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INTRODUCTION

Sars-Cov-2 virus infection induces coronavirus disease 19 (Covid19) with severe prognosis in
weaker individuals. Acute respiratory distress syndrome (ARDS) and multiple-organ failure are
the major causes of death in the later stages of the disease (Ramanathan et al., 2020). These poor
outcomes follow a general unbalance of the immune response with uncontrolled inflammation
and large infiltration of activated leukocytes in the lung and some other organs, including the
Central Nervous System (CNS) (Baig et al., 2020). The immunological profile is characterized by
the reduction of CD4+ and CD8+ T-lymphocytes (lymphopenia), decreased level of CD4+cell
expression of INF-γ and increased cytokines Interleukin-6 (IL6), IL-10 and tumor necrosis
factor-alpha (TNFα) (Pedersen and Ho, 2020). Although IL-10 has anti-inflammatory effects,
the enormous release of pro-inflammatory mediators overwhelms the feedback mechanisms that
regulate innate immunity causing a “cytokine storm.” Actually, several steps of the immune
response to the virus are impaired during Covid19. Lymphopenia underlines a compromised
adaptive response, while innate immune phagocytes, such as neutrophils and macrophages, invade
and damage the lung and the juxtaposed endothelial tissue. This vicious feedforward loop is
enhanced by phagocyte chemo-attractant cytokines (chemokines), like CCL2, CCL3, and CCL4,
exceedingly expressed in the respiratory track and by blood PBMCs, further rising the cytokine
storm (Xiong et al., 2020). Removing these pro-inflammatory signals from the blood reduces
the uncontrolled activation of the immune cells and their recruitment to the targeted tissues. In
addition to several treatments already in place or feasible with different efficiency and collateral
effects (Ye et al., 2020), blood purification therapy has been successfully applied to some patients
in critical condition of Covid19 (AL Shareef and Bakouri, 2020; Ma et al., 2020). Extracorporeal
detoxification of the blood is an invasive method primarily used for sepsis to remove toxins
and inflammatory cytokines (Monard et al., 2019). In recent years, nanotechnology has provided
a variety of inorganic or organic materials with accidental or intended immunomodulatory
properties (Feng et al., 2019). Among them, nanoparticles (NPs) with cytokine binding properties
show great potential to quench the cytokine storm raised in Covid19 and other acute diseases,
as well as NPs aiming at cytokine or chemokine intracellular signals and cognate receptors with
antagonist capabilities.

DISCUSSION

The decrease of inflammatory mediators during a cytokine storm is therapeutically approached in
three different ways: (a) downregulation of the cytokine expression; (b) antagonism of the cytokine
cognate receptors; (c) physical removal of the cytokines (Ye et al., 2020). To impair cytokine release,
common anti-inflammatory drugs (i.e., corticosteroids) or endogenous molecules (i.e., IL-λ) are
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used to modulate the pathways of cytokine-releasing cells.
Targeting cytokine receptors is often performed using
small molecules behaving as receptor antagonists; however,
encouraging results have been obtained with monoclonal
neutralizing antibodies. Particularly, the treatment of
Covid19 patients with Tocilizumab, a recombinant humanized
monoclonal antibody against the soluble and membrane-bound
Interleukin-6 receptor (IL-6R), already approved for rheumatoid
arthritis, successfully reduced the mortality rate (Zhang et al.,
2020). Albeit clinically efficient, the removal of cytokines is
often obtained by the blood purification techniques previously
mentioned, which often require extracorporeal machinery and
invasive protocols applied to the patients.

Among the theoretical treatment strategies to reduce Covid19
cytokine storm, the employment of cytokine binding NPs can
be considered. Diverse materials show incidental sticking ability
for cytokines and chemokines, like CXCL18 and TNF-α (Song
et al., 2004; Brown et al., 2010; Tsai et al., 2012; Batt et al.,
2018). In principle, the administration in the bloodstream of
NPs with specific adsorption of inflammatory molecules would
help their clearance. Unfortunately, many of those are metallic or
carbon-based NPs, whose poor solubility and non-degradability
induce their accumulation and persistency inside the body
leading to cytotoxicity. NP size and surface charge should also be
carefully considered, as their particular combination can induce
fibrinogen unfolding, exacerbating the inflammatory condition
(Deng et al., 2011). Furthermore, the competitive binding of
several biomolecules showing similar NP-surface affinity and
the protein devoted to the alien bodies’ opsonization (e.g.,
complement proteins, pentraxins, natural antibodies) create a
“protein corona” limiting the cytokine-binding particle efficiency
(Ke et al., 2017). Yet, it is worth to mention that selected
materials’ adsorption is quite specific for some proteins, and the
formation of a specific corona is also envisaged as a “natural”
method for NP surface functionalization (Caracciolo, 2015;
Palchetti et al., 2016; Caracciolo et al., 2017; Cagliani et al., 2019a).

Interesting results with potential clinical applications have
been obtained by “ad hoc” NP surface modification aimed
at binding/adsorbing specific cytokines (Isahak et al., 2016;
Guryanov et al., 2017; Wang et al., 2019). An interesting
example is represented by chemokine-binding polystyrene
sulfonate brushes NPs that mimic the sulfated tyrosine residues
of the N-terminal tail of the chemokine receptor (Isahak
et al., 2016). Such NP functionalization results in binding
affinity for CCL2 (previously known as MCP-1). CCL2 is the
prototype of the inflammatory chemokine, strongly attracting
monocyte/macrophages to sites of inflammation and highly
expressed during Covid19 (Xiong et al., 2020). Even more
selective nanotools to entrap specific chemokines are NPs
behaving as synthetic decoy receptors (Guryanov et al., 2017).
Heparin-coated polylactic acid (PLA) NPs bear on their surface
two modified CCR5 fragments responsible for chemokine
binding. The exploitation of chemokine interaction with these
“nanotraps” released in the medium results in a convincing
decrease of monocyte adhesion to human endothelial cells. It
is worth to indicate that CCR5 is the cognate receptor for
CCL5 (previously known as RANTES), CCL3 (MIP-1α) and

CCL4 (MIP-1β). All these inflammatory chemokines are vastly
produced in the respiratory track and in the blood during
Covid19-induced cytokine storm, as reported above (Xiong et al.,
2020). CCL2 and CCL5 adsorption has been also obtained with
heparin coatedmicro and nanoparticles without further chemical
moieties on the surface and applied for microdialysis in vitro
and in vivo (Duo and Stenken, 2011; Giorgi-Coll et al., 2017).
It is intriguing to think of a potential release of such NPs as
injected intravenous formulation or respiratory spray to decrease
the inflammatory mediators during the late stage of the disease.
These NPs are synthesized using FDA-approved materials (i.e.,
PLA, PLGA) with proved biodegradability and negligible toxicity.
In general, the respiratory tract offers many advantages for drug
and NP delivery (Sung et al., 2007). It has a high surface area with
rapid absorption due to wide vascularization, low thickness of
the epithelial barrier and absence of the first-pass metabolism.
Cytokines and chemokines overexpressed in the lungs during
Covid19 could be quickly reached by the appropriate inhaled
nanotools, entrapping them before their inflammatory signals
were triggering an immune reaction. Furthermore, the same
activated phagocytes contributing to the Covid19 damages would
be effectively removing NPs with chemokines sequestered on
the surface, lowering their concentration in the biological fluids.
It is important to underline that detailed information for a
successful delivery of inhaled NPs is still missing. The efficiency
of targeting depends on particle size and density, which influence
their deposition into the lung tissue (Paranjpe and Müller-
Goymann, 2014). NPs with a diameter in the range of 100–
300 nm can be reasonably deposited in the alveolar region,
whereas it is still debated if NPs below a certain size could even
be exhaled weakening the therapeutic efficacy (Yang et al., 2008).
The opsonization mechanisms of the innate immune systems
may likely change the NP size, so the surface chemistry should be
properly designed and tested to target specific tissues. Anyway,
the feasibility of intranasal treatment in ovalbumin-sensitized
mice model for asthma has been proved with PEGylated
dextran coated supermagnetic iron oxide nanoparticles (SPION)
conjugated with anti-IL4Rα blocking antibodies (Halwani et al.,
2016). IL4Rα is a shared subunit of IL-4 and IL3 receptors.
The treatment with anti-IL4Rα NPs significantly decreased
pro-inflammatory cytokine expression and release in broncho-
alveolar lavage fluid (BALF) and lung tissue in mice. The
activation of CD4 and CD8T cells in the lung and their
cytokine release were more efficiently impaired by anti-IL4Rα-
NPs treatment than by free anti-IL4Rα antibodies.

Nanomaterials can also be employed to reduce the
overstimulation of cytokines by inhibiting the signaling of
their cognate receptors. We already mentioned that monoclonal
antibodies like Tocilizumab are used as cytokine receptor
antagonist to treat Covid19 (Zhang et al., 2020). Some
biodegradable NPs are also under investigation to fulfill the
same task and partially inhibit receptor signaling (Grozdanovic
et al., 2019). Grozdanovich et al. described the effects of
PEGylated R321-peptide NPs on eosinophil migration. This
inhibitor peptide is derived from the second transmembrane
helix of CCR3. R321 is able to self-assemble into uniform NPs
and their administration inhibited CCR3-mediated chemotaxis
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of human blood eosinophils. Moreover, R321-NPs reduced
eosinophil recruitment into the lung and airway hyper-
responsiveness in a triple-allergen mouse asthma-model of
allergic airway inflammation. The novelty of these NPs is related
to their function as biased antagonists inhibiting only a part
of the following signaling avoiding the β-arrestin-mediated
receptor internalization and subsequent CCR3 degradation. The
final outcome of removing inflammatory ligands by receptor
internalization without triggering leukocyte migration would
lower the inflammation.

Another way to antagonize the action of chemo-attractant
cytokines could be obtained by the functionalization of NPs with
the same chemokines covalently bound onto the particle surface
(Cagliani et al., 2019b). We synthesized CXCL5-NPs proving that
these particles are highly internalized in CXCR2+ cells but not
in cells expressing low levels of this receptor. The described NP
uptake removes CXCL5-cognate receptor from the cell surface
making the leukocyte less responding to inflammatory stimuli.
The research of chemokine-NP interactions with leukocytes is
currently ongoing in our lab producing promising results with
the use of biodegradable PLGA/pluronic NPs homogenously
produced by microfluidic-assisted nanoprecipitation (Donno
et al., 2017).

The firm adhesion of phagocytes to the endothelia in
inflammatory diseases including Covid19 is mediated by
chemokine-receptor-binding dependent conformational change
of integrins increasing their affinity for specific ligands expressed
on the endothelial cells (Mitroulis et al., 2015). Leukocyte
transmigration can be also considered a therapeutic target and it
has been investigated through the use of VCAM-1 glycoprotein-
functionalized liposomes (Calin et al., 2015). VCAM-1 is
upregulated on the endothelial cells and is the ligand for the
integrins VLA-4 (CD49aCD29) and α4β7 (CD49dCD29), both
expressed on monocytes/macrophages. Calin et al. demonstrated
that VLA-4-liposomes with encapsulated a CCR2 antagonist were
able to decrease chemokine-dependent inflammatory processes
in vitro and in situ adding an integrin-ligand interaction as
potential NP therapeutic target.

Like all the prolonged and uncontrolled inflammations, also
Covid19 is characterized by redox unbalance and oxidative
stress, especially in ARDS condition (Delgado-Roche and
Mesta, 2020). The consistent production of reactive-oxygen
species (ROS) (i.e., superoxide anion, hydrogen peroxide and
hypochlorous acid) by cells involved in the immune response

has a relevant role to worsen the effects of inflammation.
Once released in the cytoplasm, ROS exacerbate inflammation
by oxidizing protein and lipid cellular constituents, damaging
DNA, and contributing to induce apoptosis. Neutrophils, M1
macrophages and endothelial cells produce ROS especially
through NADH/NADPH oxidase (NOX) activation (Mittal et al.,
2014). An interesting hypothesis by Baqi et al. (2020). highlights
the possibility that the activation of Ca2+-sensitive Nox and
ROS production can be further stimulated by Sars Cov 2 entry
via angiotensin-converting enzyme 2 (ACE2) receptor, inducing
the generation of angiotensin 1,7 from angiotensin II and
the consequent opening of Ca2+ channels (Baqi et al., 2020).
Covid19 could be also treated with anti-oxidants materials as
complementary support to decrease inflammation. Nevertheless,
the majority of these materials, such as flavonoids, carotenoids,
and polyphenols regulating ROS production at different levels,
often show low bioavailability, short time of circulation, poor
target specificity and non-specific dispersion in normal tissues
(Crascì et al., 2018). Efficient ROS scavenging activity has been
obtained using inorganic nanomaterials with catalytic surface
such as cerium oxide (CeO2) or platinum (Pt) NPs in endothelial
cells (Del Turco et al., 2019) and monocytes (Gatto et al.,
2018), respectively. For long term clinical applications, however,
it could be preferable using very soluble and biodegradable
NPs. A promising example is represented by novel PEGylated
poly(propylene sulfide) (PPS) NPs (Rajkovic et al., 2019). PPS-
NPs displayed significant ROS scavenging and anti-oxidant
activity through a high density of sulfur atoms. Relevant
reduction of TNFα and IL-6 expression, microglia and vascular
activation have been demonstrated by the authors in a mouse
model of stroke. Moreover, after intravenous administration,
PPS-NPs accumulated specifically in ischemic brain regions and
retained for at least 7 days, demonstrating their potential for an
extended therapeutic action.

In our opinion, all the nanomaterials so far mentioned could
find applications to reduce acute inflammation and cytokine
storms occurring in Covid19 and related diseases.We also believe
that this field of research will foster the availability of defense
approaches for public health in the future.
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