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Abstract

With the recent advent of genetic engineering, numerous genetically modified (GM) crops

have been developed, and field planting has been initiated. In open-environment cultivation,

the cross-pollination (CP) of GM crops with wild relatives, conventional crops, and organic

crops can occur. This exchange of genetic material results in the gene flow phenomenon.

Consequently, studies of gene flow among GM crops have primarily focused on the extent

of CP between the pollen source plot and the adjacent recipient field. In the present study,

Black Pearl Waxy Corn (a variety of purple glutinous maize) was used to simulate a GM-

maize pollen source. The pollen recipient was Tainan No. 23 Corn (a variety of white gluti-

nous maize). The CP rate (%) was calculated according to the xenia effect on kernel color.

We assessed the suitability of common empirical models of pollen-mediated gene flow

(PMGF) for GM maize, and the field border (FB) effect of the model was considered for

small-scale farming systems in Asia. Field-scale data were used to construct an optimal

model for maize PMGF in the maize-producing areas of Chiayi County, southern Taiwan (R.

O.C). Moreover, each model was verified through simulation and by using the 95% percen-

tile bootstrap confidence interval length. According to the results, a model incorporating

both the distance from the source and the FB can have optimal fitting and predictive

abilities.

Introduction

With improvements in biotechnology and genetic engineering, the area assigned to the cultiva-

tion of genetically modified (GM) crops has increased by 1.9 million hectares from 2017 to

2018 [1]. Among the 26 countries growing GM crops in 2018, five countries grew 91% of these

crops [1]. Moreover, more than 70% of plants produce offspring through cross-pollination

(CP) between species; this is a commonly observed evolutionary phenomenon in plants, and

pollen is the primary medium for this process [2]. Therefore, when GM crops are cultivated in
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an open environment, their pollens can spread to distant locations through airflow [3]. CP can

occur from GM crops to wild relatives, conventional crops, and organic crops through pollen

dispersal. This leads to an exchange of genetic material, and the resulting gene flow phenome-

non affects neighboring crops. Pollen-mediated gene flow (PMGF) can be assessed by evaluat-

ing the CP rate (%) from the pollen source plots to recipient fields.

Maize (Zea mays L.) is a typical wind-pollinated crop. Pollen shedding begins before the

tassel completely appears and lasts for approximately 5 to 6 days. Normally, the tasseling

period is out of phase with the silking period in maize, resulting in a high rate of CP. However,

the probability of self-pollination remains approximately 5% [4, 5]

Generally, for wind-pollinated species, pollen flow and CP decrease with distance from the

pollen source, and this decrease follows a leptokurtic distribution. The length and shape of the

distribution’s tail depend on biological and environmental factors [6, 7]. Because maize pollen

grains are heavier (approximately 0.25 μg) and larger (diameter approximately 70–100 μm)

than those of other wind-pollinated species, maize pollen is typically spread over a limited dis-

tance. Therefore, the CP rate (%) decreases rapidly with distance, and the distribution of this

reduction often has a fat tail. Thus, relative to other distributions, a leptokurtic distribution

better models the relationship between CP rate (%) and distance from the maize pollen source

[7].

To prevent the pollution of non-GM crops or related derivative products through uninten-

tional CP and to ensure consumers’ freedom of choice between GM and non-GM products,

the European Union (EU) set the tolerance threshold for the adventitious presence (AP) of

GM events at 0.9% (Regulation EC No. 1829/2003). Isolation distance (ID) is a common coex-

istence measure used to minimize the AP. Additionally, under current EU regulations, mem-

ber states are responsible for establishing individual coexistence laws. However, these states

have substantial discrepancies between their regulations governing the required and recog-

nized IDs for planting GM maize [8]. The differences between the required and regulated IDs

for maize in EU member states in the EU are fairly large [8], ranging from an ID regulation of

15 m in Sweden to that of 800 m in Luxemburg for forage corn [9, 10]. Therefore, a clear

understanding of the PMGF distribution is required to determine a suitable ID for actual

conditions.

Studies have modeled the PMGF for maize. Bannert and Stamp [11] investigated the CP

trend following the long-distance dispersal of maize pollen. The maize fields had areas of 0.5–

1.5 ha, and the distance between the source and recipient fields was 50–4500 m. The results

indicated that vertical wind and gusts resulting from thermal or turbulence effects were the

primary causes of long-distance CP. In addition, the average CP rates (%) of the recipient fields

were>0.02%. Ma et al. 2004 [4] categorized field experimental data into downwind and

upwind subsets and used exponential equations to investigate the relationship between the CP

rate (%) of the conventional maize hybrid and the distance from the neighboring GM-maize

fields. The results indicated a CP rate (%) of 0% at distances of at least 30 m from the pollen

source. Moreover, to determine an effective isolation buffer between the pollen source and

recipient fields and maintain an average CP rate (%) less than the 0.9% EU threshold, Gustaf-

son et al. 2006 [12] used log decay functions to construct an empirical model. The simulation

results indicated that when the source field covered an area of 0.07–0.65 ha, the average CP

rate (%) of the recipient 1 ha field was less than 0.9%, with an ID of 20 m and border rows. In

2008, Della Porta et al. [5] used downwind and upwind experimental data to compare the fit-

ting abilities of the following three empirical models to describe the relationship between CP

rate (%) and distance from the pollen source: the exponential model, the log–log model, and

the log–square model. The results indicated that the log–log model (a power law equation) had

the best fit. However, the CP rate (%) was overestimated for distances within 3 m from the
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2010-1 fields are available on Figshare (https://doi.

org/10.6084/m9.figshare.13370756.v1) where

distance= distance from the pollen source (m),

CP= cross-pollination rate, Po= the CP rate (%) at

the edge of the pollen recipient field, and ID=

isolation distance.
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recipient field to the pollen source when using this model. Šuštar-Vozlič et al. 2010 [13] used

inverse power functions to develop a suitable CP model. Numerous samples must be collected

and investigated to accurately estimate the CP of maize fields [13]. However, if an appropriate

model and set of sampling methods are employed to calculate CP in the field, the required

sample size can be reduced.

To perform farm-scale evaluation of maize fields with an area less than 5 ha, Weekes et al.

[14] used experimental data collected from 55 experimental sites in England and developed a

gene flow model. This model comprised two stages: (1) second-order log equations were

adopted to determine the probability that a sample has a GM content of 0% at a given distance

within the recipient field and (2) a beta distribution was used to calculate the mean proportion

of GM content at a given distance. Based on this model, a separation distance of 3 m was rec-

ommended to ensure that the neighboring crop had a CP rate (%) less than the 0.9% threshold

when using a square source field with an area of 150 × 150 m2.

Most PMGF studies of GM maize have been conducted in EU member states or North

America on large-scale fields. However, PMGF results might be affected by environmental fac-

tors, particularly regional climate, agricultural landscape, and experimental materials. There-

fore, real field experiments on PMGF from pollen source plots to recipient fields in a small-

scale farming system are warranted.

In this study, a farm environment with both GM and non-GM crops was designed to inves-

tigate the gene flow of GM crops and subsequently reduce the risk of GM gene flow to conven-

tional crops. Although many countries have permitted GM crops to be commercially

cultivated over large areas, no GM crops have been approved for commercially cultivation in

Taiwan. Moreover, in the small-scale agricultural landscapes of Taiwan, crop fields are often

separated by field borders (FBs), such as roadways between fields. Therefore, the influence of

FBs on CP was also considered. This is the first comprehensive investigation of the effects of

ID and FBs on the CP rate (%) of maize in Taiwan, an island with a subtropical climate.

Chiayi County is a primary maize-producing area of Taiwan. Therefore, experiments were

conducted in Puzih City, Chiayi County (23˚470N, 120˚260E) during the growing seasons of

2009 and 2010 to determine the optimal model for CP. The empirical models of pollen flow

used in other studies were referenced to develop a CP model for maize production areas with

small-scale agricultural landscapes. Moreover, the fitting abilities of the empirical models were

compared, and the fitting stability and predictive abilities of the optimal model were evaluated

using 1,000 bootstrap simulations. The results can aid governments in establishing coexistence

systems for GM and non-GM crops in field allocation for the cultivation of GM maize. This

information can also be a reference for other Asian counties with similar farming systems,

such as Japan, Korea, and the Philippines.

Materials and methods

Field design

In this study, experiments were conducted at the Puzih Branch Station of the Tainan District

Agricultural Improvement Station from 2009 to 2010. Moreover, FBs are common in the agro-

ecosystems of Taiwan because fields are often separated by roadways. Therefore, to establish a

model that includes both the distance from the source and the FB, the following three field

experiments were conducted (Fig 1): (1) During the first crop season in 2009 (2009–1), a study

was designed to investigate circumstances in which the pollen source neighbors the pollen

recipient field. Because the prevailing wind during 2009–1 is from the south, the pollen source

was designated at the southern edge, and the pollen recipient was downwind from the pollen

source (Fig 1A). The total site area was approximately 0.42 ha (84.5 × 50 m2), and the pollen
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source to recipient field area ratio was approximately 1:2.6. (2) During the second crop season

in 2009 (2009–2), a study was designed to evaluate the effects of the FB. The pollen recipient

field was divided into part A (without an FB; 2009-2A) and part B (with an FB; 2009-2B). Part

A neighbored the pollen source, and part B had an FB with a width of 6.75 m to provide sepa-

ration from the pollen source. Because the prevailing wind during fall is from the north, the

pollen source was designated at the northern edge (Fig 1B). The total site area was approxi-

mately 0.42 ha (84.5 × 50 m2), and the pollen source to recipient field area ratio was approxi-

mately 1:2.5. (3) During the first crop season in 2010 (2010–1), an experiment was conducted

with an FB larger than that in 2009-2B. Maize fields were separated with an FB with a width of

7.5 m between the recipient field and the pollen source (Fig 1C). Because the prevailing wind

during summer is from the south, the pollen source was designated at the southern edge. The

total site area was approximately 0.55 ha, and the pollen source to recipient field area ratio was

approximately 1:1.8.

Plant culture

For this experiment, two commercial glutinous maize varieties with different grain colors were

selected from those grown in Taiwan. Black Pearl waxy corn (Known-You Seed Co., Kaoh-

siung, Taiwan), which has purple grains, was used as the pollen source. The period from plant-

ing to flowering of this variety is approximately 40–50 days. Moreover, Tainan No. 23 corn,

which has white grain and is suitable for planting in central and southern Taiwan, was used as

the pollen recipient. The kernel pericarp color of the maize resulting from the xenia effect (i.e.,

purple grains on the white ears of the pollen recipient) was used to determine the CP rate (%).

Fig 1. Field design and sampling plots layout for the experiments. Crop seasons (a) 2009–1, (b) 2009–2, and (c) 2010–1. The solid line indicates the

pollen recipient, the dashed line indicates the pollen source, and the network node indicates the FB. The example of sampling plots layout is illustrated in

the first row of each experiment.

https://doi.org/10.1371/journal.pone.0249700.g001
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The xenia effect of the maize is caused by the effect of the different pollen source gene resulted

in endosperms on the development of the seeds.

We adopted conventional farming management methods in this study. The distance

between individual plants in a row was 0.25 m, and the distance between rows was 0.75 m.

Maize fields were planted with densities of 53,018 plants ha−1 in the 2009–1 field, 53,251 plants

ha−1 in the 2009–2 field, and 53,467 plants ha−1 in the 2010–1 field (Fig 1).

Plant dates

To ensure congruence between releases of male pollen from the purple maize and the silking

period of the white maize, the purple maize was sown in two batches according to planting

time. The white maize variety flowers slightly later than the purple variety does in Puzih City,

Chiayi County. Therefore, for the 2009–1 experiment, the white maize was sown on 8 May, the

first batch of purple maize was sown on 11 May, and the second batch of purple maize was

sown on 13 May. However, the results of the 2009–1 experiment indicated no clear difference

between the flowering periods of the white and purple maize varieties. Therefore, in subse-

quent experiments, the first batch of purple maize was sown 3 to 5 days before the white maize

was sown, and the second batch of the purple maize was sown at the same time as the white

maize was. In the 2009–2 experiment, the white maize was sown on 16 October, the first batch

of purple maize was sown on 13 October, and the second batch of purple maize was sown on

16 October. In the 2010–1 experiment, the white maize was sown on 3 May, the first batch of

purple maize was sown on 28 April, and the second batch of purple maize was planted on 3

May.

Climate monitoring during the flowering period

Meteorological information during the experiments, including wind speed and wind direction,

was measured at the Central Weather Bureau’s Yichu Branch Station (23˚36’N, 120˚28’E).

Wind speed and wind direction were recorded hourly from 6 a.m. to 4 p.m. for 7 days before

and after the silking period of the pollen recipient. Changes in wind rose plots were used to

interpret trends in wind speed and direction.

Data collection and CP (%) rate calculation

In this study, to explore the relationship between the CP rate (%) and the distance from the

pollen source, ears were measured for each small plot by using the census method. The 2009–1

field was investigated using a census scale with small sample plots with areas of 2.5 × 0.75 m2

(number of missing plots: 5; number of measured plots: 1,635). Furthermore, to identify and

precisely describe the gene flow trends in maize, ears were measured with small sample plots

with areas of 1.25 × 0.75 m2 in the 2009–2 (number of missing plots: 10, number of measured

plots: 3,110) and 2010–1 fields (number of missing plots: 392, number of measured plots:

3,248).

Visual inspection of the ears of the pollen recipient and xenia counting were used to calcu-

late the CP rate (%). That is, the CP rate (%) was evaluated by counting the number of purple

xenia kernels on the white pollen recipient according to the following formula (Eq 1) [5, 11]:

CPð%Þ ¼ ½
Xn

i¼1
Eari=ðn� AVKÞ� ð1Þ

where n is the number of ears in the sample plot, Eari is the number of purple kernels on the

ith ear in the sample plot, and AVK is the average number of kernels for an ear in the field. To

determine AVK, two ears were randomly chosen from each sampling plot, and the total
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number of kernels was counted for each selected maize ear to calculate the average number of

kernels for an ear.

PMFG models

In previous studies, the majority of models describing the relationship between the CP rate

(%) and the distance from the source pollen can be categorized into the following types: the

exponential model, log–log model, and log–square model. In these equations, distance refers

to the distance (m) from the sampled ears to the edge of the pollen source field, and a and b
are model parameters [4, 5].

To consider the effects of FBs, the field designs of the 2009–2 and 2010–1 experiments

included FBs. Therefore, in addition to employing the aforementioned models, the empirical

modeling approach proposed by Gustafson et al. [12] was investigated. This model contained

information for the adventitious presence of the GM trait in seeds within the recipient field

(%) (AP), the fraction of pollen containing the GM trait (FGM), the CP rate in the row closest

to the edge of the pollen recipient field (P0), the ID from the edge of the source field to the

recipient field (ID; this was the same as FB in the present study), distance from edge of recipi-

ent field nearest to the source (x), and the width of the border rows (in meters) for the non-

GM crop planted between the source and recipient fields (BR) (Eq 2).

CP ¼ APþ ðFGMP010� ½0:1
ffiffiffi
ID
p
þ0:2

ffiffiffiffiffiffiffiffi
xþBR
p

�Þ ð2Þ

After individual field trial data were fit using the empirical modeling approach, the trend of

the gene flow within recipient or border rows could be reduced, as indicated by the coefficient

of the proportionality constant, and twice as effective as the ID (the unplanted isolation

buffer), as reported in Gustafson et al. [12]. Consequently, in this study, the proportionality

constants for FB and the distance within the recipient field were re-estimated based on the

data from field experiments conducted during the growing seasons of 2009 and 2010.

Furthermore, in the European commercial biotech environment, because the AP of the

unavoidable GM traits of seeds must be less than 0.3%, the AP was set at 0.003 in the model

[12]. However, under the current planting regulations for GM crops in Taiwan, no GM crops

have been approved for commercial cultivation in open fields. Moreover, planted seeds cannot

be admixed with GM seeds. Therefore, the AP for the empirical modeling approach should be

adjusted to 0% for the conditions of Taiwan’s current agricultural environment. In addition, to

conform to the planting regulations that forbid the cultivation of GM crops, FGM was set to 1;

that is, all pollen grains containing GM traits introduced a risk of spreading GM traits through

pollination [12]. Gustafson et al. [12] also indicated that the mathematical descriptions of the

relationships between gene flow and distance from the pollen source are the same as those for

the recipient and border rows. However, rows in the isolation field with non-GM maize

between the source and recipient fields were not considered as border rows. Consequently, in

the empirical modeling approach, BR was set to 0.

The models with the coefficient values estimated from the data and proposed by Gustafson

et al. [12] were evaluated in this study. Furthermore, the models with and without 0.003 AP

were investigated to assess the assumption of receptor seeds carry GM trait due to 0.3% AP. In

summary, the following five models (Eqs 3–7) were used to describe the relationship between

the CP rate (%) and the distance from the pollen source in the field experiments:

CP1 ¼ b� eaðdistanceÞ ð3Þ

CP2 ¼ b� distancea ð4Þ
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CP3 ¼ b� 10a
ffiffiffiffiffiffiffiffiffiffi
distance
p

ð5Þ

CP4 ¼ P0 � 10ða
ffiffiffiffi
FB
p
þb
ffiffiffiffiffiffiffiffiffiffi
distance
p

Þ ð6Þ

CP5 ¼ 0:003þ P0 � 10ða
ffiffiffiffi
FB
p
þb
ffiffiffiffiffiffiffiffiffiffi
distance
p

Þ ð7Þ

where CPi refers to the CP rate (%) estimated using the ith model, distance is the distance (m)

from the sampled plot to the edge of the pollen source field, FB is the width of the FB, which

functions as an isolation buffer, P0 is the parameter that describes CP rate (%) at the edge of

the pollen recipient field, and a and b are model parameters.

Simulation analysis

To evaluate the fitting performance and predictive ability of the models and the stabilities of

the estimated parameters, bootstrapping was performed to simulate the population distribu-

tion. Bootstrapping is a nonparametric simulation method that uses a computationally inten-

sive resampling technique to assess the variance of a statistic or parameter [15]. The benefit of

the bootstrapping method is that the population distribution need not be assumed when gen-

erating data sets through random sampling with replacement.

In this study, random sampling with replacement was applied to the actual data set across

lumped together across the three fields. A total of 8,005 observations of raw data were used to

generate new data sets through 1,000 bootstraps. Then, the PMGF models were fitted accord-

ing to the 1,000 bootstrap samples. To compare the stabilities in the fitting performance and

predictive ability of the calibration and validation sets, confidence intervals were calculated for

specific evaluation criteria with a 5% significance level on the basis of the percentile bootstrap

(PB) confidence interval method [16]. By sorting the evaluation criteria of the 1,000 bootstrap

samples from smallest to largest, the 95% PB confidence intervals were calculated between the

2.5th and 97.5th percentiles.

Statistical analysis

In this study, Statistical Analysis System (SAS) version 9.4 (SAS Institute, Cary, NC, USA) was

used to conduct the statistical analysis. The PROC NLMIXED was used for fitting the models.

Before fitting the models, the CP rates were transformed to the count data, and the count data

were assumed to follow a Poisson distribution. Thereafter, the collected experimental data

were randomly partitioned into two sets, a calibration set (two thirds of the samples) and a val-

idation set (one third of the samples), for fitting the models and validating their predictive abil-

ities, respectively.

To compare the fitting performance of the models in describing the relationship between

the CP rate (%) and distance from the pollen source, evaluation criteria were based on the

deviance and Akaike information criterion (AIC) [17]. In addition, based on the validation

data, deviance and AIC were used to evaluate the fitting abilities of the fitted models. Further-

more, the correlation coefficient (r) and scatter plots were used to assess the predictive ability

of each fitted model based on the validation data.

Finally, similarly to the analysis of the collected experimental data, the simulated data for

each bootstrap sample were also categorized into a calibration set (two thirds of the samples)

and a validation set (one third of the samples) to fit the models and validate their predictive

abilities. In the simulated data of each bootstrap sample, the values of deviance, AIC, and
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parameters were estimated for each model. Then, standard deviations (SDs), confidence inter-

vals of deviance and AIC were calculated to assess the stabilities of the performance of each

model. For the simulated validation data, the correlation coefficient was also calculated to eval-

uate the predictive ability of each model.

Results and discussion

Weather patterns

The average wind speed and direction were monitored for 7 days before and after the 50% pol-

len silking of the pollen recipient. The average wind speed was higher and more varied during

the 2009–1 and 2010–1 crop seasons than during the 2009–2 season (Fig 2). During the investi-

gation period in the 2009–1 season (June 17 to July 1), the prevailing winds were mostly from

S to SE (Fig 3A). The daily average wind speed was 4.57 ± 2.06 m s−1 (Fig 2A). Because of the

influence of the peripheral circulation of Typhoon Linfa during the flowering period (June 19–

22), the gust speeds reached up to 22.3 m s−1. In 2009–2, the prevailing wind was mostly from

N to NNW. The daily average wind speed was 3.88 ± 1.27 m s−1 during the investigation period

(November 4–18; Fig 3B). The gust speeds were up to 13.4 m s−1. In 2010–1, the daily average

wind speed was 4.33 ± 0.26 m s−1, and the gust speeds were up to 14.4 m s−1. The prevailing

winds were mostly from SSE during the investigation period (June14–28; Figs 2C and 3C).

Gene flow trends

The CP rate (%) tended to decrease with increasing distance from the pollen source (Fig 4).

Table 1 shows the average CP rate (%) for various rows and the distance from the pollen source

in the 2009–1, 2009–2, and 2010–1 experiments.

The highest measured CPs rates (%) occurred in the rows of the recipient fields closest to

the pollen source. The CP rate (%) was the highest (93.7%) in the 2009-2A experiment (with-

out an FB). Moreover, the average CP rate (%) in the row closest to the pollen source was

74.29% in the 2009-2A experiment (without an FB), 36.12% in the 2009-2B experiment (with a

6.75 m FB), 27.58% in the 2010–1 experiment (with a 7.5 m FB), and 27.24% in the 2009–1

experiment (without an FB). These results indicated that FBs may enhance pollen exchange in

the row of the pollen recipient closest to the pollen source. The average CP rate (%) of the

other rows decreased as the distance from the pollen source increased (Table 1). As expected,

fields neighboring the pollen source (e.g., 2009-2A) had higher CP rates (%) than those sepa-

rated by FBs (e.g., 2009-2B and 2010–1).

In the 2009–1 experiment, the average CP rate (%) declined from 27.24% to 2.49% at a dis-

tance from the pollen source of approximately 9 m. In the 2009–2 field, the average CP rate

(%) decreased from 74.29% to 2.49% at a distance from the pollen source of approximately 18

m. However, when the pollen recipient field was separated from the pollen source by an FB of

6.75 m, a rapid decline in the average CP rate (%) from 36.12% to 2.50% was observed at a dis-

tance from the FB of approximately 9 m. When the width of the FB was increased to 7.5 m in

the 2010–1 field, the average CP rate (%) decreased from 27.58% to 2.18% at a distance from

the FB of approximately 4.5 m. According to these results, the average CP rate (%) rapidly

decreased with increasing distance from the pollen source and with increasing FB width. In

addition, with the 6.75 m natural barrier in the 2009-2A field, the average CP rate (%) of the

row closest to the pollen source was only 7.43%. Therefore, border rows may be more effective

buffer zones relative to FBs for decreasing the CP rate (%), whereas FBs are more suited to

long-distance pollination events. However, when the distance was increased to 18.75 m in the

2009–2 experiments, the average CP rates (%) of the rows in the 2009-2B field were mostly

lower than those in the 2009-2A field (Table 1).
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Fig 2. Average wind speed (m/s) for 7 days before and after 50% pollen silking. Crop seasons (a) 2009–1, (b) 2009–

2, and (c) 2010–1. ▲: silking date of pollen recipient; ▼: shedding date of pollen recipient, and5: shedding date of

pollen source.

https://doi.org/10.1371/journal.pone.0249700.g002
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The 2009–1 field was influenced by the peripheral circulation of a typhoon during the flow-

ering period. The sudden heavy rain and gusts resulted in the lodging of corn plants and a

lower CP rate (%).

According to current regulations in Taiwan, the ID should result in a GM content of 0%.

However, even at maximum distance from the source (i.e., 75 m), the average CP rate (%)

remained as high as 0.1%. To meet the 0.9% EU threshold, the 2009-2A field (without an FB)

required a distance of at least 39.75 m from the pollen source, and the 2009-2B field (with a

6.75 m FB) required a distance of approximately 36 m from the pollen source. Moreover, the

2010–1 field (with a 7.5 m FB) required a distance of approximately 18 m. Furthermore, for

the 5% GM content threshold in Taiwan, the 2009-2A field (without an FB) required a distance

of approximately 9.75 m from the pollen source, the 2009-2B field (with a 6.75 m FB) required

a minimum distance of 12.75 m, and the 2010–1 field (with a 7.5 m FB) required a distance of

approximately 9.75 m. Because the 2009–1 field was influenced by a typhoon during the flow-

ering period, it is not included in this discussion.

Fig 3. Wind roses of wind direction frequencies measured hourly between 6:00 a.m. and 4:00 p.m.. (a) June 17 to July 1, 2009; (b) November 4–18,

2009; and (c) June 14–28, 2010. The scales measure the hourly occurrence gusts from different directions.

https://doi.org/10.1371/journal.pone.0249700.g003

Fig 4. Scatter plots of pollen CP in the maize fields. Crop seasons (a) 2009–1, (b) 2009-2A (black dot) and 2009-2B (gray dot), and (c) 2010–1.

https://doi.org/10.1371/journal.pone.0249700.g004

PLOS ONE Evaluating the model estimation of the extent of cross-pollination in maize

PLOS ONE | https://doi.org/10.1371/journal.pone.0249700 May 19, 2021 10 / 18

https://doi.org/10.1371/journal.pone.0249700.g003
https://doi.org/10.1371/journal.pone.0249700.g004
https://doi.org/10.1371/journal.pone.0249700


PMGF model

The estimated values of the regression parameters, the deviance, and AIC for each CP model

based on the complete data are presented in Table 2. The estimated values of a for CP1, CP2,

Table 1. Average CP rate (%) in various rows and the distances from the pollen source in the 2009–1, 2009–2, and 2010–1 fields.

Site 2009–1 2009–2 2010–1

A B B

Distance(m)a without FBb without FB with 6.75 m FB with 7.5 m FB

0.75 27.24 ± 10.55c 74.29 ± 10.70

2.25 8.85 ± 5.47 27.39 ± 9.75 FB

3.75 4.51 ± 2.98 12.56 ± 5.69 FB

5.25 2.85 ± 1.83 7.75 ± 4.95

6.75 2.88 ± 2.82 7.43 ± 5.97 36.12 ± 11.14

7.50 3.25 ± 1.77 5.19 ± 4.07 20.08 ± 7.38 27.58 ± 11.44

9.75 2.49 ± 1.81 4.98 ± 4.23 8.01 ± 5.05 4.60 ± 6.23

12.75 1.17 ± 1.07 2.96 ± 2.27 4.04 ± 2.18 1.37 ± 1.33

15.75 1.25 ± 1.27 2.49 ± 1.57 2.50 ± 1.65 0.68 ± 0.88

18.75 0.52 ± 0.99 2.49 ± 1.92 1.49 ± 0.73 0.95 ± 1.13

21.75 1.00 ± 0.80 2.24 ± 1.33 1.61 ± 0.83 0.61 ± 0.53

24.75 0.50 ± 1.00 1.53 ± 0.88 1.53 ± 0.79 0.57 ± 0.87

27.75 0.51 ± 0.51 1.75 ± 1.02 1.11 ± 0.53 0.60 ± 0.71

30.75 0.25 ± 0.31 1.50 ± 0.99 1.16 ± 0.74 0.36 ± 0.60

33.75 0.29 ± 0.22 1.36 ± 0.96 1.09 ± 0.74 0.22 ± 0.41

36.75 0.19 ± 0.28 0.81 ± 0.76 0.81 ± 0.34 0.20 ± 0.40

39.75 0.15 ± 0.18 1.34 ± 1.93 0.57 ± 0.33 0.22 ± 0.39

42.75 0.18 ± 0.18 0.55 ± 0.39 0.80 ± 0.46 0.15 ± 0.40

45.75 0.20 ± 0.18 0.59 ± 0.35 0.47 ± 0.28 0.23 ± 0.38

48.75 0.20 ± 0.12 0.66 ± 0.50 0.38 ± 0.37 0.14 ± 0.37

52.50 0.19 ± 0.15 0.64 ± 0.46 0.40 ± 0.44 0.18 ± 0.20

56.25 0.18 ± 0.17 0.60 ± 0.56 0.49 ± 0.44 0.07 ± 0.11

60.00 0.11 ± 0.06 0.55 ± 0.38 0.22 ± 0.18 0.13 ± 0.35

63.75 0.08 ± 0.09

67.50 0.12 ± 0.24

71.25 0.27 ± 0.64

75.00 0.11 ± 0.17

a: distance from the pollen source (m).
b: FB indicates a field border between the pollen source and pollen recipient.
c: mean ± standard deviation.

https://doi.org/10.1371/journal.pone.0249700.t001

Table 2. Regression parameters, deviance, and AIC for the complete dataset in each model.

Model P0 a b deviance AIC

CP1 -0.1059 ± 0.00044 0.1858 ± 0.00129 64390 82702

CP2 -1.1649 ± 0.00298 0.4897 ± 0.00346 55354 73667

CP3 -0.3651 ± 0.00117 0.7369 ± 0.00687 51706 70018

CP4 0.6426 ± 0.00662 0.08345 ± 0.00238 -0.3886 ± 0.0014 50479 68793

CP5 0.8867 ± 0.01012 0.2411 0.00377 -0.5604 ± 0.00298 45559 63874

a: mean ± standard error.

https://doi.org/10.1371/journal.pone.0249700.t002
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and CP3 as well as of b for CP4 and CP5 were negative, implying that CP rate (%) decreased as

distance from the pollen source increased. However, the estimated values of a for CP4 and CP5

were positive, indicating that the FB may have enhanced pollen exchange. Moreover, in CP5

and CP4, the lower deviance and AIC compared with the other models indicated a closer fit for

the complete dataset. However, to evaluate the model fitting results and compare the predictive

abilities of the investigated models, the experimental data were randomly partitioned into a

calibration set and validation set.

Table 3 presents the fitting ability of each CP model based on the deviance and AIC for cali-

bration and validation data. When the fit was assessed using the calibration set, four of the

models had deviance > 30000, and only one had deviance< 30000. The lowest deviance value

was 29994 (CP5). Moreover, four models had AIC> 45000, and one had AIC< 45000. The

lowest AIC value was 42044 (CP5).

For the validation set, the fitting abilities were similar to the fits evaluated using the calibra-

tion set. Model CP5 exhibited optimal fitting ability with the lowest deviance value of 15878

and AIC value of 22158 and was followed by CP4 (deviance = 17496, AIC = 23777; Table 3).

The scatter plots of actual and predicted values in Fig 5 indicate the predictive abilities of the

models based on the validation set. Only one model had r� 0.7 (CP1), four models had

r> 0.7. The highest r value was 0.79 (CP5), indicating that CP5 had higher prediction abilities

than the other models.

Accordingly, CP1, CP2, and CP3 had worse fits and predictive abilities than the other mod-

els. CP5 exhibited the optimal fit and predictive ability, followed by CP4. Because the FB effect

occurred in some fields, CP1, CP2, and CP3 had worse fits and prediction abilities relative to

the models that included the FB effect.

Simulation results

Bootstrap simulations were implemented to compare the stabilities of the fits and predictive

abilities of the CP models. The simulation method was repeated for 1,000 runs, where 1,000

bootstrap samples were generated during 1,000 runs. The means and SDs of the parameters

were calculated for each CP model based on the bootstrap simulations (Table 4). In addition,

the mean and SD of the deviance and AIC of the simulated calibration and validation sets were

also calculated (Table 5). For the validation sets, the correlation coefficient was calculated to

evaluate the model predictive ability.

The estimated values of parameters (Table 4) were similar to the results obtained from the

complete observed data listed in Table 2. This indicated that the parameters estimated from

the simulation data were identical to those estimated from the whole original data.

Table 3. Deviance and AIC for each model in the calibration and validation sets.

Model Cross-Pollination Model Calibration Set Validation Set

Deviance AIC Deviance AIC

CP1 CPa ¼ 0:1957� e½� 0:1092ðdistanceÞ� 43638 55686 22400 28679

CP2 CP ¼ 0:5� distance� 1:1782 36830 48879 19224 25503

CP3 CP ¼ 0:7959� 10� 0:3746
ffiffiffiffiffiffiffiffiffiffi
distance
p

34348 46396 18008 24286

CP4 CP ¼ 0:7018� 10½0:0771
ffiffiffiffi
FB
p
þð� 0:3964Þ

ffiffiffiffiffiffiffiffiffiffi
distance
p

� 33670 45720 17496 23777

CP5 CP ¼ 0:003þ 0:9759� 10½ð0:2460Þ
ffiffiffiffi
FB
p
þð� 0:5788Þ

ffiffiffiffiffiffiffiffiffiffi
distance
p

� 29994 42044 15878 22158

a: cross-pollination (CP) rate (%).

https://doi.org/10.1371/journal.pone.0249700.t003
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The average deviance values of CP5 and CP4 were lower than those of the other models,

indicating that the fits of CP5 and CP4 were closer to the data than were those of the other

models. Among the other models, CP1, CP2, and CP3 performed similarly in terms of average

deviance. Furthermore, the SDs of deviance were higher in CP1, CP2, and CP3 than in CP5 and

CP4. This indicated that CP1, CP2, and CP3 had worse fit and greater variability than CP5 and

CP4 did. Moreover, the average AIC values were similar to the results for deviance (Table 5).

CP5 and CP4 exhibited the lowest average AIC values, and they had smaller SDs compared

with the other models. In summary, CP5 and CP4 had the optimal fit, and these fits were more

stable than those of the other models.

Fig 5. Scatter plots of measured and predicted CP values in the validation set. Models (a) CP1, (b) CP2, (c) CP3, (d) CP4, and (e) CP5 (���: p< .0001).

https://doi.org/10.1371/journal.pone.0249700.g005

Table 4. Regression parameters for each model based on the simulation data.

Model P0 a b

CP1 -0.1058 ± 0.0029 0.1856 ± 0.0112

CP2 -1.1653 ± 0.0161 0.4907 ± 0.0238

CP3 -0.3648 ± 0.0064 0.7359 ± 0.0473

CP4 0.6414 ± 0.0437a 0.0836 ± 0.0127 -0.3883 ± 0.0076

CP5 0.8861 ± 0.0624 0.2417 ± 0.0227 -0.5607 ± 0.0172

a: mean ± standard deviation.

https://doi.org/10.1371/journal.pone.0249700.t004
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The validation results were similar to those obtained from the calibration set (Table 5). This

indicated that the fit and validation results were consistent and no overfitting occurred. More-

over, CP5 and CP4 remained more fitted than the other models. The SDs of deviance and AIC

in CP5 and CP4 were also smaller than those in the other models. The CP5 also presented the

highest r (r = 0.796) among the models. The value of r indicated that the CP4 and CP5 per-

formed the best predictive ability.

For the calibration and validation sets, the results of CP5 and CP4 were superior to those of

the other models. Therefore, CP5 and CP4, which included FBs, had the closest fits, optimal

predictive abilities, and most stable performance.

Additionally, the 95% PB confidence interval lengths (PBLs) of the average deviance and

AIC values were used to further assess the stabilities of model fitting (Figs 6 and 7).

As indicated in Fig 6, the fits of CP5 and CP4 were more stable than those of the other mod-

els, resulting in smaller PBLs (PBLCP5 = 4075, PBLCP4 = 5140). Because the PB confidence

intervals were overlapping, the CP5 and CP4 models exhibited similar performance. Most of

Table 5. Deviance, AIC and r for each model based on the simulation data.

Calibration Set Validation Set

Model Deviance AIC Deviance AIC r

CP1 42852 ± 2029a 55064 ± 2073 21441 ± 1387 27546 ± 1417 0.651 ± 0.017

CP2 36887 ± 1950 49099 ± 1992 18452 ± 1389 24557 ± 1419 0.736 ± 0.045

CP3 34433 ± 1486 46645 ± 1533 17238 ± 1033 23343 ± 1066 0.739 ± 0.027

CP4 33576 ± 1284 45790 ± 1333 16845 ± 904 22953 ± 939 0.759 ± 0.024

CP5 30288 ± 1060 42502 ± 1111 15213 ± 767 21321 ± 802 0.796 ± 0.027

a: mean ± standard deviation.

https://doi.org/10.1371/journal.pone.0249700.t005

Fig 6. 95% PBLs of deviance based on the simulated (a) calibration and (b) validation sets for each model.

https://doi.org/10.1371/journal.pone.0249700.g006
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the models exhibited relatively larger PBLs except CP4 and CP5. Additionally, the results

obtained from the validation set were similar to those obtained from the calibration set.

Moreover, the 95% PBLs of the average AIC values were similar to the results for deviance.

CP5 and CP4 exhibited similar fits and were more stable than the other models (Fig 7). In addi-

tion, the results obtained from the validation and calibration sets were similar.

In summary, CP5 and CP4 exhibited the optimal stability, model fits, and predictive abili-

ties. Moreover, the values of the regression parameters estimated based on the simulation data

were similar to the values calculated using the complete observed data. Furthermore, the com-

parison results of deviance and AIC estimated using the simulation data were similar to those

obtained from the complete observed data. Additionally, the results in the calibration and vali-

dation sets were similar.

Conclusion

In Taiwan and most Asian countries, crop fields are often separated by roadways. Therefore,

this study established a CP model for maize to describe the relationship between CP rate (%)

and distance from a pollen source; this model was suitable at the field-scale level in southern

Taiwan. Three models commonly applied in gene flow studies and empirical modeling

approaches including the FB effect were investigated. The results indicated that the models

that omitted the FB yielded poor performance. By contrast, models that included FB had

improved fits and predictive abilities as well as the greatest stability.

Previous studies have examined the models used in the present study, but their results differ

from those of the present study because of differences in experimental designs. Ma et al. [4]

used the CP2 model to describe downwind and upwind data. Their pollen source (0.07 ha) was

placed in the center of the field and surrounded by the pollen recipient (0.68–1 ha). Their R2

values for the fitting results were 0.64 for downwind areas and 0.58 for upwind areas.

Fig 7. 95% PBLs of AIC based on the simulated (a) calibration and (b) validation sets for each model.

https://doi.org/10.1371/journal.pone.0249700.g007
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Therefore, Ma et al. [4] concluded that the CP2 model was suitable for describing the relation-

ship between CP rate (%) and distance from the pollen source. In addition, Della Porta et al.

[5] used the CP1, CP2, and CP3 models for various field designs, barriers, positions, and dis-

tances from the pollen source to perform model fitting. Their results revealed that the CP2

model provided the optimal fit (R2 = 0.89–0.99) when the recipient neighbored the pollen

source without a barrier. In general, pollen flow tendencies were similar for a fixed FB size.

Therefore, the CP2 model exhibited similarly high performance when the FB size was fixed;

resulting in R2 values extremely close to 1.

One of the aims of this study was to investigate the effects of FBs on the gene flow tenden-

cies between the adjacent fields. According to the estimates of the regression parameters in the

empirical and simulation analyses as well as the results of the gene flow trends, the CP rate (%)

decreased as the distance from the pollen source increased. The presence of an FB enhanced

pollen exchange in the row of the pollen recipient closest to the pollen source and facilitated

long-distance pollination events [18]. However, when the distance from the pollen source

increased, the average CP rate (%) in the presence of an FB may have been lower than that in

the absence of an FB (Table 1).

Considering isolation buffers (e.g., FBs) together, the CP5 model exhibited the optimal sta-

bility, fit, and predictive ability. The CP4 model also yielded performance similar to that of

CP5. However, the AP must be set to 0% for the agricultural environment in Taiwan. There-

fore, although the CP5 model exhibited the optimal performance, after setting AP to 0%, CP4

appropriately modeled the data obtained from southern Taiwan and was recommended in this

study.

In addition to exploring the relationship between CP and the distances from the pollen

source, studies on the CP models for GM maize have recently included other influential factors

to improve the completeness and accuracy of predictive models. Loos et al. [19] used a Gauss-

ian plume model to simulate the pollen transport of maize in and from plant canopies. This

semi-empirical approach combined the atmospheric diffusion equation with the Lagrangian

method. To describe the trends of maize pollen dispersal, Klein et al. [20] used individual dis-

persal functions containing biological parameters (i.e., difference in height between male and

female flowers) and aerodynamic parameters (i.e., pollen settling velocity, wind speed, and air

turbulence). Goggi et al. [21] combined an exponential model with a linear equation to estab-

lish a maize CP model. The exponential model described the relationship between the CP rate

(%) and the distance from the pollen source, whereas the linear equation described the rela-

tionship between wind speed, wind direction, and distance.

In addition to the distance from the pollen source and FB considered in this study, meteo-

rological and biological factors have been gradually introduced in CP models. Therefore, these

factors should be included in future studies to further improve the fit and predictive ability of

the proposed models for investigating gene flow and CP. In this study, only three experiments

data were used to estimate the parameters of models. For the further study, more replications

of experiment should be needed to establish a more robust model.
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