhancing
Th1 cell polarization (Sternberg et al., 2005). On the other hand,
T. brucei rhodesiense DNA also increases IL-10 levels, which could
play a role in controlling the immune response, as this cytokine
has been shown to limit immunopathology (Sternberg et al., 2005;
Harris et al., 2006).

Common to other trypanosome species, the success of
T. brucei infection relies on its ability to overcome the
initial immune system response but to an extent that is
compatible with the life of the host, avoiding a devastating
“hyper-infection” (Ponte-Sucre, 2016). In this respect, resolution
of the inflammatory response is one of the main events that
T. brucei modulates to escape the initial immune system attack.
An early study showed that suppressor macrophages obtained
from mice infected with T. brucei were able to inhibit production
of IL-2 and the expression of the IL-2 receptor, decreasing
T-cell activation but not pro-inflammatory secretion of IL-1,
which could be produced by an increase in PGs (Sileghem
et al., 1989). These effects are concordant with following
studies reporting that suppressor macrophages control T-cell
activation in T. brucei infection through NO• synthase (NOS)
up-regulation and that elevated NO• produced by macrophages
derived from infected mice is also dependent on PG synthesis
(Schleifer and Mansfield, 1993). At that time, it was clear
that PGs had a role in mediating the initial avoidance of
the immune system as, in several cell types, T. brucei elicited
an increase in these eicosanoids; the discovery of a parasite
PGF2α synthase further reinforced this idea (Alafiatayo et al.,
1994; Kubata et al., 2000). In fact, administration of the
classic COX inhibitor sodium salicylate (an ASA metabolite)
to chronically T. brucei-infected Sprague-Dawley rats induced
a marked increase in neurotoxicity, with an increase in mRNA
levels of pro-inflammatory cytokines such as IL-1β, IL-6, and
IFN-γ, and an increase in COX-2 and iNOS enzymes (Quan
et al., 2000). This evidence suggests that, to some extent,
PGs play a role not only in the acute phase of the infection
but also in the late stage, probably controlling the parasite
burden. In bloodstream forms of T. brucei rhodesiense, PGD2
and its metabolites can inhibit parasite growth and induce
apoptotic-like programmed cell death through ROS generation
(Figarella et al., 2005, 2006). Salmon et al. (2012) reported
that T. brucei adenylate cyclases (ACs) play a role in reducing
the early innate defense against live parasites by inhibiting

TNF-α synthesis in infected mice. The authors demonstrated
that cAMP-mediated activation of PKA affected trypanosome
infection, an effect mediated by PKA signaling activation
(Salmon et al., 2012). It is well known that PGs can activate
cAMP-mediated responses in different cell types; hence, it is
possible that these inflammatory mediators could act through
these signaling pathways to control parasite survival, although
there is no direct evidence for this postulation, at least regarding
T. brucei.

Another relevant aspect is the control of inflammation and
damage to different organs elicited by T. brucei in the late stage
of the disease. In this respect, the regulatory cytokine IL-10
is induced by the parasite, decreasing the levels of NO• and
TNF-α in infected mice, reducing organ damage, and favoring
host survival (Guilliams et al., 2009). Also, results from several
animal studies indicate that T. brucei-induced IL-10 production
counters anemia; thus, this cytokine may play a crucial role in
parasite and host survival (Musaya et al., 2015), which concurs
with findings from research on human subjects. In the late stage,
the levels of IL-10 were found to be elevated irrespective of the
geographical location of the patients and the particular genotype
of the strain involved in the infection (Maclean et al., 2004).
In a more recent study, Kato et al. (2015) evaluated plasma
and cerebrospinal fluid (CSF) cytokine levels in patients with
early- or late-stage HAT. Although the authors did not find a
difference in the levels of IFN-γ, TGF-β, IL-6, and IL-10 in
the plasma, the CSF samples showed an up-regulation of IL-
6 and IL-10 in the late-stage patients, which was associated
with a reduction in severity of neurological impairment (Kato
et al., 2015). In contrast, “trypanotolerant” individuals with
elevated IL-10 levels and low levels of TNF-α are associated
with a higher risk of developing HAT (Ilboudo et al., 2014).
This evidence indicates that T. brucei can regulate both the
inflammatory response in both the early and late stage of the
infection, to ensure host survival. Although there is increasing
evidence of inflammatory mediators such as cytokines and
PGs, the “fine-tuning” of inflammation and parasite survival
comprises a series of molecules and processes rather than a single
mechanism.

CONCLUDING REMARKS

Trypanosomatids in general and T. cruzi and Leishmania spp. in
particular are responsible for chronic disabling and potentially
fatal diseases. The understanding of the pathophysiological
processes in which the parasite develops is fundamental for
the design of much more effective therapies. In this regard,
it is very promising to contemplate modifying aspects of the
inflammation induced by the parasites in order to resolve or
diminish the inflammation, promoting a more efficient clearance
of the microorganism by the host’s immune system. There is
growing evidence addressing this point. Therefore, the use of
pro-resolving lipids, mainly ASA-triggered LXs and Rvs, together
with antiparasitic therapy itself, could help to prevent the damage
induced by the chronic inflammation generated by this group of
parasites.
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In this context, SPMs such as LXA4, RvD1, and drug-induced
pro-resolving lipids (such as 13-epi-LXA4 and AT-RvD1) have
been proven to be effective in the control of the inflammatory
response against parasite infection in most animal models.
However, the fact that the parasite itself could induce the
release of these agents (or eventually synthesize them) indicates
that the control of acute inflammation could also be beneficial
for the parasite. Thus, the use of SPMs as a strategy
against trypanosomatid infections should not be a universal
consideration, as the effects of SMPs are highly variable between
different parasite species/strains and even different mammals.
Overall, there is a need for more research to elucidate which
parasites, host conditions, or even infection stages are associated
with safe and effective use (or synthesis stimulation) of these
SPMs.
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