
Frontiers in Oncology | www.frontiersin.org

Edited by:
Giuseppe Palmieri,

National Research Council (CNR), Italy

Reviewed by:
Susanna Dolci,

University of Rome Tor Vergata, Italy
Chuanliang Cui,

Peking University Cancer Hospital,
China

*Correspondence:
Zhaoming Zhong

zhongzhm@126.com
Chuanzheng Sun
scz008@126.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Skin Cancer,
a section of the journal
Frontiers in Oncology

Received: 10 October 2020
Accepted: 28 April 2021
Published: 28 May 2021

Citation:
Qin R, Peng W, Wang X, Li C, Xi Y,

Zhong Z and Sun C (2021)
Identification of Genes Related

to Immune Infiltration in the
Tumor Microenvironment
of Cutaneous Melanoma.
Front. Oncol. 11:615963.

doi: 10.3389/fonc.2021.615963

ORIGINAL RESEARCH
published: 28 May 2021

doi: 10.3389/fonc.2021.615963
Identification of Genes Related
to Immune Infiltration in the
Tumor Microenvironment
of Cutaneous Melanoma
Rujia Qin1†, Wen Peng1†, Xuemin Wang1, Chunyan Li1, Yan Xi1, Zhaoming Zhong1,2*
and Chuanzheng Sun1*

1 Department of Head and Neck Surgery Section II, The Third Affiliated Hospital of Kunming Medical University, Yunnan
Cancer Hospital, Kunming, China, 2 Department of Medical Oncology, The First Affiliated Hospital of Kunming Medical
University, Kunming, China

Cutaneous melanoma (CM) is the leading cause of skin cancer deaths and is typically
diagnosed at an advanced stage, resulting in a poor prognosis. The tumor
microenvironment (TME) plays a significant role in tumorigenesis and CM progression,
but the dynamic regulation of immune and stromal components is not yet fully
understood. In the present study, we quantified the ratio between immune and stromal
components and the proportion of tumor-infiltrating immune cells (TICs), based on the
ESTIMATE and CIBERSORT computational methods, in 471 cases of skin CM (SKCM)
obtained from The Cancer Genome Atlas (TCGA) database. Differentially expressed genes
(DEGs) were analyzed by univariate Cox regression analysis, least absolute shrinkage, and
selection operator (LASSO) regression analysis, and multivariate Cox regression analysis
to identify prognosis-related genes. The developed prognosis model contains ten genes,
which are all vital for patient prognosis. The areas under the curve (AUC) values for the
developed prognostic model at 1, 3, 5, and 10 years were 0.832, 0.831, 0.880, and 0.857
in the training dataset, respectively. The GSE54467 dataset was used as a validation set
to determine the predictive ability of the prognostic signature. Protein–protein interaction
(PPI) analysis and weighted gene co-expression network analysis (WGCNA) were used to
verify “real” hub genes closely related to the TME. These hub genes were verified for
differential expression by immunohistochemistry (IHC) analyses. In conclusion, this study
might provide potential diagnostic and prognostic biomarkers for CM.

Keywords: cutaneous melanoma, tumor microenvironment, ESTIMATE, CIBERSORT, protein–protein interaction,
weighted gene co-expression network analysis, tumor- infiltrating immune cells, prognosis
INTRODUCTION

Cutaneous melanoma (CM), a highly aggressive malignancy, represents approximately 2% of skin cancers
and approximately 75%of skin cancerdeaths due to rapidprogression andmetastasis (1). Surgical resection
is the optimal treatment option for most early stage melanomas, but limited effective late-stage therapies
exist, and only a small proportion of late-stage patients respond to single or combined therapies, limiting
patient survival (2).AdditionalexplorationofCMcarcinogenesis andtreatmentremainsurgentlynecessary.
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Recently, increasing evidence indicates that the tumor
microenvironment (TME) is involved in tumor development.
Interactions between cancer cells, stromal cells, and tumor-
infiltrating immune cells (TICs) are critical for malignant
cancer progression, including the promotion of replicative
immortality, invasion, metastasis, and immune surveillance
evasion. The TME influences clinical outcomes and contains
potential targets for therapeutic modulation (3). Several studies
have reported that TICs represent a promising TME index for
evaluating therapeutic efficacy (4). TIC components and their
activation states are vital parameters that affect patient prognosis
and tumor characteristics. Anti-cytotoxic T-lymphocyte antigen 4
(CTLA-4) therapy can activate T cells and induce programmed-
death ligand 1(PD-L1) expression in tumor cells and TICs. In
many cancers, including CM, CD8+ T cell activation can prolong
patients’ survival times (5). A study indicated that increased CD8+

T cell trafficking contributes to anti-programmed-death 1 (PD-
1)/CTLA-4 therapeutic efficacy against melanoma metastasis and
may represent an effective immunotherapy strategy (6).
Neutrophils also play a context-dependent role in melanoma
and can actively switch to an anti-tumor mode (7). These studies
suggested that crosstalk between cancer cells and the TME plays
an indispensable part in CM development, which has made the
accurate delineation of the dynamic regulatory effects of immune
and stromal components on the TME challenging.

In the present study, the proportions of immune and stromal
components and the TIC ratio were quantified based on the
ESTIMATE and CIBERSORT computational methods in skin CM
(SKCM) samples obtained from The Cancer Genome Atlas (TCGA)
database. Differentially expressed genes (DEGs) were identified in
the high-ImmuneScore and high-StromalScore groups compared
with the corresponding low-score groups. We utilized patient
survival information obtained from TCGA to perform univariate
Cox regression, least absolute shrinkage and selection operator
(LASSO) regression, and multivariate Cox regression analyses to
verify prognosis-related genes. The 79 SKCM samples from the
GSE54467 dataset were used as a validation set to verify the
predictive ability of the prognostic model. Additionally, we defined
a protein–protein interaction (PPI) network based on the identified
DEGs to verify hub genes. DEGs in the TCGA database were also
examined by weighted gene co-expression network analysis
(WGCNA) to identify hub genes related to the ImmuneScore and
StromalScore of SKCM. Genes identified in both networks were
identified as “real” hub genes critical to the TME. These “real” hub
genes were verified by examining differential expression using
immunohistochemistry (IHC) analyses. These results provided a
better understanding of the underlying biological mechanisms of
immune-related genes and may improve SKCM prognosis.
MATERIALS AND METHODS

Data Collection and Data Processing
The RNA sequencing (RNA-seq) data of 471 SKCM samples
were downloaded from TCGA (https://portal.gdc.cancer.gov/).
Corresponding clinical information was obtained from the
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UCSC Xena database (http://xena.ucsc.edu/). We used the
fragments per kilobase of transcript per million mapped reads
(FPKM) method to standardize the data (8). To ensure that
significantly expressed genes were evaluated, genes with average
expression values <0.1 were excluded from each case. P-values of
DEGs were identified using aWilcox test. Genes with fold change
(FC) >1 (high- and low-score groups) and false discovery rate
(FDR) <0.05 after log2 transformation were regarded as DEGs.

To increase robustness, RNA-seq data and clinical
information from an independent cohort of 79 tumor samples
were obtained from the GSE54467 dataset (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE54467) as a validation
set. Processed expression data were log2 transformed before
further analysis. When multiple probes corresponded to the
same gene, the average of all probes was used. Data
normalization and background adjustments were conducted
using the “limma” R package.

A total of 80 samples were collected from CM patients who
underwent surgical resection at the Third Affiliated Hospital of
Kunming Medical University from January 2013 to December
2016. CM and adjacent normal tissues were obtained as
formalin-fixed paraffin-embedded (FFPE) samples. The study
was approved by the Ethics Committee of the Third Affiliated
Hospital of Kunming Medical University. The clinical materials
and outcome data were reviewed after approval was obtained
from the institutional review board.

Generation of the ImmuneScore,
StromalScore, and ESTIMATEScore
The proportions of immune-stromal TME components were
quantified for each patient using the ESTIMATE R package. The
algorithm includes the ImmuneScore, StromalScore, and
ESTIMATEScore, which positively correlate with proportions of
immune components, stromal components, and both, respectively,
with higher scores indicating increased proportions in the TME (9).

Functional Enrichment Analysis
The Gene Ontology (GO) analysis consists of biological
processes (BPs), cellular components (CCs), and molecular
functions (MFs) (10). The Kyoto Encyclopedia of Genes and
Genomes (KEGG) database is used for the functional annotation,
systematic analysis, and visualization of gene functions (11). GO
functional annotations and KEGG enrichment analyses were
used to understand the potential biological significance of genes
using the clusterProfiler package in R. We listed the top 10 terms
in every category, limited to those terms with both p- and q-
values <0.05.

Risk Score System Establishment
Patients’ clinical information was downloaded from the UCSC
Xena database. After removing samples without survival data,
454 samples remained for follow-up survival analysis. We
randomly divided the samples into training (227 samples) and
test (227 samples) groups to ensure the generalizability of the
prognostic signature. Univariate Cox proportional hazards
regression analysis was performed on the training cohort, with
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P <0.01 designated as significant, and significant variables were
integrated into the LASSO regression analysis (12). To produce
the minimum cross-validation error, LASSO regression analysis
was used to generate a generalized linear model with 10-fold
cross-validation (13). A multivariate Cox proportional hazard
regression model, based on the two-step method, was generated
to verify key genes involved in the prognostic model. Ten
immune-related genes and their corresponding coefficients
were used to generate the prognosis model for SKCM. The risk
score for each patient was calculated as follows:

Riskscore = exprgene1 ∗ bgene1 + exprgene2 ∗ bgene2

+ exprgene3 ∗ bgene3………exprgenen ∗ bgenen

where expr represents the selected gene expression level, and b
represents the regression coefficients of the multivariate Cox
regression model (14). A risk score was calculated for each
sample included in this study. Patients were stratified into
high- and low-risk groups, according to the median risk value.

CIBERSORT Estimation
The relative proportions of 22 immune cell types were calculated
in each SKCM sample based on the expression file, as assessed by
CIBERSORT (15). TIC abundance profiles for all tumor samples
were estimated using CIBERSORT. Only the 260 tumor samples
with P <0.05 in the CIBERSORT analysis were considered
eligible for subsequent analyses.

PPI Network Construction and
Module Analysis
A PPI network can identify hub genes and gene modules
according to the level of interaction. The Search Tool for The
Retrieval of Interaction Genes (STRING, https://string-db.org/)
is an online tool for analyzing consensus genes and constructing
PPI networks (16). DEGs were submitted to the STRING
database to evaluate PPI information, and nodes with
interaction scores >0.95 were selected for PPI network
construction. The PPI network was visualized using Cytoscape
3.7.0 software. The top 30 genes, according to the number of
nodes, were designated hub genes in the PPI analysis. The
biological significance of gene modules was visualized with the
plug-in Molecular Complex Detection (MCODE) in Cytoscape
to identify the most significant module (17).

Co-expression Network Construction
of DEGs
The WGCNA package in R was used to generate a co-expression
network of DEGs. Pearson’s correlation analysis was conducted
as a similarity measure for all pair-wise genes. The power
function Amn = |Cmn|b (Cmn = Pearson’s correlation between
gene m and gene n; Amn = adjacency between gene m and gene
n) allowed for the construction of a weighted adjacency matrix.
The soft threshold power (b) of the correlation matrix was used
to emphasize strong correlations between genes and penalize
weak correlations. A b value was selected to construct a co-
expression network, and the adjacency was transformed into a
Frontiers in Oncology | www.frontiersin.org 3
topological overlap matrix (TOM) to measure the network
connectivity of genes (18). To identify genes with expression
profiles similar to the gene modules, we used average linkage
hierarchical clustering based on TOM dissimilarity
measurements, and the minimum number of genes per module
was set to the default of 20 (19). Dissimilarities among the
module eigengenes (MEs) in the module dendrogram were
calculated, and similar modules were merged.

Identification of Significant Modules and
Functional Annotation
Correlations between clinical information and modules were
determined using two methods. MEs were used as the
principal component for each gene module. Gene significance
(GS) scores were calculated to determine correlations among
gene expression in the module, defined as the log10
transformation of the P-value (GS = logP) for each gene.
Module significance (MS) was defined as the average GS in a
specific module, representing the correlation between the
module and scores. In general, modules with the largest MS
values were considered those associated with the scores. To
explore the functions of the modules, GO and KEGG
enrichment analyses were used to identify the underlying
biological significance of module genes. Only terms with both
p- and q-values <0.05 were included.

Finding “Real” Hub Gene and Verification
In this study, we selected two important modules in the co-
expression network, and hub genes were defined as those with
high module membership (MM), as measured by Pearson’s
correlation analysis (weighted correlation 0.8). The hub genes
in the module had the highest correlation with the scores
(weighted correlation 0.5). A PPI network with a combined
interaction score of >0.95 was constructed. The top 30 genes,
ordered by the number of nodes, were selected as hub genes in
the PPI analysis. Hub genes identified in both the co-expression
and PPI networks were regarded as “real” hub genes for
subsequent analysis.

First, the GEPIA database (http://gepia.cancer-pku.cn) and
the Human Protein Atlas (HPA; http://www.proteinatlas.org/)
were used to validate the expression of “real” hub genes between
tumor and normal skin tissues in SKCM (20). Then, the
differential expression of “real” hub genes was verified in 80
human CM tissues and adjacent tissues analyzed by IHC. In
addition, we investigated four genes reported as key targets for
immune checkpoint inhibitors: PD-1 and its ligand PD-L1,
indoleamine 2,3-dioxygenase 1 (IDO1), and CTLA-4 in cancer
(21–23). To determine the possible roles of our “real” hub genes
in immune checkpoint blockade (ICB) treatment, we analyzed
the correlation between these immune checkpoint inhibitors and
our hub genes. The Tumor Immune Estimation Resource
(TIMER) (https://cistrome.shinyapps.io/timer/) algorithm was
used to explore the correlation between “real” hub genes and
immune cell infiltration in SKCM patients (24). All statistical
analyses were performed using R software (version 3.6.3).
Differences were considered significant at P <0.05.
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IHC
Paraffin-embedded tumor samples and adjacent samples from CM
patients were collected, fixed with 10% formalin buffer,
dehydrated, and sectioned. IHC staining was performed using
rabbit anti-VAV1 antibody (1:100), rabbit anti-ITGB2 antibody
(1:200), and rabbit anti-HLA-DRA antibody (1:200).
Semiquantitative expression levels were used to determine the
extent and intensity of stained tumor cells. The staining intensity
was divided into four levels: blank = 0, yellow = 1, dark yellow = 2,
and brown = 3. The frequency of positive cells was divided into
five levels: 0–5% = 0, 6–25% = 1, 26–50% = 2, 51–75% = 3, and 76–
100% = 4. The immune response score was calculated as the stain
intensity score multiplied by the frequency of positive cells. All
slides were independently evaluated by two pathologists blinded to
the patient’s identity and clinical diagnosis.
RESULTS

Scores Correlate With Survival and Are
Clinically Relevant in SKCM Patients
In the present study, we systematically analyzed the critical roles
and prognostic value of genes related to immune infiltration in
SKCM. Figure 1 shows the overall study design. Correlations
between immune and stromal cell proportions and survival rates
were determined by grouping melanoma patients into high- and
low-score groups, according to the median value of 471 SKCM
patients. Kaplan–Meier survival curves were conducted for the
ImmuneScore, StromalScore, and ESTIMATEScore. As shown in
Figure 2A, high-ImmuneScore patients had better survival than
Frontiers in Oncology | www.frontiersin.org 4
low-ImmuneScore patients. Although no significant correlation was
found between the StromalScore and overall survival (OS) (Figure
2B), the OS was significantly higher among high-ESTIMATEScore
patients than low-ESTIMATEScore patients (Figure 2C). These
results indicated that the proportions of immune components were
significant prognosis indicators for SKCM patients.

To clarify the correlation between scores and clinical features, we
analyzed the clinical features of SKCM patients from the UCSC
Xena database. Older patients had significantly lower scores than
younger patients (Figure 2D; P = 0.009 and P = 0.001, respectively).
Women had higher ImmuneScores and StromalScores than men
although not significantly different (Figure 2E; P = 0.071 and P =
0.340, respectively). Advanced-stage cases generally had higher
scores than early stage cases (Figure 2F; P = 0.066 and P = 0.007,
respectively), andmetastatic tumors had higher scores than primary
tumors (Figure 2G; P < 0.001). Patients without ulcerations or with
lower Breslow depths had higher immune and stromal scores
(Figures 2H, I). These results indicated that the TME, especially
TICs, may play indispensable roles in SKCM progression, although
further exploration remains necessary.

Identification of DEGs Shared by the
ImmuneScore and StromalScore
To clarify changes in gene expression levels among immune and
stromal components in the TME, we compared high- and low-
score samples to identify DEGs. The results indicated that 927
genes were upregulated, and 280 genes were downregulated by
comparing the high-score group vs. the low-score group for the
ImmuneScore. Similarly, 1,093 genes were upregulated, and 207
genes were downregulated by comparing the high-score group
vs. the low-score group for the StromalScore (Figures 3A, B).
FIGURE 1 | Analysis workflow of this study.
May 2021 | Volume 11 | Article 615963
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The identified intersection genes included 749 upregulated and
74 downregulated genes in both the high-ImmuneScore and
high-StromalScore groups compared with the low-score groups,
as displayed in the Venn diagram (Figures 3C, D). The functions
of these 823 genes were predicted, and GO analysis was
performed, which showed that these genes were primarily
associated with immune-related GO terms, such as leukocyte
cell–cell adhesion and leukocyte proliferation (Figure 3E). The
genes were highly enriched in cell adhesion molecules, cytokine–
cytokine receptor interactions, and hematopoietic cell lineages,
according to KEGG analysis (Figure 3F). The gene enrichment
analysis indicated that these genes were primarily associated with
immune-related pathway activation, suggesting that immune
factors play an indispensable role in the TME of SKCM patients.
Frontiers in Oncology | www.frontiersin.org 6
Prognosis-Related Model Construction
and Analysis
Among the intersecting DEGs, 436 genes were significantly
correlated with prognosis by univariate Cox regression analysis
(Supplementary Table 1). The genes with the highest potential
prognostic significance were identified by LASSO regression
analysis. Following 10-fold cross-validation, 20 genes remained
(Figures 3G, H). A multivariate Cox proportional hazards model
was generated to build an immune-related prognostic signature
based on the LASSO regression analysis (Figure 3I). Ten genes
(nuclear receptor subfamily 1 group H member 3, NR1H3;
interleukin 18 receptor accessory protein, IL18RAP; CD40;
glycine receptor alpha 2, GLRA2; tumor necrosis factor (TNF)
alpha-induced protein 2, TNFAIP2; C4B; epididymal sperm
A B

D

E F

G IH

C

FIGURE 3 | Heatmaps, Venn diagrams, and enrichment analysis of differentially expressed genes (DEGs) and the construction of the prognostic classifier.
(A, B) Heatmap for DEGs generated by comparing the high-score group vs. the low-score group for the ImmuneScore and StromalScore. (C, D) Venn diagrams
showing common upregulated and downregulated DEGs shared by the ImmuneScore and StromalScore analyses. (E, F) Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analyses for 823 DEGs. (G, H) The number of included factors was determined by LASSO analysis.
(I) A forest plot showing the hazard ratios (HRs) and P-values from the multivariate Cox regression.
May 2021 | Volume 11 | Article 615963
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binding protein 1, ELSPBP1; immunoglobulin superfamily
member 9, IGSF9; hepcidin antimicrobial peptide, HAMP; and
gamma-aminobutyric acid type A receptor subunit alpha5,
GABRA5) were identified by the multivariate Cox proportional
hazards regression analysis and were used to generate a
prognostic signature by calculating a risk score, as follows:

Riskscore = ( − 0:2685� NR1H3) + ( − 1:5631� IL18RAP)

+ ð−0:3943� CD40) + (0:7016� GLRA2)

+ (0:6504� TNFAIP2) + ( − 0:5186� C4B)

+ (0:4602� ELSPBP1) + (0:8657� IGSF9)

+ ð−0:3526�HAMP) + (0:4398� GABRA5)

We divided patients into low- and high-risk groups based on the
median risk score of the training group. The risk score distribution
was ranked according to the risk score values shown in the training
cohort, the external validation cohort, and the whole cohort. Patients
with a high-risk score had higher mortality than patients with a low-
risk score (Figure 4A). Consistent with these results, the Kaplan–
Frontiers in Oncology | www.frontiersin.org 7
Meier curves suggested that patients in the low-risk grouphadhigher
survival than those in the high-risk group (Figure 4B; all P < 0.01).
The results showed that the risk scores obtained using the ten-gene
prognostic signature predicted survival at 1, 3, 5, and 10 years, with
respectiveAUCvalues of 0.832, 0.831, 0.880, and0.857 in the training
cohort, 0.636, 0.678, 0.740, and 0.709 in the GSE54467 validation
cohort, and 0.736, 0.711, 0.732, and 0.712 in the whole cohort,
respectively (Figure 4C). These results indicated the high
sensitivity and accuracy of the ten-gene prognostic signature in CM.

We evaluated the independent prognostic value of our ten-
gene model (Figure 5A). The risk score was analyzed in
combination with age, sex, tumor node metastasis (TNM)
stage, tumor location, ulceration status, and Breslow depth,
which are closely related to patient survival. Multivariate Cox
regression analysis indicated that the ten-gene model is a robust
and independent prognostic factor in the whole cohort (P <
0.001, Figure 5B). Although only age, sex, and TNM stage data
were available for GSE54467, we also tested the validation
dataset, which demonstrated consistent results (Supplementary
Figures 1A, B). The correlation between our prognostic
signature and clinical SKCM characteristics was evaluated for
the whole cohort (Figure 5C). The results indicated that our
A

B

C

FIGURE 4 | Risk score analyses for the developed immune-related prognostic signature in the training cohort, the external validation cohort, and the whole cohort.
(A) Patients were ranked by risk score values and the corresponding survival status. (B) Kaplan–Meier curves for the immune-related signature. (C) Receiver
operator characteristic (ROC) curves for survival as predicted by the risk score.
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prognostic model was not associated with sex or TNM stage but
was significantly correlated with age (P < 0.001), tumor location
(P < 0.001), ulceration status (P = 0.011), and Breslow depth (P <
0.001) in CM, suggesting that the genes in our prognostic model
may play essential roles in CM progression.

To build a quantitative model for survival probability
prediction in SKCM, we used the ten-gene marker to develop a
nomogram plot for estimating the survival probability after 1, 3,
and 5 years in the TCGA cohort (Figure 5D). The nomogram
performance was visualized intuitively by drawing calibration
plots, which indicated that the prediction results were consistent
with the observed results (Figures 5E, F).

Correlation Between Risk Score and TIC
Proportions
The TIC subsets in the TME were quantified according to the
CIBERSORT algorithm to determine correlations with the risk
Frontiers in Oncology | www.frontiersin.org 8
score. The abundances of 22 immune cell types in SKCM
patients were obtained (Figure 5G). Nine TIC types were
associated with low- and high-risk groups (Figure 5H,
Supplementary Figures 1C, D), including three TIC types
positively correlated with the risk score: M0 macrophages, M2
macrophages, and activated dendritic cells. Memory B cells,
plasma cells, CD8+ T cells, CD4-activated memory T cells,
regulatory T cells (Tregs), and M1 macrophages were
negatively correlated with the risk score. These results
demonstrated that the risk score might serve as an immune
activity indicator.

PPI Network Analysis of DEGs
To determine the hub genes and relevant gene modules involved
in SKCM, we built a PPI network for the DEGs using Cytoscape
software based on data obtained from the STRING database. The
network consisted of 282 nodes and 746 edges (Figure 6A). The
A

B

D E

F

G H

C

FIGURE 5 | The analysis of the prognosis-related model. (A, B) Univariable and multivariable analyses based on the risk group and other clinical features in the
TCGA cohort. (C) Box plots displaying the correlation between different clinical features and the risk score. (D) Nomogram showing the overall survival (OS) for 1, 3,
and 5 years in the TCGA cohort. (E, F) Calibration plots of the nomogram for predicting OS at 3 and 5 years. (G) Bar plot showing the ratios of 22 tumor-infiltrating
immune cells (TIC) types in skin cutaneous melanoma (SKCM) patients. (H) Violin plot showing the proportions of 22 types of TICs in SKCM patients with low- or
high- risk scores relative to the median risk score.
May 2021 | Volume 11 | Article 615963
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top 30 genes according to the number of nodes were displayed in
a bar plot (Figure 6B). The top significant module was identified
by the plug-in MCODE in Cytoscape (Figure 6C). Functional
and pathway enrichment analyses of the DEGs in the top module
were performed. The GO analysis showed that DEGs in the top
module were involved in the leukocyte chemotaxis and cell
chemotaxis in BPs. The CC analysis indicated genes enriched
on the external side of the plasma membrane. The MF analysis
showed genes enriched in G protein-coupled receptor binding
and chemokine receptor binding (Figure 6D). KEGG analysis
revealed DEGs principally involved in the chemokine signaling
pathway (Supplementary Figure 2A).

WGCNA of DEGs
In this study, 471 scored SKCM samples were used for co-
expression analysis. The soft-thresholding power was set to 5 to
generate a scale-free network (Figures 7A, B). A total of eight
modules were verified based on the SKCM scores (Figure 7C).
Module-trait correlation analyses showed the turquoise and blue
modules with the highest score associations (Figure 7D). GO
(Figures 7E, F) and KEGG (Supplementary Figures 2B, C)
enrichment analyses indicated that the turquoise module was
principally concentrated in T cell activation, regulation of
lymphocyte activation, and regulation of T cell activation,
Frontiers in Oncology | www.frontiersin.org 9
whereas the blue module was associated with T cell activation,
leukocyte proliferation, and neutrophil degranulation. The genes
in the blue and turquoise modules were pivotal for immune
cell infiltration.

Hub Genes Related to TICs in SKCM
We identified 15 genes closely related to immune function in the
turquoise module and 32 genes in the blue module as candidate
hub genes (Figures 7G, H). The shared genes between the top 30
PPI nodes and the turquoise and blue modules were identified.
Vav guanine nucleotide exchange factor 1 (VAV1) in turquoise,
integrin subunit beta 2 (ITGB2) and major histocompatibility
complex, class II, DR alpha (HLA-DRA) in blue were identified
as candidates for further analysis and validation (Figures 7I, J).
These genes were defined as “real” hub genes associated with
TICs in SKCM.

To identify the roles played by “real” hub genes in SKCM, we
first used the GEPIA and the HPA database to compare “real”
hub gene expression between CM and normal skin tissues. The
results showed that the three hub genes were significantly
upregulated in tumor tissues compared with normal skin
(Figure 8A, Supplementary Figures 3A–C). Then, we
performed IHC analyses to determine and compare the
expression levels of hub genes in 80 human CM and adjacent
A

B D

C

FIGURE 6 | Protein–protein interaction (PPI) network and module analysis. (A) PPI network of differentially expressed genes (DEGs). (B) The top 30 genes were
ranked by the number of nodes. (C) PPI network of the top significant module. (D) Gene ontology (GO) analysis of the top significant module in the PPI analysis.
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tissues. Representative images of IHC staining for the hub genes
are shown in Figure 8B. According to IHC staining results, we
measured the expression of hub genes in 80 CM and adjacent
tissues. The results indicated that the expression of the three hub
genes significantly higher in tumor tissues than in adjacent
tissues (Figure 8C). To understand the functions of “real” hub
genes, we investigated the correlations between hub genes and
immune infiltration using the TIMER database. There was a
positive correlation between hub gene expression and the
immune cell infiltration in SKCM (Figures 9A–C). The
expression of immune checkpoint genes may be associated
with the therapeutic efficacy of immune checkpoint inhibitors
Frontiers in Oncology | www.frontiersin.org 10
(25). ICB tumor immunotherapy has advanced in recent years,
including for CM (22, 26). We evaluated the association between
four key ICB targets and the “real” hub genes: PD-1, PD-L1,
CTLA-4, and IDO1 (21–23). We found that VAV1 was positively
related to PD-1 (r = 0.73; P < 0.001), PD-L1 (r = 0.35; P < 0.001),
CTLA4 (r = 0.23; P < 0.001), and IDO1 (r = 0.41; P < 0.001)
(Figure 9D). Similar results were obtained for ITGB2 and HLA-
DRA (Figures 9E, F), suggesting that these hub genes may play
significant roles in the responses to ICB immunotherapy in
SKCM. These results indicated that these three genes play
significant roles in immune infiltration processes in SKCM
patients and may represent potential therapeutic targets.
A
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F

G I

H J
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FIGURE 7 | Modules related to skin cutaneous melanoma (SKCM) scores and hub gene detection. (A, B) Analysis of the scale-free fit index and the mean
connectivity for various soft-thresholding powers. (C) Dendrogram of all differentially expressed genes (DEGs) clustered based on a dissimilarity measure. (D) A
heatmap showing the correlation between the gene modules and scores. (E, F) Gene ontology (GO) analyses of the turquoise and blue modules. (G, H) Scatter plot
of the module eigengenes (MEs) in the turquoise and blue modules. (I, J) Identification of “real” hub genes in the protein–protein interaction (PPI) network and the co-
expression network in the turquoise and blue modules.
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DISCUSSION

The CM incidence and mortality have increased recently, which
is a public issue that attracts worldwide attention. Despite many
studies on SKCM, early diagnosis, treatment, and prognosis
remain poor. Investigating the potential molecular biological
mechanisms underlying SKCM progression and development
is important. Recently, many advanced therapeutic options have
been developed for melanoma patients, improving disease-free
rates and OS. However, limitations persist, including low
sustained response rates, drug toxicity, low tolerance, high cost,
and patient responses are heterogeneous (27). The rapid
development of high-throughput sequencing technology
facilitates the detection of abnormal gene expression during
tumor progression, providing effective targets for diagnosis and
treatment. A lack of reliable biomarkers exists to monitor
therapeutic efficacy. Therefore, we attempted to identify genes
that affect patient prognosis by investigating the TME.

Increasing evidence suggests the TME is a vital modulator of
tumor progression, and the identification of potential therapeutic
Frontiers in Oncology | www.frontiersin.org 11
targets associated with TME remodeling can promote the TME
transformation from tumor-supportive to tumor-suppressive.
Transcriptome analysis of SKCM data from the TCGA and
Gene Expression Omnibus (GEO) databases demonstrated that
the proportions of immune and stromal components in the
TME had important influences on SKCM progression. Our
results emphasized the importance of interactions between
tumor and immune cells, providing new insights into SKCM
immunotherapy. Despite recent achievements in ICB-based
tumor immunotherapy for advanced SKCM patients (28, 29),
fewer than one-third of patients treated with ICB achieve good
therapeutic effects. Immune checkpoint gene expression cannot
accurately predict ICB treatment efficacy. Therefore, biomarkers
capable of predicting the ICB immunotherapy response are
essential (30).

In this study, we generated an immune-related prognostic
model to predict the patient survival rate, which consisted of
ten genes: NR1H3, IL18RAP, CD40, GLRA2, TNFAIP2, C4B,
ELSPBP1, IGSF9, HAMP, and GABRA5. Some genes in the
model have previously been associated with the formation and
A

B

C

FIGURE 8 | Validation of “real” hub genes. (A) Hub gene expression in CM and normal skin tissues, based on the GEPIA database. (B) Examples of
immunohistochemistry (IHC) staining for hub genes in CM tissues and corresponding adjacent tissues. (C) The expression of hub genes in 80 human CM tissues
and adjacent tissues analyzed by IHC.
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regulation of the TME. For example, NR1H3 belongs to the NR1
subfamily of nuclear receptors, which are vital regulators of
macrophage function and transcription processes during
inflammation (31). Related studies have demonstrated that
NR1H3 can impair the anti-tumor response by inhibiting the
CCR7 expression on dendritic cells, suggesting a novel mechanism
for immune escape (32). In addition, the NR1H3-mediated
promotion of the epithelial-mesenchymal transition (EMT) and
migration of tumor cells has been reported in several cancers (33,
34). IL18RAP also modulates the TME and impacts cancer
progression through proinflammatory functions. ILI8RAP is an
accessory subunit of the heterodimeric interleukin 18 (IL18)
receptor (35). CD40 is a member of the TNF receptor
superfamily (36). In mouse melanoma, tumor endothelial cells
Frontiers in Oncology | www.frontiersin.org 12
upregulate IDO1 in response to the increased secretion of
interferon (IFN)g by CD40-stimulated immunotherapy,
revealing a new immunosuppressive feedback mechanism (37).
Immunotherapy success in CM depends on the activation of
functional T cells in the tumor. Singh et al. showed that locally
focused ultrasound (FUS) heating combined with in situ anti-
CD40 agonist antibody improved T cells and macrophage
function, promoting effective melanoma immunotherapy (38).
TNFAIP2 expression can be induced by TNFa. The abnormal
expression of TNFAIP2 has been identified in various malignant
tumors, involved in unlimited proliferation, angiogenesis, and
migration, including urothelial cancer, esophageal squamous cell
carcinoma, and nasopharyngeal carcinoma (39–42). Although
some biological functions of these ten genes have not previously
A
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D

E

F
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FIGURE 9 | “Real” hub genes were related to immune infiltration processes. (A–C) Correlation between immune cell abundance and hub gene expression. “Purity” represents
the purity of the tumor cells in the sample. (D–F) The correlation between hub genes and the immune checkpoint inhibitor targets PD-1, PD-L1, CTLA-4, and IDO1.
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been reported in SKCM, their roles in progression and tumor
immunity require further study. We indicate that the ten-gene
prognosis model can be used as an indicator of the SKCM
immunotherapy response.

By combining the PPI andWGCNA, three genes were verified
as “real” hub genes associated with the TME in SKCM. Based on
correlations between genes, we construct a WGCNA network,
and a PPI network was generated based on available literature.
The combination of theWGCNA and PPI methods appears to be
suitable for hub gene identification. Several studies have
indicated the abnormal expression of hub genes in various
malignant tumors, which may represent important prognostic
biomarkers. VAV1 is a member of the VAV gene family and is
vital for hematopoiesis, which plays an indispensable role in T
cell and B cell activation (43). Related studies have indicated that
IDO can inhibit the T cell response and promote immune
tolerance by downregulating VAV1 expression and inhibiting
the VAV1/Rac cascade reaction (44). ITGB2 encodes integrin
beta chain, a cell surface protein involved in cell adhesion and
cell surface-mediated signal transduction. ITGB2 plays a
significant role in the immune response, and ITGB2 deficiency
causes leukocyte adhesion defects (45, 46). A prospective study
revealed that high ITGB2 expression in cancer-associated
fibroblasts promoted tumor proliferation in oral squamous cell
carcinoma through NADH oxidation in the mitochondrial
oxidative phosphorylation system (47). Another study showed
that ITGB2 downregulated Treg cells levels and inhibited renal
carcinoma development (48).HLA-DRA is an HLA class II alpha
chain paralog that plays a vital role in the immune system and
responses by presenting peptides. HLA-DRA is highly expressed
in bladder cancer tissues than corresponding adjacent tissues and
indicates poor progression-free survival (49). In kidney renal
clear cell carcinoma, HLA-DRA serves as a reliable biomarker
and may play a vital role in cancer immunotherapy (50). A recent
clinical trial showed that HLA-DRA predicted the advanced
melanoma immune response to tremelimumab, which blocks
CTLA-4 (51).

However, this study has some limitations. First, there is no
detailed clinical data on the treatment of patients in TCGA and
GEO databases, although other clinical factors available from the
databases have been included. Second, analysis based on
transcriptomics can represent only certain aspects of the
immune microenvironment but not the overall process of
change. In addition, further experimental studies are needed to
elucidate the potential mechanism of the prognostic model and
hub genes in the occurrence and development of CM.
CONCLUSION

We successfully constructed a prediction model with good
accuracy. Differences in OS between high- and low-risk groups
were associated with immune cell infiltration and the complex
regulation of multiple signaling pathways. By combining the PPI
and WGCNA network analyses, “real” hub genes closely related
to the TME were identified. Our study provides additional
Frontiers in Oncology | www.frontiersin.org 13
supplementary insights for analyzing the pathogenesis and
response to immunotherapy of CM.
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Garcia W, et al. Inferring Tumour Purity and Stromal and Immune Cell
Admixture From Expression Data. Nat Commun (2013) 4:2612.
doi: 10.1038/ncomms3612

10. Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, et al. The
Gene Ontology (GO) Database and Informatics Resource. Nucleic Acids Res
(2004) 32(Database issue):D258–61. doi: 10.1093/nar/gkh036

11. Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes.
Nucleic Acids Res (2000) 28(1):27–30. doi: 10.1093/nar/28.1.27

12. Lunn M, McNeil D. Applying Cox Regression to Competing Risks. Biometrics
(1995) 51(2):524–32. doi: 10.2307/2532940

13. Shahraki HR, Salehi A, Zare N. Survival Prognostic Factors of Male Breast
Cancer in Southern Iran: A LASSO-Cox Regression Approach. Asian Pac J
Cancer Prev APJCP (2015) 16(15):6773–7. doi: 10.7314/apjcp.2015.16.15.6773

14. Huang R, Liao X, Li Q. Identification and Validation of Potential
Prognostic Gene Biomarkers for Predicting Survival in Patients With
Acute Myeloid Leukemia. OncoTargets Ther (2017) 10:5243–54.
doi: 10.2147/ott.S147717

15. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
Enumeration of Cell Subsets From Tissue Expression Profiles. Nat Methods
(2015) 12(5):453–7. doi: 10.1038/nmeth.3337

16. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al.
STRING V11: Protein-Protein Association Networks With Increased
Coverage, Supporting Functional Discovery in Genome-Wide Experimental
Datasets.Nucleic Acids Res (2019) 47(D1):D607–d13. doi: 10.1093/nar/gky1131

17. Bader GD, Hogue CW. An Automated Method for Finding Molecular
Complexes in Large Protein Interaction Networks. BMC Bioinf (2003) 4:2.
doi: 10.1186/1471-2105-4-2
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43. Barreira M, Rodrıǵuez-Fdez S, Bustelo XR. New Insights Into the Vav1
Activation Cycle in Lymphocytes. Cell Signalling (2018) 45:132–44.
doi: 10.1016/j.cellsig.2018.01.026

44. Li R, Li H, Sun Q, Liu L, Zhang C, Ren X. Indoleamine 2,3-Dioxygenase
Regulates T Cell Activity Through Vav1/Rac Pathway. Mol Immunol (2017)
81:102–7. doi: 10.1016/j.molimm.2016.11.018

45. Zhang Y, Yang X, He X, Liu H, Guo P, Liu X, et al. A Novel Mutation of
the ITGB2 Gene in a Chinese Zhuang Minority Patient With Leukocyte
Adhesion Deficiency Type 1 and Glucose-6-Phosphate Dehydrogenase
Deficiency. Gene (2019) 715:144027. doi: 10.1016/j.gene.2019.144027

46. Sule G, Kelley WJ, Gockman K, Yalavarthi S, Vreede AP, Banka AL, et al.
Increased Adhesive Potential of Antiphospholipid Syndrome Neutrophils
Mediated by b2 Integrin Mac-1. Arthritis Rheumatol (Hoboken NJ) (2020)
72(1):114–24. doi: 10.1002/art.41057

47. Zhang X, Dong Y, Zhao M, Ding L, Yang X, Jing Y, et al. ITGB2-Mediated
Metabolic Switch in Cafs Promotes OSCC Proliferation by Oxidation of
NADH in Mitochondrial Oxidative Phosphorylation System. Theranostics
(2020) 10(26):12044–59. doi: 10.7150/thno.47901

48. Fu JH, Zhou CC, Mu HQ, Nan CJ, Li S, Lu DQ. CD18 Inhibits Progression
of Kidney Cancer by Down-Regulating Treg Cell Levels. Eur Rev
Frontiers in Oncology | www.frontiersin.org 15
Med Pharmacol Sci (2019) 23(7):2750–5. doi: 10.26355/eurrev_
201904_17548

49. Piao XM, Kang HW, Jeong P, Byun YJ, Lee HY, Kim K, et al. A Prognostic
Immune Predictor, HLA-DRA, Plays Diverse Roles in Non-Muscle Invasive
and Muscle Invasive Bladder Cancer. Urol Oncol (2021) 39(4):237.
doi: 10.1016/j.urolonc.2020.11.017

50. Chu G, Jiao W, Yang X, Liang Y, Li Z, Niu H. C3, C3AR1, HLA-DRA, and
HLA-E as Potential Prognostic Biomarkers for Renal Clear Cell Carcinoma.
Trans Androl Urol (2020) 9(6):2640–56. doi: 10.21037/tau-20-699

51. Friedlander P, Wassmann K, Christenfeld AM, Fisher D, Kyi C, Kirkwood JM,
et al. Whole-Blood RNA Transcript-Based Models Can Predict Clinical
Response in Two Large Independent Clinical Studies of Patients With
Advanced Melanoma Treated With the Checkpoint Inhibitor,
Tremelimumab. J Immunother Cancer (2017) 5(1):67. doi: 10.1186/s40425-
017-0272-z

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Qin, Peng, Wang, Li, Xi, Zhong and Sun. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
May 2021 | Volume 11 | Article 615963

https://doi.org/10.3892/or.2017.5557
https://doi.org/10.1038/modpathol.2010.193
https://doi.org/10.1016/j.cellsig.2018.01.026
https://doi.org/10.1016/j.molimm.2016.11.018
https://doi.org/10.1016/j.gene.2019.144027
https://doi.org/10.1002/art.41057
https://doi.org/10.7150/thno.47901
https://doi.org/10.26355/eurrev_201904_17548
https://doi.org/10.26355/eurrev_201904_17548
https://doi.org/10.1016/j.urolonc.2020.11.017
https://doi.org/10.21037/tau-20-699
https://doi.org/10.1186/s40425-017-0272-z
https://doi.org/10.1186/s40425-017-0272-z
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	Identification of Genes Related to Immune Infiltration in the Tumor Microenvironment of Cutaneous Melanoma
	Introduction
	Materials and Methods
	Data Collection and Data Processing
	Generation of the ImmuneScore, StromalScore, and ESTIMATEScore
	Functional Enrichment Analysis
	Risk Score System Establishment
	CIBERSORT Estimation
	PPI Network Construction and Module Analysis
	Co-expression Network Construction of DEGs
	Identification of Significant Modules and Functional Annotation
	Finding “Real” Hub Gene and Verification
	IHC

	Results
	Scores Correlate With Survival and Are Clinically Relevant in SKCM Patients
	Identification of DEGs Shared by the ImmuneScore and StromalScore
	Prognosis-Related Model Construction and Analysis
	Correlation Between Risk Score and TIC Proportions
	PPI Network Analysis of DEGs
	WGCNA of DEGs
	Hub Genes Related to TICs in SKCM

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


