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Simple Summary: In this study, we investigated the associations of circulating tumor DNA (ctDNA),
measured at a random time point during the patient’s treatment, with tumor progression and routine
blood markers (protein S100, lactate dehydrogenase (LDH), and C-reactive protein (CRP)) in a
cohort of patients with metastatic melanoma. Detectable ctDNA was associated with the presence of
extracerebral disease, tumor progression, and poorer overall survival (OS). Elevated S100 and CRP
was correlated with detectable ctDNA, whereas LDH was not. Our results further support the use of
ctDNA in the clinical management of patients with metastatic melanoma.

Abstract: Melanoma currently lacks validated blood-based biomarkers for monitoring and predicting
treatment efficacy. Circulating tumor DNA (ctDNA), originating from tumor cells and detectable
in plasma, has emerged as a possible biomarker in patients with metastatic melanoma. In this
retrospective, single-center study, we collected 129 plasma samples from 79 patients with stage ITIIB—-
IV melanoma as determined by the American Joint Committee on Cancer (AJCC, 8th edition). For the
determination of ctDNA levels, we used eight different assays of droplet digital polymerase chain
reaction (ddPCR) to detect the most common hotspot mutations in the BRAF and NRAS genes. The
aim of the study was to investigate the association of the detectability of ctDNA at a non-prespecified
time point in a patient’s treatment with tumor progression, and to correlate ctDNA with commonly
used biomarkers (protein S100, LDH, and CRP). Patients with detectable ctDNA progressed more
frequently in PET-CT within 12 months than those without detectable ctDNA. Detectability of ctDNA
was associated with shorter OS in univariate and multivariate analyses. ctDNA was detectable
in a statistically significantly larger proportion of patients with distant metastases (79%) than in
patients with no distant metastases or only intracranial metastases (32%). Elevated protein S100
and CRP correlated better with detectable ctDNA than LDH. This study supports the potential
of ctDNA as a prognostic biomarker in patients with metastatic melanoma. However, additional
prospective longitudinal studies with quantitative assessments of ctDNA are necessary to investigate
the limitations and strengths of ctDNA as a biomarker.

Keywords: ctDNA; melanoma; tumor progression; PET-CT; 5100; biomarker

1. Introduction

During tissue remodeling and cell death, DNA is released into the extracellular space.
After entry into the bloodstream, cell-free DNA (cfDNA) derived from tumoral tissue is
called circulating tumor DNA (ctDNA). Analysis of ctDNA in peripheral blood allows for
the detection of tumor-specific genomic variants in various malignancies [1-6].

ctDNA is increasingly being tested as a liquid biomarker in patients with metastatic
melanoma. Plasma ctDNA levels have also been applied in therapeutic clinical trials to
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monitor treatment effects and predict outcomes [7,8] or in routine diagnostics to monitor
relapse following completed systemic therapy or surgery [2,9,10]. Detectable plasma ctDNA
levels at baseline were associated with worse overall survival (OS) compared to patients
with undetectable ctDNA, which had longer progression-free survival (PFS) and better OS
rates [7-9].

However, plasma levels show large intra- and interpatient variability due to tumor
burden, location, and therapeutic intervention [1,7,11-16].

In patients with metastatic melanoma, plasma lactate dehydrogenase (LDH) is an
established prognostic blood-derived biomarker [17]. Additionally, protein S100 has been
identified as a candidate marker to monitor tumor burden [18,19]. However, these routine
blood markers lack sufficient specificity and sensitivity for the prediction of treatment
response and prognosis. For the detection of tumor progression, imaging with PET-CT
scans is still the recommended method [20].

The aims of this project were, first, to investigate whether a single ctDNA measurement,
taken from patients at a non-prespecified time point during the clinical course of metastatic
melanoma, can be a useful predictor of tumor progression; and second, to analyze the
correlations between ctDNA and routine blood markers.

2. Materials and Methods
2.1. Patients

In this retrospective, single-center study, we analyzed patients with AJCC 8th edition
stage IIIB-IV cutaneous melanoma, treated at within the Department of Dermatology at the
University Hospital of Zurich. Patients were included or excluded according to the criteria
in Figure 1. Tumor mutations were determined using next-generation sequencing [21]
during the course of routine diagnostics.

Plasma samples of
melanoma ].'.-mimus
n =445
- No BRAF VEOOK/R/E/D or -
———.| NRAS Q61K/L/R mutation
n=166
Exclusion Tumor Stage <ITTA
) n= 43
Excclusi No PET-CT within + 14
xclusion 3
* davs of plasmasample
n= 107

Samplesincluded
n=129

Figure 1. Overview of sample selection.

The last treatment before the ctDNA sample collection, and all following treatments
up to 12 months after the sample collection, were recorded. Patients were not excluded if
they switched treatment modalities within the observation period due to a lack of response
or treatment tolerability.

The demographic, clinical, and pathological features of eligible patients, including
age, gender, tumor stage, Breslow thickness and ulceration of primary tumor, location of
the metastasis, and tumor treatment were obtained from our institutional database.
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2.2. Routine Blood Markers

Routine blood markers—LDH, protein S100, and CRP values—were analyzed within
three days of a blood draw for ctDNA. Markers were considered elevated when above the
ULN (upper limit of normal).

2.3. ctDNA Assessment

We collected plasma samples of patients at non-predefined time points between
October 2015 and March 2021, and only when a blood draw was otherwise necessary.
These time points were aligned with scheduled visits as part of routine treatment or during
follow-up care and were not specifically related to the onset of therapeutic interventions or
tumor progression.

Circulating cfDNA was isolated from 2-5 mL of plasma using the QIlAamp circulating
nucleic acid kit (Qiagen) for the QIAvac 24 plus vacuum system instrument (Qiagen),
according to the manufacturer’s instructions.

A fixed volume of 5 uL of each ¢fDNA isolation was mixed in duplicate with droplet
digital PCR (ddPCR) multiplex supermix (Bio-Rad) and a primer-probe mix (prototype
developed by Oncobit AG) that specifically amplifies and detects a BRAF or NRAS mu-
tated allele (COSM473, COSM474, COSM475, COSM476, COSM477, COSM580, COSM583,
COSM584) and the wild-type allele. Each sample was then processed on the QX200 droplet
digital PCR system (Bio-Rad), and data were manually analyzed with the QuantaSoft
software (Bio-Rad) according to the manufacturer’s instructions. Healthy controls were
measured using the same method. ctDNA levels were calculated as the relative amount of
mutated alleles over the total amount of molecules (mutated + wild-type) detected.

To determine correlations of ctDNA levels with routine blood markers and tumor
progression, only the first available ctDNA sample per patient was considered.

2.4. Disease Progression Assessment

FDG-PET-CT scans were performed at three-month intervals according to routine
institutional procedures. We selected scans taken during the first 12 months after the
initial plasma sample collection if follow-up data for 12 months were available. Tumor
development was evaluated according to PET-CT response at the time point of the scan. To
simplify the evaluation and data correlation, we dichotomized the tumor progression data
compared to the last available image into two groups, namely “tumor control” and “tumor
progression”. “Tumor control” comprised the assessments of metabolic complete response
(MCR), metabolic partial response (MPR), and metabolic stable disease (MSD). “Tumor
progression” included the assessment of metabolic progressive disease (MPD) and patients
who died. In the event that death occurred before 12 months, patients were included in
the “tumor progression” category to account for the missing time points (last observation
carried forward (LOCF)).

2.5. Statistics

Categorical variables were summarized as frequencies. To assess differences in cate-
gorical variables, chi-square and Fisher’s exact tests were used. Continuous variables were
summarized using mean, median, and range. For continuous variables, a two-sided t-test
was used. For univariate survival analysis, the log-rank test was utilized. For multivariate
survival analysis, a Cox regression model was built.

Statistical analysis was performed with R, version 4.1.0 (R Foundation for statistical
computing, Vienna, Austria, 2022). The significance level was determined at p < 0.05.

3. Results
3.1. Demographics
A total of 129 plasma samples from 79 patients were included in the analyses. Patient

characteristics and clinical parameters are summarized in Table 1. The complete clinical
data table has been added as a supplementary material (Table S1).
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Table 1. Patients’ characteristics in the overall population, in patients with detectable ctDNA and

undetectable ctDNA.
Characteristic Total Detectable ctDNA Undetectable c¢tDNA Value 1
n="79 n = 45 (57%) n = 34 (43%) p-vatue
Age (years)
Mean (+SD) 63.3 (+14.3) 65.8 (+13.4) 60.1 (£14.9) 0.086
Median (Min., Max.) 62.0 (24, 88) 67.0 (31, 88) 59.5 (24, 87)
Gender
Female 28 (35%) 15 (33%) 13 (38%) 0.831
Male 51 (65%) 30 (67%) 21 (62%)
Tumor Stage
111B 6 (8%) 2 (4%) 4 (12%) 0.308
ImcC 9 (11%) 4 (9%) 5 (15%) ’
v 64 (81%) 39 (87%) 25 (73%)
Breslow Thickness
Mean (£SD) 3.08 (+£2.97) 2.99 (+2.08) 3.17 (+3.75) 0.818
Median (Min., Max.) 2.10 (0.6, 20.0) 2.66 (0.6, 9.0) 1.92 (0.6, 20.0) :
Missing 18 (23%) 13 (29%) 5 (15%)
Ulceration
No 42 (53%) 21 (47%) 21 (62%) 0.668
Yes 22 (28%) 13 (29%) 9 (26%) ’
Missing 15 (19%) 11 (24%) 4 (12%)

Driver Mutation
BRAF p.V600E 43 (55%) 25 (56%) 18 (53%)

BRAF p.V600K 9 (11%) 5 (11%) 4 (11%) 0.843
NRAS p.Q61K 16 (20%) 10 (22%) 6 (18%)
NRAS p.Q61R 11 (14%) 5 (11%) 6 (18%)

Therapy at Sampling

Targeted therapy 2 14 (18%) 9 (20%) 5 (15%)

Immunotherapy 3 43 (54%) 20 (44%) 23 (67%) 0184
Chemotherapy 3 (4%) 3 (7%) 0 ’
Local therapy 4 15 (19%) 11 (25%) 4 (12%)

None 4 (5%) 2 (4%) 2 (6%)

I Two-sided t-test; chi-square test; 2 MAPK inhibitors, individual agents or in combinations; 3 anti-PD1, anti-

CTLAA4, anti-LAG3, individual agents or in combinations; 4 surgery or radiotherapy.

3.2. M-Classification and Metastasis Location at Time of Sample Collection

In 49 out of 79 patients (62%), metastases were detected with a PET-CT scan at the
time of the first ctDNA sample collection (Figure 2). ctDNA was detectable in a statistically
significantly larger proportion of patients with distant metastases (79%; M1a, M1b, M1c, and
M1d (IC + EC) than in patients with no distant metastases or only intracranial metastases

(32%; M0 and M1d (only IC), p < 0.0001).
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Figure 2. Metastasis staging according to the AJCC 8.0 M classification [17] at the time of the first
ctDNA sample collection in patients with detectable and undetectable ctDNA. ! M0, no distant
metastasis; M1a, skin, soft tissue, and /or non-regional lymph nodes; M1b, pulmonary metastasis,
with or without lesions from M1a; M1c, metastasis in other non-CNS visceral sites, with or without
lesions from M1a and M1b; M1d, metastasis of the CNS, with (IC + EC) or without (IC only) M1a,
Mi1b, and Mlc.

3.3. Detectable ctDNA Correlates with Elevated S100 and CRP, but Not LDH

We tested whether detectable ctDNA was associated with elevated S100, LDH, and
CRP (Figure 3a—c). Patients with detectable ctDNA levels had a statistically significantly
higher frequency of elevated S100 values (odds ratio (OR) = 5.16; 95% CI = 1.73 to 17.14;
p < 0.0001) and elevated CRP level (OR = 2.71; 95% CI = 1.00 to 7.69; p = 0.041). Elevations
of LDH were numerically higher in the group with detectable ctDNA, but differences did
not reach statistical significance (OR = 2.48; 95% CI = 0.89 to 7.25; p = 0.067).

$100 <ULN . 5100 > ULN LDH < ULN . LDH > ULN CRP < ULN . CRP > ULN

Fisher’s exact test p < 0.0001 Fisher's exact test p = 0.067 Fisher's exact test p = 0.041

~
o

75

50

LDH category (% of patients)
N (4]
1<) (=]

CRP category (% of patients)

Undelédable
n=34

CIDNA
(a}

Delelclab\e Undetectable Detectable Undetectable Detectable
n=45 n=34 n=4s n=34 n=45

CIDNA ctDNA
(b) ]

Figure 3. (a) Percentage of patients with S100 > ULN in patients with detectable and unde-
tectable ctDNA. (b) Percentage of patients with LDH > ULN in patients with detectable and un-
detectable ctDNA. (c) Percentage of patients with CRP > ULN in patients with detectable and
undetectable ctDNA.
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Strata

Progression-free survival

3.4. ctDNA as a Predictor for Tumor Progression and Overall Survival
3.4.1. Percentage of Patients with Tumor Progression at 3, 6, 9, and 12 Months after
ctDNA Sample

To evaluate the predictive value of detectable ctDNA for tumor progression, we
calculated the percentage of patients with tumor progression at 3, 6, 9, and 12 months after
sample collection. At all four time points, a higher percentage of patients with detectable
ctDNA at the time of the first sample showed tumor progression (at 3 months, HR = 2.54;
95% CI = 0.84 to 8.43; p-value = 0.088; at 6 months, HR = 2.01; 95% CI = 0.71 to 6.07;
p-value = 0.16; at 9 months, HR = 2.75; 95% CI = 0.97 to 8.32; p-value = 0.039; at 12 months,
HR =2.90; 95% CI = 1.00 to 9.00; p-value = 0.026; results at 3 months and 12 months are
shown in Figure 4, results at 6 and 9 months are shown in Appendix A).

No Tumor Progression - Tumor Progression (or dead)

Fisher’s exact test p = 0.088 Fisher’s exact test p =0.026

=
n ~ Q
a o =]
1
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o S

Tumor Progression (% of patients)
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n=34 n=45 n=30 n=43
+n=0 tn=5 tn=2 tn=12
ctDNA ctDNA
(a) at 3 Months (b) at 12 Months

Figure 4. (a) Percentage of patients with tumor progression at 3 months after ctDNA sample collection
in patients with detectable and undetectable ctDNA. (b) Percentage of patients with tumor progres-
sion at 12 months in patients with detectable and undetectable ctDNA. p-value was determined with
Fisher’s exact test. At the time of data analysis, the follow-up results at 12 months for 6 patients were
not yet available. 1, number of patients who died.

3.4.2. ctDNA Detectability as a Predictor for Progression-Free Survival and Overall Survival

We tested the associations between ctDNA detectability at the time point of the first
plasma sample and PFS and OS (univariate analyses, Figure 5).

Strata = Undetectable ctDNA =+ Detectable ctDNA

Strata =~ Undetectable ciDNA = Detectable ctDNA

8

0.754 § 0.75
z
5
0.504 L—‘—‘ 2 050
g
°#1 p=0.0054 o2 p=0014
0.004 0.00
o 90 T f ‘?;DNA 270 300 0 90 180 270 360 450 540 630 720 810 900 990 1080 1170 1260 1350 1440 1530 1620 1710 1800 1880 1980
ime from sample (days) Time from ctDNA sample (days)
Number at risk Number at risk
= % 5% 3 ] g 3343029282112 6 3 0 0 0 0 0 0 0 0 0 0 0 0 00
3 Fa 1% rirs 0 & 45:39-37-31-29-23- 1787 332 2 2 2 2 2 2 2 2 2 20
Time from ctDNA sample (days) 0 90 180 270 360 450 540 630 720 810 S00 990 1080 1170 1260 1350 1440 1530 1620 1710 1800 1830 1980
Time from ctDNA sample (days)
(@) (b)

Figure 5. Comparison of detectable vs undetectable ctDNA at the time of the first plasma sample in
regards to PFS (a) and OS (b). p-values were determined with log-rank tests.
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To compare associations between detectable ctDNA, routine blood markers, known
clinical prognostic factors, PFS, and OS, we calculated a multivariate Cox regression model
(Table 2).

Table 2. Multivariate Cox model for progression-free and overall survival, including ctDNA detection,
routine blood markers !, and clinical factors 2.

Coef HR (95% CI) SE (coef) z p-Value
Progression-free survival
Female Gender —0.87 0.42 (0.20-0.88) 0.38 —2.30 0.021
5100 > ULN 1.55 4.74 (2.18-10.27) 0.39 3.94 <0.0001
CRP > ULN 1.18 3.27 (1.49-7.18) 0.40 2.95 0.003
Presence of Intracranial 0.97 2.65 (1.32-5.32) 0.36 2.74 0.006
Metastases
Overall Survival
Detectable ctDNA 1.17 3.06 (1.03-9.06) 0.55 2.02 0.044
CRP > ULN 1.65 4.36 (1.71-12.07) 0.62 2.19 0.013

Analysis includes 79 patients; 1 LDH > ULN, S100 > ULN, and CRP > ULN; 2 Breslow thickness and ulceration of
primary tumor, age, gender, therapies at the time of sampling, and location of metastases; coef, coefficient; HR,
hazard ratio; SE, standard error. ULN, upper limit of normal.

Univariate analyses showed direct associations between detectable ctDNA and signifi-
cantly lower PFS (p-value = 0.0054) and OS (p-value = 0.014) rates. After adjustment for
routine blood markers and prognostic clinical factors in multivariate analyses, the result
was confirmed for OS (HR = 3.06; CI = 1.03 to 9.06; p-value = 0.044) but not PFS.

3.5. Longitudinal Disease Monitoring with ctDNA

Of the 79 patients included, 15 patients had more than 2 ctDNA measurements. Of
these, three patient examples with interesting ctDNA dynamics and the corresponding
clinical course are illustrated in Appendix B.

4. Discussion

We report a retrospective analysis of ctDNA measurements at non-predefined time
points and their correlation with tumor progression and routine blood parameters in a
cohort of patients with metastatic melanoma. Patients” demographics in this study were
representative of a population with metastatic melanoma stage IIIB-IV that is expected in a
tertiary university hospital and is intended to reflect real-world circumstances.

The results of this study highlight the potential of ctDNA as a liquid biomarker to
predict OS in patients with advanced melanoma, even if a single ctDNA measurement is
collected at a random time point throughout the patient’s treatment.

Our findings are in line with other published studies regarding the usefulness of
ctDNA to monitor treatment success. Differences in the results can be explained by different
study designs and patient populations [2,6-9,20]. Most of these were small retrospective
studies with a short observation period and inconsistent sampling time points [8,9,20]. The
only reported large prospective trial was a double-blind, randomized, therapeutic, phase
3, multicenter trial comparing dabrafenib plus trametinib versus dabrafenib plus placebo
in previously untreated patients with metastatic melanoma. A total of 423 patients were
included in this study. A subgroup analysis showed that the quantity of ctDNA at baseline
correlated negatively with PFS and OS [7].

However, the conclusions of published clinical studies are equivocal regarding the
usefulness of ctDNA in the routine clinical practice of patients with advanced melanoma.
There is a lack of clinical validation for the majority of ctDNA assays [22]. Plasma levels of
ctDNA are influenced by various factors, most of which are largely unknown [5,23-29].
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Furthermore, this study supports the findings of other studies that ctDNA measured
in plasma has only limited value in monitoring intracranial disease activity [7,20,30,31].

The assessment of ctDNA has the potential to improve the clinical management of
patients with metastatic melanoma [7-9,20,32]. However, there are important aspects
that require caution in the interpretation of ctDNA assessments to exploit its full range of
potential benefits: (1) Changes in ctDNA concentration during therapy can provide valuable
information regarding treatment response and its duration. Furthermore, an increase in
ctDNA concentration after an initial decrease can suggest a loss of initial response to the
therapeutic agent and may trigger a switch of therapy. (2) The number of ctDNA copies per
mL appears to be inversely associated with treatment response, progression-free survival,
and overall survival [7,8]. Quantitative ctDNA measurements have the potential to improve
the predictive value of this marker significantly. (3) Handling of blood samples and storage
until analysis should be standardized. (4) A serious limitation of plasma ctDNA is that brain
melanoma metastases and their dynamics are not reflected in changes in this biomarker.
The measurement of ctDNA concentration in CSF may represent an alternative, but only
limited data on its usefulness are available. Imaging methods remain, for the time being,
the gold standard for the detection and monitoring of brain metastases [7,20,30,31].

This study found that patients with only intracranial disease showed a lower detectabil-
ity of ctDNA, underlining the need for further development of biomarkers. Additionally,
the detectability of ctDNA correlated with elevated S100 and CRP. Larger prospective
studies are needed to investigate at which time points and at which frequency ctDNA
should be measured to monitor treatment responses more accurately.

5. Conclusions

The application of ctDNA as a liquid biomarker in the management of patients with
metastatic melanoma is promising. Its potential can best be exploited when it will be
assessed quantitatively as early as possible after diagnosis and repeated at regular time
intervals. This study shows that even ctDNA measurements, which were taken at random
time points, may have a prognostic value. ctDNA allows for the monitoring of therapy
and the detection of disease progression probably earlier than any other method. Further
development of biomarkers is needed for the identification and monitoring of brain metas-
tases, as the value of ctDNA measured in plasma seems to be limited. Large prospective,
longitudinal clinical studies are needed to clarify its definitive role in the management of
patients with malignant melanoma.

Supplementary Materials: The excel data table, consisting of clinical data and ctDNA measure-
ments, can be downloaded at https:/ /www.mdpi.com/article/10.3390/cancers14174158 /s1, Table S1.
ctDNA Data Table.
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Appendix A
Percentage of Patients with Tumor Progression at 6 and 9 Months after ccDNA Sample

No Tumor Progression . Tumor Progression (or dead)

Fisher's exact test p = 0.16 Fisher's exact test p =0.039

100+ 1004

754

754

501

504

25+ 254

Tumor Progression (% of patients)
Tumor Progression (% of patients)

Undetectable Detectable Undetectable Detectable
n=34 n=45 n=34 n=45
tn=1 +n=5 tn=1 tn=9

ctDNA ctDNA
(a)at 6 Months (b)at 9 Months

Figure Al. (a) Percentage of patients with tumor progression at 6 months after ctDNA sample
collection in patients with detectable and undetectable ctDNA. (b) Percentage of patients with tumor
progression at 9 months in patients with detectable and undetectable ctDNA. The p-value was
determined using Fisher’s exact test. : Number of patients who died.

Appendix B

Longitudinal Disease Monitoring with ctDNA

Three patient examples with multiple ctDNA and routine blood marker measurements
are individually shown in Figure A2.



Cancers 2022, 14, 4158

10 of 12

PATIENT0014

PATIENT0019
PATIENT0036

UBWIEBIL

- MEKi

[ | |
Waesl]

- AntiPDL

B Anti-LAG3+Anti-CTLAd+Anti-PD1

.
wsunes))

L —— -

%4V LW

9%4¥ LNk
w
d

%% 1NW

o
a

VBN 001-5

VBN 0oT-5
BN 0015

i

—o)

VN KA1
n Ha1
¥y s
3
N HaY

Il

WU ¥
3
o
-
V/Bu gy
R

3
&

o,
3

Jan 2018

s
TS P g A v gy

»
134)

(19-13d!
osucdsay e
uoiad |
‘esuodsey awedwen ™| (&
5
ssudias ey P
10r13a)

[

(ue2s 15)
asuodsai ey P

1 Aderog

uogepel auseI0RRIS

(19:43d)
sseang swssaiboig B | 19

{ueos 10)
95u00s04 eLEd B

e |

mewwq anssatold
g
[ o

(ueas 10) aseasip oS B
UOGRLLIOU| [EIID.
svong

Jan 2020

Jul 2019 oct 2019 Jan 2020 Aor 2020

Date
Date

(b) (c)

Figure A2. Longitudinal measurements of ctDNA, S100, LDH, CRP, Therapeutic Interventions,
and PET-CT results over time in three patient examples. Dashed red lines: S100: ULN (Assay
changed in December 2019, different ULN); LDH, ULN and 2x ULN; CRP, ULN; Mut AF; Mutant
Allele Frequency.
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Patient 0014 (Figure A2a): This patient with stage IV melanoma (M1la, NRAS Q61K
mutated, COSM580) received MEKi monotherapy from March 2015-May 2019. In May
2019, the patient developed a solitary detectable metastasis, which was surgically removed.
ctDNA could not be detected in the first assessment shortly after surgery. Thereafter,
adjuvant immunotherapy with an anti-PD1 antibody was started. In August 2019, the
patient developed a relapse. At this time point, ctDNA was detectable. After that, the
patient started a combined treatment with an anti-PD1 antibody + MEKi and reached a
complete response in December 2019. In January 2020, ctDNA returned to undetectable
levels. 5100 showed a similar pattern to ctDNA measurements. LDH ranged between ULN
and 2x ULN at all time points, with the exception of one measurement in August 2019,
which was 30 U/L, which may represent a measurement error. CRP showed elevated levels
after the re-initiation of MEKi, which could be related to tumor necrosis.

Patient 0019 (Figure A2b): This stage IV (Mlc, BRAF V600E mutated, COSM476)
melanoma patient responded well to the combination treatment consisting of anti-LAG3 +
anti-CTLA4, and anti-PD1 immunotherapy. ctDNA and 5100 showed a similar time course.
In August 2019, local radiotherapy of a bone metastasis located in L5 was performed.
Consequently, LDH and CRP showed a peak in concentration.

Patient 0036 (Figure A2c): This patient with intra- and extracranial disease (stage
IV (M1d), BRAF V600K mutated, COSM473) responded poorly to different treatment
modalities. After three months of immunotherapy with anti-CTLA4 + anti-PD1, tumor
progression was identified in a PET-CT scan, and as a consequence, therapy was switched to
chemotherapy and radiotherapy for cerebral metastases. Under this treatment, the patient
reached a short-term partial response after three months but showed tumor progression
again after six months in April 2020. ctDNA levels mimicked a therapeutic response, 5100
did so only partially, without elevated concentration, in April 2020. LDH was slightly
elevated throughout the whole observation period, with the exception of one low value in
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October 2019, which may represent a measurement error with no clinical correlation. CRP
peaked after therapy initiation with chemo- and radiotherapy in October 2019.

In summary, these patients with different disease courses show concomitant elevation
of ctDNA and S100 with tumor progression, whereas LDH and CRP were less specific.
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