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Abstract: Breast cancer has the highest mortality and morbidity among women, especially in elderly
women over 60 years old. Abnormal alternative splicing (AS) events are associated with the occurrence
and development of geriatric breast cancer (GBC), yet strong evidence is lacking for the prognostic
value of AS in GBC and the regulatory network of AS in GBC, which may highlight the mechanism
through which AS contributes to GBC. In the present study, we obtained splicing event information
(SpliceSeq) and clinical information for GBC from The Cancer Genome Atlas, and we constructed a
GBC prognosis model based on AS events to predict the survival outcomes of GBC. Kaplan–Meier
analysis was conducted to evaluate the predictive accuracy among different molecular subtypes of
GBC. We conducted enrichment analysis and constructed a splicing network between AS and the
splicing factor (SF) to examine the possible regulatory mechanisms of AS in GBC. We constructed
eight prognostic signatures with very high statistical accuracy in predicting GBC survival outcomes
from 45,421 AS events of 10,480 genes detected in 462 GBC patients; the prognostic model based on
exon skip (ES) events had the highest accuracy, indicating its significant value in GBC prognosis. The
constructed regulatory SF–AS network may explain the potential regulatory mechanism between SF
and AS, which may be the mechanism through which AS events contribute to GBC survival outcomes.
The findings confirm that AS events have a significant prognostic value in GBC, and we found a few
effective prognostic signatures. We also hypothesized the mechanism underlying AS in GBC and
discovered a potential regulatory mechanism between SF and AS.
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1. Introduction

Breast cancer, which has the highest mortality and morbidity rate among women in the world,
has placed a heavy burden on global public health, especially in developing countries. According
to GLOBOCAN 2018, 2.08 million new cases and 620,000 deaths due to breast cancer were reported
in 2018, which accounted for 11.6% of all new cancer cases and 6.6% of cancer deaths of women [1].
With increasing age, the prevalence of breast cancer increases. In the United States, 43% of breast
cancers are recognized in women aged older than 65 years. Age is undoubtedly the biggest hazard
factor in breast cancer [2–4]. A statistically significant difference exists in the distribution of molecular
subtypes between geriatric and young breast cancer patients, and less aggressive Luminal A and
Luminal B tumor subtypes are more common in geriatric patients [5]. Previous studies have shown
that estrogen receptor (ER) and progesterone receptor (PR) positives are higher in geriatric breast
cancer (GBC), with less overexpression of epidermal growth factor receptor (EGFR), human epidermal
growth factor receptor 2 (HER2), and ki67 [6]. At present, the effectiveness of prognostic signatures of
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breast cancers based on morphological classification and molecular biology is limited in predicting the
overall survival outcomes of GBC patients, and most of these prognostic signatures are more applicable
to young breast cancer patients, owing to the non-standard treatment and different molecular subtypes
in GBC patients [7–12]. Therefore, novel and effective signatures for predicting the prognosis of GBC
are urgently needed.

According to the Precision Medicine Initiative, precision medicine is a new method of medical
treatment that is specified based on a patient’s genetics, environment, and lifestyle [13,14]. The
development of genome sequencing has made precision medicine the core idea of current anti-cancer
treatment. Therefore, studies have tried to seek trustworthy genetic changes from the perspective of
alternative splicing (AS) to improve statistical accuracy in predicting GBC prognosis. AS plays a key
role in the arrangement of protein diversity and gene expression of various eukaryotes. In humans,
approximately 95% of multiple exon genes undergo AS [15,16]. Global analysis has revealed that at least
15,000 cancer-specific splice variants exist in 27 types of cancer. Cancer cells usually show abnormal AS
profiles, which may be due to mutations at the splice sites (SS) or splicing regulatory elements [17,18].
Abnormal AS events may be associated in the development and advancement of cancer, including cell
proliferation, apoptosis, invasion, tumor metastasis, angiogenesis, and metabolism [18,19].

Some studies have shown the association between AS events and breast cancer. For example,
the increased risk of breast cancer metastasis is related to B-cell lymphoma-extra large (Bcl-xL)
overexpression [20]. Abnormal splicing of ER and HER2 has been proven to promote breast
carcinogenesis, which could be a feasible target for cancer treatment [21,22]. However, systematic
analysis of the prognostic power of AS in GBC and the underlying mechanism is lacking. In general, AS is
a sophisticated process that is strictly managed by the splicing factor (SF), and SFs are highly variable
in terms of both function and framework [23]. The spliceosome is a highly sophisticated and dynamic
ribonucleoprotein (RNP) machine, which is composed of the five small nuclear ribonucleoproteins
(snRNPs) (U1, U2, U4, U5, and U6) and a large number of non-snRNP protein factors [24]. Studies
have shown that the expression of SFs in cancer cells and normal tissues is significantly different,
and mutations on SFs are closely associated with the occurrence of cancer [23,25]. Studies have
shown that SF plays an important role in breast cancer hallmarks, such as angiogenesis, resisting
cell death, sustaining proliferation, deregulating cellular energetics, and invasion and metastasis
formation [26]. Therefore, studying the clinical significance of AS and SF in GBC and the potential
regulatory mechanism pathways between them is valuable, as it may be the mechanism contributing
to GBC.

The Cancer Genome Atlas (TCGA) database provides extensive genome data related to different
cancers [27]. Many studies have employed TCGA splicing data to study AS events and their
clinical significance associated with cancer, such as lung cancer, prostate cancer, gastrointestinal
adenocarcinoma, bladder cancer, and ovarian cancer [28–32]. However, no study has fully investigated
AS events and their prognostic value associated with GBC. Therefore, we aimed to use the data in
TCGA database to construct a GBC prognosis model based on AS events to predict the survival
outcomes of GBC. Kaplan–Meier (KM) analysis incorporating AS signature and molecular subtypes
was used to verify the efficacy of prognosis models. Correlation analysis was employed to build a
splicing network between AS and SF, in order to study the possible regulatory mechanisms of AS
in GBC.

2. Materials and Methods

2.1. Process of Alternative Splicing Data Acquisition

TCGA SpliceSeq is a web-based resource that can provide data on AS events from 33 different
tumor types (including available adjacent normal samples) [33]. The combination of gene symbol,
splicing type, and splicing ID number constitutes the expression of each AS event. AS events are
divided into seven types, including exon skip (ES), mutually exclusive exon (ME), retained intron (RI),
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alternate promoter (AP), alternate terminator (AT), alternate donor site (AD), and alternate acceptor
site (AA). We obtained the percent-sliced-in (PSI) values for these seven types of AS events to quantify
them in GBC. The PSI value ranges from 0 to 1, indicating that the AS event has changed. We also
downloaded data of AS events of GBC from the TCGA SpliceSeq database.

We downloaded and extracted the clinical information about GBC from the pan-cancer atlas
database of TCGA [34]. The clinical data of 1082 breast cancer patients were obtained from the TCGA
database. We selected cases with a survival time greater than 90 days and age over 60 years as the GBC
data (to exclude deaths that were not caused by the tumor), and we obtained 462 sets of data that met
the requirements. The standard for non-GBC data is a survival time greater than 90 days and age less
than 60 years.

2.2. A Preview of Survival-Related Alternative Splicing Events in Geriatric Breast Cancer

In this study, we included 462 GBC patients, and the overall survival (OS) was at least 90 days.
Univariate Cox regression analysis was performed for every AS event, in order to screen AS events
related to survival (p < 0.05). We used the UpSetR package in R to draw an UpSet diagram to show the
set of interactions between seven types of survival-related AS events [35,36].

2.3. Prognostic Signatures for Alternative Splicing Events in Geriatric Breast Cancer

The least absolute shrinkage and selection operator (LASSO) method can reduce the dimensionality
of high-dimensional data and obtain a better-fitting model. The LASSO Cox regression model was
used to identify the ideal coefficients for each prognostic signature [37,38]. Multivariate Cox regression
analysis was employed in the most important survival-related AS events that were selected from each
AS type to establish a prognostic signature (PS). The AS events that were selected by the multivariate
Cox regression analysis were used to determine the risk scores for the corresponding AS type: risk
score =

∑n
i PSIi×β i, where β is the regression coefficient in the multivariate Cox regression and PSI

values are used to report alternative splicing changes. This was the calculation formula for the risk
score of each splicing prognostic signature.

2.4. Evaluation of the Prognostic Value of the Risk Score

The clinical value of the risk score was evaluated using KM analysis and the receiver operating
characteristic (ROC) curve. The median risk score was used to divide GBC patients into high-risk and
low-risk groups; to further verify whether they had completely different prognoses, we performed
a Kaplan–Meier analysis. Survival software was employed to calculate the estimated area under
the curve (AUC) of the ROC curve to assess the predictive efficacy of each prognostic indicator in
GBC [39]. Models with AUC > 0.7 were considered to be more effective models. Molecular subtypes
are important factors influencing survival time. Therefore, the prognostic signatures were tested for
their ability to predict the survival conditions of patients with different molecular subtypes using KM
survival analysis. In this study, the molecular subtypes were divided into ER positive, ER negative,
PR positive, PR negative, HER2 positive, HER2 negative, BRCA1 mutation, and BRCA1 non-mutation.
BRCA1 had only five mutations; therefore, we could not perform survival analysis with the BRCA1
mutation subgroup. We placed non-GBC data into the prognostic signatures to evaluate the difference
of AS events between GBC and non-GBC patients.

2.5. Building of the Potential Splicing Factor–Alternative Splicing Regulatory Network and Enrichment
Analysis

SFs play an indispensable role in regulating the development and advancement of
malignancy [23,25]. The information about the SFs was obtained from the database SpliceAid2
(which can be downloaded from http://www.introni.it/splicing.html) and previous studies [40–42].
The messenger RNA (mRNA) profiles of splicing factors in breast cancer and normal tissues were
obtained from the TCGA database. Survival-related SFs were screened by univariate Cox regression

http://www.introni.it/splicing.html
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analysis. Pearson correlation analysis was performed on differential expression of survival-associated
SFs and corresponding independent prognostic AS events (screening criteria: |correlation coefficient|
> 0.6, p < 0.001). Then, Cytoscape3.7.1 was used to establish the feasible regulatory network using
the screened data [43]. Gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways were used to assess the functions of the most important survival-related AS events.
The most important pathways in KEGG and each GO category are visualized as shown.

3. Results

3.1. Information about Alternative Splicing Events

In general, we detected 45,421 AS events from 10,480 genes in breast cancer patients. These results
include 3731 alternate acceptor (AA) events in 2628 genes, 3246 alternate donor (AD) events in 2278
genes, 9112 alternate promoter (AP) events in 3654 genes, 8595 alternate terminator (AT) events in
3755 genes, 17,702 exon skip (ES) events in 6811 genes, 233 mutually exclusive exon (ME) events in
227 genes, and 2802 retained intron (RI) events in 1878 genes (Table 1). The intersection set of genes
and AS events is shown in the UpSet diagram in Figure 1. The total number of genes is much lower
than the number of AS events, which indicates that a single gene may undergo more than one splicing.
ES is the main type of AS event, and ME is rare.

In this study, to accurately describe an AS event, each AS event has a unique code. For example,
for the code INO80B|54064|AA, INO80B is the gene name, AA is the splicing type, and 54,064 is the
sequence number of the splicing event in the TCGA database.
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Table 1. Overview of the splicing events in GBC.

Type Total Splicing Events SSEs

Splicing Events Genes Splicing Events Genes

AA 3731 2628 141 136
AD 3246 2278 158 147
AP 9112 3654 308 221
AT 8595 3755 247 169
ES 17,702 6811 695 593
ME 233 227 9 9
RI 2802 1878 140 128

Total 45,421 21,231 1698 1403

SSEs: survival-associated splicing events. AA: alternate acceptor; AD: alternate donor; AP: alternate promoter; AT:
alternate terminator; ES: exon skip; ME: mutually exclusive exons; RI: retained intron.

3.2. Survival-Related Alternative Splicing Events

Through univariate Cox regression analysis, we identified a total of 1698 survival-associated AS
events from 1289 genes in 462 GBC patients (p < 0.05), including 141 AA events in 136 genes, 158 AD
events in 147 genes, 308 AP events in 221 genes, 247 AT events in 169 genes, 695 ES events in 593 genes,
9 ME events in 9 genes, and 140 RI events in 128 genes (Table 1). A gene may have two or more AS
events that are prominently associated with the prognosis of GBC, so we used the Upset diagram
to show the distribution of survival-related splicing events in the seven AS types and visualize the
intersection set. The Upset diagram (Figure 2) clearly shows that ES is the most common event related
to the prognosis of GBC.
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Figure 2. UpSet plots of prognosis-related alternative splicing (AS) events in geriatric breast cancer
(GBC).

The distribution of AS events related to survival is shown in Figure 3A. Figure 3B–H shows the
20 most important prognostic-related AS events. However, among ME events, there were only nine
prognostic-related AS events.
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Figure 3. Most important AS events in GBC. (A) The red dots represent AS events that are prominently
associated with patient survival. The blue dots represent AS events without correlation. (B) The top 20
AS events correlated with the clinical outcome based on alternate acceptors; (C) alternate donor sites;
(D) alternate promoters; (E) alternate terminators; (F) exon skips; (G) the top nine AS events correlated
with the clinical outcome, based on mutually exclusive exons; (H); retained introns.

3.3. Prognostic Signatures for Alternative Splicing Events in Breast Cancer

We built prognostic signatures based on AA, AD, AP, AT, ES, ME, RI, and all types of
AS events using LASSO Cox analysis after univariate Cox to eliminate interacting genes after
cross-validation of the minimum error (Figure S1A–H) and screen significant survival-associated genes
(Figure S1I–P). Figure S2 shows the distribution of percent-spliced-in (PSI) values and risk scores in
each prognostic signature. All prognostic signatures showed that higher risk scores lead to higher
mortality. We evaluated the predictive efficiency of the models through KM analysis and ROC curves
(Figures S3 and S4). The risk score was calculated according to the above method, and then the median
risk score was used to divide GBC patients into high-risk and low-risk groups. KM analysis (Figure S3)
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showed that for all prognostic signatures, the survival time of GBC patients in the high-risk group was
significantly less than that in the low-risk group (p < 0.001). These results suggest that the pronounced
molecular characteristics of AS events are adverse prognostic factors in GBC. Survival ROC analysis
was performed to compare the predictive power of every prognostic signature (Figure S4). The data
showed that the AUC values of AA, AD, AP, AT, ES, ME, RI, and all AS models were 0.854, 0.738, 0.84,
0.764, 0.859, 0.707, 0.835, and 0.785, respectively. The prognostic signature of ES (Figure 4) shows the
best predictive efficiency, followed by the AA model (Figure 5). The ES model has a great potential for
predicting the survival of GBC patients. According to the evaluation of univariate and multivariate
Cox regression analysis, the comprehensive analysis results showed that only the age and the risk score
of the eight prognostic models have independent significant prognostic value compared with other
clinical parameters, including age, cancer stage, and tumor T, N, and M stages (p < 0.01) (Figure 6,
Table 2).
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Figure 5. Analysis of the PS–alternate acceptor site (AA). The 16 prognosis-associated events of AA
were selected by multivariate Cox regression analysis to make the PS–AA model. (A) Kaplan–Meier
curves of prognostic signature built with AA events. (B) ROC curves of prognostic signatures construct
with AA events. (C) Risk scores of GBC patients constructed by AA events. (D) Survival conditions
and survival time of GBC patients, distributed according to risk score (green dots represent survivors,
red dots represent deaths). (E) Heat map indicating the correlation between the PSI value of the AA
events and the risk score. Colors from red to blue means decreasing PSIs from high to low.

By substituting data from non-GBC patients into established prognostic signatures, the survival
time of non-GBC patients in the low-risk group and the high-risk group did not show a significant
difference; even the survival time of the low-risk group was less than that in the high-risk group in
the PS–AT group (Figure S5). The KM analyses of all prognostic signatures showed that the high-risk
group had shorter survival times than the low-risk group in the cohort classified by Her-2 status, ER
status, PR status, and BRCA1 status (Figures S6–S13).
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Table 2. Univariate and multivariate Cox regression analysis of eight PS models and clinical indexes of
GBC patients.

Clinical Variable
Univariate Multivariate

HR (95% CI) p-Value HR (95% CI) p-Value

Age 1.064 (1.030–1.101) 0.0002 1.079 (1.042–1.117) 1.65 × 10−5

Stage 1.875 (1.413–2.487) 1.31 × 10−5 1.690 (0.809–3.529) 0.1627
T 1.484 (1.120–1.966) 0.006 0.887 (0.582–1.351) 0.557
M 3.116 (1.412–6.874) 0.0049 0.621 (0.192–2.009) 0.426
N 1.775 (1.413–2.229) 8.00 × 10−7 1.427 (0.946–2.153) 0.09

PS–AA 1.085 (1.065–1.105) 2.88 × 10−18 1.088 (1.065–1.111) 6.15 × 10−15

PS–AD 1.132 (1.102–1.1164) 3.28 × 10−19 1.133 (1.098–1.169) 6.92 × 10−15

PS–AP 1.043 (1.032–1.055) 3.54 × 10−14 1.041 (1.029–1.054) 3.41 × 10−11

PS–AT 1.011 (1.006–1.016) 1.13 × 10−5 1.012 (1.007–1.017) 4.79 × 10−6

PS–ES 1.025 (1.018–1.032) 1.87 × 10−12 1.023 (1.015–1.031) 2.87 × 10−8

PS–ME 1.502 (1.309–1.724) 6.79 × 10−9 1.546 (1.343–1.778) 1.08 × 10−9

PS–RI 1.011 (1.007–1.015) 9.69 × 10−8 1.011 (1.007–1.015) 5.22 × 10−8

PS–ALL 1.006 (1.003–1.009) 0.0002 1.006 (1.003–1.009) 4.87 × 10−5

HR:hazard ratio; T: tumor; M: metastasis; N: lymph node; PS–AA: prognostic signature–alternate acceptor; PS-AD:
prognostic signature– alternate donor; PS–AP: prognostic signature–alternate promoter; PS–AT: prognostic signature–
alternate terminator; PS–ES: prognostic signature– exon skip; PS–ME: prognostic signature– mutually exclusive
exons; PS–RI: prognostic signature–retained intron; PS–ALL: prognostic signature–all types of AS events;.
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3.4. Survival-Associated Potential of the Splicing Factor–Alternative Splicing Regulatory Network and
Enrichment Analysis

SFs play an important role in regulating the occurrence of splicing events. These SFs, usually
bound to pre-mRNA, regulate splicing by affecting exon selection and splicing sites, which are closely
associated with the development and progression of tumors. We downloaded the information on
SFs from the SpliceAid2 database, as well as previous studies (Table S1). Pearson correlation analysis
was employed to study the relationship between the differential expression of survival-associated SFs
and independent prognostic AS events (screening criteria: |correlation coefficient| > 0.06, p < 0.001).
We found 18 SFs and 34 AS-related independent prognostic events that were apparently associated with
the prognosis of GBC patients. These significant, survival-related AS events were used to investigate
enrichment in biological functions and pathways (Figure 7). The GO analyses showed that the
prominent survival-related AS events were clustered in biological processes, including ubiquitin-like
protein ligase binding and profilin binding (p < 0.01), and that KEGG analysis did not identify useful
pathways. Then, the data obtained from the correlation analysis were introduced into Cytoscape 3.7.1
to establish the AS–SF correlation network (Figure 8). In this network, triangles represent SFs, red
circles represent AS events associated with poor prognosis, green circles represent AS events associated
with favorable prognosis, the red lines represent a positive regulation between AS and SF, and green
lines represents a negative regulation between AS and SF. Different AS events in SF may have different
functions. For example, DDX39B has a positive correlation with DDRGK1-58577-AT but a negative
correlation with DDRGK1-58576-AT. Notably, AS events associated with poor prognosis are mainly
negatively correlated with SF, whereas AS events associated with favorable prognosis are mainly
positively correlated. The relationship between SF and AS is not one-to-one. An SF can be concerned
with multiple independent prognostic AS events, and an independent prognostic AS event also can be
concerned with multiple SFs.
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Figure 8. Survival-associated potential SF–AS regulatory network in breast cancer. Triangles (n = 18)
represent SFs, red circles represent AS events associated with poor prognosis, green circles represent
AS events associated with favorable prognosis, red lines indicate a positive regulation between AS and
SF, and green lines indicate a negative regulation between AS and SF.

4. Discussion

Violating the “one gene, one polypeptide” rule, AS exerts strong effects on gene expression
by producing multiple protein isoforms. AS can cause the generated mRNA to be degraded
by nonsense-mediated mRNA decay, ultimately changing the quality and quantity of protein
products [44,45]. Studies have shown that abnormal AS events may be the mechanism underlying
the processes of different diseases, including the occurrence and development of tumors [18,19].
Cancer-specific mRNA produced by abnormal AS events may cause the dysfunction of tumor
suppressors or activation of oncogenes, which participate in the development of tumors. [46,47].
More and more studies are recognizing the relationship between abnormal AS events and tumors.
For example, SNRPB is currently considered a prognostic marker for glioblastoma [48]. Out-of-control
AS events regulated by SRSF1 can encourage the formation of breast cancer [49]. However,
comprehensive and scientific analysis of the prognostic power of AS events in GBC is lacking.
To the best of our knowledge, this is the first study to use the TCGA database to integrate AS
events and clinical factors to comprehensively study the prognostic significance of AS events in GBC.
We constructed eight prognostic signatures based on AA, AT, AD, AP, ES, ME, RI, and all types
of AS events, with significant predictive power for the overall survival of GBC patients. Among
them, the ES model showed the best predictive performance (AUC = 0.859). Through univariate and
multivariate Cox analysis, we discovered that only the age and risk score of the eight prognostic
models had independent significant prognostic value. KM analysis was also used to investigate the
survival outcomes of the different molecular subgroups of GBC. We established a potential AS–SF
regulatory network, and pathway and process enrichment analyses were used to analyze the important
survival-related AS events, which may be the mechanisms through which AS contributes to GBC.
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The most important clinical significance of this study is the establishment of prognostic signatures
that have significant predictive power. In previous studies, some researchers have developed prognostic
models for breast cancer based on other genomic characteristics. For example, Zhang et al. established
a prognostic model for breast cancer based on rapacity-regulated gene expression characteristics [50].
By studying the expression status of the TP53 gene and autophagy genes, prognostic signatures have
also been successfully established [51,52]. However, in our study, our main emphasis was not the impact
of abnormal AS events of a certain gene on the prognosis of breast cancer patients; thus, we established
prognostic signatures based on the system analysis of GBC-related AS events. KM analysis proved that
all the prognostic signatures could accurately predict the survival outcomes of GBC in different kinds
of molecular subtypes, including ER positive, ER negative, PR positive, PR negative, HER2 positive,
HER2 negative, and BRCA1 non-mutation. According to our results, the eight prognostic signatures
all have excellent clinical value, and the ES model was the best (AUC = 0.859), which could provide
efficient prognostic value. However, when we placed non-GBC data into the prognostic signatures,
the models that accurately predicted GBC showed no statistical significance, which confirms that the
AS events are significantly different between GBC and non-GBC. These age-dependent variations in
patient prognosis may be due to the BRCA1-driven differences and micro-environmental changes.
In the ES model, we analyzed 14 AS events related to the prognosis of GBC, including ETV1, SH2D4A,
BCLAF1, and SUV420H1. One breast cancer study indicated that cell proliferation and invasion in
triple-negative breast cancer can be suppressed through miR-17-5p targeting ETV1, and ETV1 was
proven to be a significant oncogene in triple-negative breast cancer [53]. This is also consistent with
our findings; the overexpression of ETV1 is associated with poor prognosis. Other genes, such as
SH2D4A, BCLAF1, and SUV420H, also have carcinogenic or tumor-suppressing functions that can
affect the formation and development of human cancer [54,55]. Therefore, our findings may provide
a new perspective for administering precision medicine and elucidating the molecular mechanisms
underlying GBC tumorigenesis. AS is a complicated system that is strictly regulated by SFs [23].
Therefore, SFs are the key factor in adjusting splicing events, and the correlation between SFs and
independent prognostic AS events is also worth studying.

Abnormal splicing of ER, HER2, CEACAM1, and SRSF1 has been reported to contribute to breast
tumorigenesis and prognosis, which could be an underlying target for cancer treatment [21,22,49,56].
However, information is lacking about how AS and SF contribute to GBC. In this study, the regulatory
network explained the potential regulatory mechanism between AS and SF in GBC (p < 0.001), which
may explain how AS contributes to GBC. Negative correlations between SF and AS events in breast
cancer were more common than positive correlations, and a single SF might play a dual role in
different AS events: positive regulation or negative regulation. For example, DDX39B negatively
regulated DDRGK1-58576-AT, whereas it positively regulated DDX39B DRGK1-58577-AT. Different
SFs for the same AS event usually have a synergistic effect, but there are special cases. For example,
RANBP3-47007-ES is under the positive regulation of CCDC12 and CDK10, but under the negative
regulation of DHX9. Notably, AS events associated with poor prognosis were mainly negatively
correlated with the SF, whereas AS events associated with favorable prognosis were mainly positively
correlated with it. These results suggest that SFs and AS are not in a one-to-one relationship, and
complex regulatory mechanisms exist between them.

The SF–AS regulatory network may provide a new direction for the underlying regulatory
mechanisms. Thus, SRRM2 and DDX39B occupy an important position in the SF–AS regulatory
network. According to prior studies, SRRM2 plays an important role in precise chromosome
segregation, genome stability, and cell proliferation [57]. A germline mutation in SRRM2 is related
to the predisposition of papillary thyroid carcinoma [58]. DDX39B promotes cell proliferation by
up-regulating pre-ribosomal RNA, and its levels are apparently improved in various cancer types [59].
However, no previous study has discussed the effect of SRRM2 and DDX39B in GBC. Our results
provide new directions for tumorigenesis in GBC.
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The GO analysis results in our study indicate that the genes are mainly involved in pathways
and biological processes, including the ubiquitin-like protein ligase binding and profilin binding.
Protein ubiquitination is one of the most important posttranslational modifications of protein—it
controls many cellular processes, including DNA damage response, cell cycle control, and cellular
signaling [60]. Overexpression of Profilin-1 also has the ability to suppress the invasiveness and
motility of breast cancer cells, which is a negative regulator of mammary carcinoma aggressiveness [61].
AS events produced by these genes might influence the development of GBC through participating
in the above biological pathways and processes. In summary, we collated prognostic-related AS
events in GBC through the TCGA database and established prognostic signatures with satisfactory
predictive power in GBC. To reveal the regulatory mechanism of AS events contributing to GBC,
we also established an SF–AS regulatory network and analyzed enrichment, which not only provides
possible new prognostic indicators for GBC patients, but also may provide directions for further
exploration of splicing-related mechanisms.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/2/200/s1,
Figure S1: Construction of prognostic signatures based on least absolute shrinkage and selection operator (LASSO)
Cox analysis. (A–H): the lowest point of the ordinate is the minimum point of the cross-validation error (A);
alternate acceptor (B); alternate donor sites (C); alternate promoters (D); alternate terminators (E); exon skips
(F); exclusive exons (G); retained introns (H), all types. (I–P): LASSO Cox analysis of seven types of events. The
horizontal axis stands for the Log Lambda. The vertical axis stands for the coefficients. As the value of the logλ
increased, the coefficient approaches 0. (I) Alternate acceptors (J), alternate donor sites (K), alternate promoters
(L), alternate terminators (M), exon skips (N), exclusive exons (O), retained introns (P), all types. Figure S2.
Distribution of PSI values and risk scores in each PS model. The top of each diagram is the risk score curve of
patients with breast cancer, the middle part represents survival status and survival time of breast cancer patients,
distributed by risk score (green dots represent survivors, red dots represent the dead), and the bottom part shows
the heat map of the PSIs. Colors from blue to red means increasing PSIs from low to high. (A) Risk scores
constructed by significant survival-associated AS events in the AA type. (B) Risk scores constructed by significant
survival-associated AS events in the AD type (C). Risk scores constructed by significant survival associated AS
events in the AP type. (D) Risk scores constructed by significant survival-associated AS events in the AT type. (E)
Risk scores constructed by significant survival-associated AS events in the ES type. (F) Risk scores constructed
by significant survival-associated AS events in the ME type. (G) Risk scores constructed by significant survival
associated AS events in the RI type. (H) Risk scores constructed by significant survival-associated AS events in all
types. Figure S3. Kaplan–Meier curves of prognostic signatures for breast cancer. (A) Kaplan–Meier survival
curves for the PS–AA model (p = 1.082e−13). (B) Kaplan–Meier survival curves for the PS–AD model (p =
3.464e−13). (C) Kaplan-Meier survival curves for the PS–AP model (p = 4.341e−09). (D) Kaplan–Meier survival
curves for the PS–AT model (p = 3.44e−10). (E) Kaplan–Meier survival curves for the PS–ES model (p = 3.997e−15).
(F) Kaplan–Meier survival curves for the PS–ME model (p = 9.415e−05). (G) Kaplan–Meier survival curves for the
PS–RI model (p = 1.453e−10). (H) Kaplan–Meier survival curves for the PS–ALL model (p = 3.331e−16). Figure
S4. ROC curves of prognostic signatures for breast cancer. (A) ROC curve for the PS–AA model (AUC = 0.854).
(B) ROC curve for the PS–AD model (AUC = 0.738). (C) ROC curve for the PS–AP model (AUC = 0.84). (D) ROC
curve for the PS–AT model (AUC = 0.764). (E) ROC curve for the PS–ES model (AUC = 0.859). (F) ROC curve
for the PS–ME model (AUC = 0.707). (G) ROC curve for the PS–RI model (AUC = 0.835). (H) ROC curve for
the PS–ALL model (AUC = 0.785). Figure S5: Non-GBC data substitutes into the PS model: (A) PS–AA model,
(B) PS–AD model, (C) PS–AP model, (D) PS–AT model, (E) PS–ES model, (F) PS–ME model, (G) PS–RI model,
(H) PS–All model. Figure S6. Kaplan–Meier curves of the PS–AA model for different molecular types of GBC
patients. (A) ER negative, (B) ER positive, (C) HER2 negative, (D) HER2 positive, (E) PR negative, (F) ER positive,
(G) BRCA1 negative. Figure S7. Kaplan–Meier curves of the PS–AD model for different molecular types of GBC
patients. (A) ER negative, (B) ER positive, (C) HER2 negative, (D) HER2 positive, (E) PR negative, (F) ER positive,
(G) BRCA1 negative. Figure S8. Kaplan–Meier curves of the PS–AP model for different molecular types of GBC
patients. (A) ER negative, (B) ER positive, (C) HER2 negative, (D) HER2 positive, (E) PR negative, and (F) ER
positive, (G) BRCA1 negative. Figure S9. Kaplan–Meier curves of the PS–AT model for different molecular types
of GBC patients. (A) ER negative, (B) ER positive, (C) HER2 negative, (D) HER2 positive, (E) PR negative, (F) ER
positive, and (G) BRCA1 negative. Figure S10. Kaplan–Meier curves of the PS–ES model for different molecular
types of GBC patients. (A) ER negative, (B) ER positive, (C) HER2 negative, (D) HER2 positive, (E) PR negative,
(F) ER positive, and (G) BRCA1 negative. Figure S11. Kaplan–Meier curves of the PS–ME model for different
molecular types of GBC patients. (A) ER negative, (B) ER positive, (C) HER2 negative, (D) HER2 positive, (E) PR
negative, (F) ER positive, and (G) BRCA1 negative. Figure S12. Kaplan–Meier curves of the PS–RI model for
different molecular types of GBC patients. (A) ER negative, (B) ER positive, (C) HER2 negative, (D) HER2 positive,
(E) PR negative, (F) ER positive, and (G) BRCA1 negative. Figure S13. Kaplan–Meier curves of the PS–ALL model
for different molecular types of GBC patients. (A) ER negative, (B) ER positive, (C) HER2 negative, (D) HER2
positive, (E) PR negative, (F) ER positive, and (G) BRCA1 negative. Table S1: Collection of 610 splicing factors
from the SpliceAid 2 database and previous studies.
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