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Abstract: The ability of exosomes to transport different molecular cargoes and their ability to influence
various physiological factors is already well known. An exciting area of research explores the functions
of exosomes in healthy and pathological pregnancies. Placenta-derived exosomes were identified in
the maternal circulation during pregnancy and their contribution in the crosstalk between mother and
fetus are now starting to become defined. In this review, we will try to summarize actual knowledge
about this topic and to answer the question of how important exosomes are for a healthy pregnancy.
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1. Introduction

Intensive maternal-fetal information exchange is required to establish and to maintain a healthy
pregnancy. The placenta is the most important organ in this respect, performing vital functions
for the fetus to support its growth and survival and to maintain the pregnancy [1]. The placental
assignments also include the control and regulation of the communication between the mother and
the developing child [2]. In general, cellular communication is mediated through direct cell-to-cell
contacts, soluble factors, intercellular nanotubes, and extracellular vesicles [3]. Placental cells of both
maternal and embryonic origin, secrete not only soluble endocrine mediators but also extracellular
vesicles, including exosomes. For the maternal immune system, a pregnancy poses an exceptional
challenge as the embryo constitutes a foreign tissue in immunological terms that must not be destroyed.
A finely tuned immunosuppression has to take place to avoid rejection of the embryo. In addition,
other pregnancy complications can result from dysfunctional placental communication causing severe
danger for the survival of the fetus [4]. In this review, we summarize the role of exosomes in healthy
and pathological pregnancies.

2. Exosomes and Other Extracellular Vesicles

Extracellular vesicles (EV) are heterogeneous populations of cell-derived membrane vesicles
released by eukaryotic and prokaryotic cells to the extracellular space. The classification of EVs is based
on the origin and size of the vesicle (Figure 1) [5]. The human placenta releases a wide variety of EVs
including macrovesicles (syncytial nuclear aggregates, 20–100 µm), microvesicles, apoptotic bodies,
and nanovesicles (exosomes) [3,6]. The function of syncytial nuclear aggregates is unclear as they can
contain tens or hundreds of nuclei and could represent the remnants of dying syncytiotrophoblasts.
Microvesicles are budding from the cell membrane and typically show a diameter of 100 to 1000 nm.
Exosomes were considered originally to be cellular “debris”, but do in fact play an important role in the
body as mediators of intercellular communication. They are the smallest representatives of EVs with a
diameter of 30 to 150 nm and are produced by a defined pathway. Budding from the membrane of the
multivesicular body, a part of the endosomal compartment, their composition including their cargo
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loosely follows certain formation rules resulting in a heterogeneous population of vesicles—with some
communalities. Although the origin of microvesicles and exosomes is well known, the experimental
discrimination of these vesicles types is difficult, so the terms are sometimes subsumed as extracellular
vesicles [6]. In this review, we use the terms exosomes or extracellular vesicles according to the usage in
the reviewed publications. Exosomes consist of a lipid bilayer with the same orientation as the plasma
membrane and contain a variety of proteins and nucleic acids—some of which are enriched especially
in these vesicles. Their content varies due to cell type and environment conditions. They are produced
by almost every cell type—as well by cancer cells. Once released into the extracellular space, exosomes
may act locally to modify the activity of neighboring cells or distally after entry into circulating bodily
fluids. Exosomes were found in most biological fluids including blood, lymph, saliva, milk, amniotic
fluid, lachrymal and mammary gland secretions [7].

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 2 of 17 

 

compartment, their composition including their cargo loosely follows certain formation rules 
resulting in a heterogeneous population of vesicles—with some communalities. Although the origin 
of microvesicles and exosomes is well known, the experimental discrimination of these vesicles types 
is difficult, so the terms are sometimes subsumed as extracellular vesicles [6]. In this review, we use 
the terms exosomes or extracellular vesicles according to the usage in the reviewed publications. 
Exosomes consist of a lipid bilayer with the same orientation as the plasma membrane and contain a 
variety of proteins and nucleic acids—some of which are enriched especially in these vesicles. Their 
content varies due to cell type and environment conditions. They are produced by almost every cell 
type—as well by cancer cells. Once released into the extracellular space, exosomes may act locally to 
modify the activity of neighboring cells or distally after entry into circulating bodily fluids. Exosomes 
were found in most biological fluids including blood, lymph, saliva, milk, amniotic fluid, lachrymal 
and mammary gland secretions [7]. 

 

Figure 1. Origin, size, density, and typical markers of major extracellular vesicle subclasses [6,7]. 

3. The Human Pregnancy 

After fertilization, the zygote starts to move through the fallopian tube where the first mitoses 
occur [8]. The first cell doublings result in the morula, comprising 16 cells, which develops further 
into the blastocyst. The blastocyst reaches the uterus and implants into the modified part of the 
endometrium of the uterus called decidua. The blastocyst contains two kinds of cells that are the 
product of the first differentiation processes, the inner cell mass, and the surrounding trophoblasts. 
The inner cell mass develops into embryoblasts that form the embryonic disc. In addition, the cells of 
the trophoblast undergo further differentiation into an inner layer comprising the cytotrophoblasts 
(CT; sometimes villous cytotrophoblasts, VCT), and an outer layer containing the 
syncytiotrophoblasts (SCT). In the blastocyst stage, the embryonic anlage is nurtured by diffusion of 
nutrients from the maternal blood. The placenta is a temporary organ that develops when the 
blastocyst becomes implanted into the maternal endometrium and is composed of cells from both the 
embryo and the uterus. Villous tree structures are formed that contain a network of blood vessels. In 
the placenta, an intensive exchange of oxygen, CO2, and nutrients takes place between the maternal 
and the embryonic circulation. The embryonic disc undergoes further differentiation processes that 
give rise to the gastrula, a trilaminar disc comprised of the three germ layers ectoderm, mesoderm, 
and endoderm. During the next weeks, early progenitors for all kinds of tissues are formed. The 
growing embryo detaches from the uterus wall staying connected through the umbilical cord. The 

Figure 1. Origin, size, density, and typical markers of major extracellular vesicle subclasses [6,7].

3. The Human Pregnancy

After fertilization, the zygote starts to move through the fallopian tube where the first mitoses
occur [8]. The first cell doublings result in the morula, comprising 16 cells, which develops further
into the blastocyst. The blastocyst reaches the uterus and implants into the modified part of the
endometrium of the uterus called decidua. The blastocyst contains two kinds of cells that are the
product of the first differentiation processes, the inner cell mass, and the surrounding trophoblasts.
The inner cell mass develops into embryoblasts that form the embryonic disc. In addition, the cells of
the trophoblast undergo further differentiation into an inner layer comprising the cytotrophoblasts
(CT; sometimes villous cytotrophoblasts, VCT), and an outer layer containing the syncytiotrophoblasts
(SCT). In the blastocyst stage, the embryonic anlage is nurtured by diffusion of nutrients from the
maternal blood. The placenta is a temporary organ that develops when the blastocyst becomes
implanted into the maternal endometrium and is composed of cells from both the embryo and the
uterus. Villous tree structures are formed that contain a network of blood vessels. In the placenta,
an intensive exchange of oxygen, CO2, and nutrients takes place between the maternal and the
embryonic circulation. The embryonic disc undergoes further differentiation processes that give rise to
the gastrula, a trilaminar disc comprised of the three germ layers ectoderm, mesoderm, and endoderm.
During the next weeks, early progenitors for all kinds of tissues are formed. The growing embryo
detaches from the uterus wall staying connected through the umbilical cord. The cord contains blood
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vessels of the embryonic circulation and connects it to the placenta where material transfer takes place
without direct mixing of the embryonic and maternal blood.

4. The Placenta as the Interface Between Maternal and Fetal Organisms

The crosstalk between fetus and mother can occur as a simple diffusion of molecules through
tissue layers or in a better protected manner through extracellular vesicles, especially via exosomes
(Figure 2) [9,10]. Embryo-derived exosomes encapsulate a variety of different proteins and nucleic
acids (microRNA, messenger RNA, long non-coding RNA, DNA) and can subsequently be taken up by
cells of the maternal immune and vascular systems. They modulate the maternal physiology to cause or
adapt it to pregnancy-induced changes [9]. The release of placenta derived exosomes into the maternal
circulation has been demonstrated in healthy and pathologic pregnancies [3,9,10]. Placenta-derived
exosomes may be differentiated from other exosomes by the presence of placenta-specific miRNAs or
proteins. One of them is placental alkaline phosphatase (PLAP), a syncytiotrophoblast-specific protein.
Moreover, trophoblast-derived exosomes carry characteristic trans-membrane proteins such as human
leukocyte antigen G (HLA-G) [11]. A recent study demonstrated that the total amount and the specific
placenta-derived exosomes could be determined using quantum dots coupled with CD63 and PLAP
antibodies, respectively. Quantification of placental exosomes in maternal plasma reflects fetal growth
and it may be a useful indicator of placental function [12].
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Figure 2. Illustration of the fetal placental barrier that separates fetal and maternal circulations in
the human placenta. Places of exosome appearance are indicated. MSC—mesenchymal stem cells.
The picture was composed using publicly available graphics from The Alcohol Pharmacology Education
Partnership at the Duke University Medical Center [13] and from Christiane Albrecht, University of
Bern, with her friendly permission [14].

Fetal-derived exosomes travel to the maternal side to potentially transmit signals to the uterus
and cervix. It was even suggested that inflammatory signals delivered by exosomes could contribute
to the onset of parturition [15]. Exosomes as potential paracrine mediators triggering labor were also
identified in mice. Birth could be experimentally induced by exosomes in the absence of systemic
progesterone withdrawal, which is otherwise a requirement for birth initiation [9].

Through the effects on the maternal organism, the released exosomes also support growth and
survival of the fetus, therefore one would expect an increased production of exosomes during pregnancy.
This hypothesis was confirmed, as the concentration of exosomes in maternal peripheral blood was
~20-fold greater than that observed in non-pregnant women [16]. The concentration of placenta-derived



Int. J. Mol. Sci. 2020, 21, 4264 4 of 17

exosomes in maternal plasma increases in normal pregnant women as gestation progresses, with a
maximum concentration reported at term [3,17]. The increase with gestational age can be observed
already during the first trimester of pregnancy, starting as early as in the sixth week—even before the
intervillous circulation is fully developed. Hypoxia and/or hyperglycemia inside the uterus result in
an increased exosome release from syncytiotrophoblasts which can facilitate extravillous trophoblast
invasion and proliferation [18].

In general, research techniques to study the placenta-derived exosomes use cell cultures of
trophoblasts (primary and cell lines), chorionic villi explants, placental perfusion, plasma and urine
from pregnant women. Main areas of interest about exosomes in pregnancy include: demonstration of
the exchange of EVs between fetus and mother; the role of EVs in implantation; the establishment of
immune tolerance; and the regulation of angiogenesis and endothelial cell migration.

4.1. EVs Are Exchanged Between Maternal and Embryonic Tissues

The human placenta releases a wide range of molecules and EVs which support the maternal
physiology to adapt to fetal requirements during pregnancy [10,19,20]. Placenta-derived EVs
(including microvesicles and exosomes) from normal human pregnancies in the first-trimester are
absorbed by endothelial cells through phagocytosis and endocytosis [21]. In a mouse model, placental
vesicles targeted specific organs in vivo, particularly the lungs, the liver, and the kidneys. These
findings were confirmed by employing fetal cell-derived fluorescently labelled exosomes that were
injected intra-amniotically into pregnant mice [9]. Exosomal trafficking and function was further
demonstrated by using genetically engineered mice in which fetal and maternal exosomes could be
distinguished [22]. Both feto-maternal and maternal−fetal trafficking of exosomes during pregnancy
was demonstrated by this elegant approach, as exosomes from the mother were able to cross placental
barriers and reach fetal tissues. The detection of fetal exosomes in maternal plasma discloses their
potential as biomarkers for pregnancy monitoring using minimally invasive liquid biopsy.

4.2. Exosomes in Pregnancy Transfer miRNAs to Regulate Gene Expression in Target Cells

One class of small RNAs transported via extracellular vesicles, the microRNAs (miRNAs), attracted
special attention. MiRNAs are post-transcriptional regulators of gene expression by inhibiting the
translation of their target mRNAs or inducing mRNA degradation. It was estimated that the expression
of 60% of the human genes are regulated by miRNAs [23]. The loading of miRNAs into exosomes
occurs through controlled pathways [24]. MiRNAs are encoded by the genome and their transcription
underlies cell program dependent regulation similar to protein coding genes. The analysis of the
miRNA content in exosomes gives information about the status of the producer cell, a fact that makes
them useful for diagnostic purposes. Taken up by recipient cells, the miRNAs transported by exosomes
influence translation and can profoundly change the gene expression pattern. Experimental loading of
exosomes with specific miRNAs is intensively explored for the transport of therapeutic nucleic acids in
future therapies.

Characteristic miRNAs, which are highly expressed in human placentas, were identified in the
serum of pregnant women. For instance, the concentration of placental miRNA-141 increases in
maternal plasma with gestational age [25]. Several miRNAs are located in the chromosome 19 miRNA
cluster (C19MC) which is the largest cluster of miRNAs in the human genome [26]. MicroRNAs
within the human C19MC include 46 miRNAs which are expressed only in the placenta, the so-called
placenta-associated miRNAs [27,28]. During pregnancy, C19MC-derived miRNAs are expressed in
villous trophoblasts and secreted into the maternal circulation via exosomes where they function in
placental-maternal signaling [29,30]. For instance, exosomal miR-517b increased the expression of TNFα
and/or other death ligands [30]. The exosomal transfer of placenta-specific miR-571a-3p into NK cells
repressed cGMP-dependent protein kinase 1, a key mediator of nitric oxide signaling [31]. In pregnant
mice, 15 miRNAs specific for pregnant animals were identified in trophoblast-derived EVs [32].
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Among the potential target pathways identified by bioinformatics analysis was the ubiquitin-mediated
proteolysis, MAPK signaling and Focal Adhesion Pathways.

Interestingly, there is evidence that exosomes can help the fetus to avoid viral infections.
Non-placental cells incubated with placental exosomes became more resistant to viral infection
and this effect was mediated by the delivery of specific miRNAs [33]. Recently, another class of small
RNAs have been identified in syncytiotrophoblast-derived EVs, fragments of transfer RNA (tRNA) [34].
tRNA can be split by specific enzymes into halves that exert various intracellular functions in stress
signaling [35]. Transported by vesicles, tRNA halves were shown to interfere with protein synthesis in
target cells [34].

4.3. Exosomes Support the Implantation of the Embryo

A metadata analysis of the function of extracellular vesicles in the human reproduction system
suggested that they contribute to oocyte and sperm maturation, fertilization, prevention of polyspermy,
and embryo implantation [36]. During the window of implantation, the embryonic blastocyst adheres to
the uterus wall and initiates cell invasion. Exosomes help to establish the correct coordination between
the embryo and uterine endometrium required for successful implantation [36,37]. MiRNAs have been
detected as mediators of embryo-endometrium crosstalk in this process [38,39]. Exosomes released from
the endometrial epithelium into the uterine cavity transfer specific miRNAs to the trophectodermal cells
of the blastocyst or to endometrial epithelial cells to promote implantation [40]. Comparing the miRNAs
of the exosomes and their producer cells demonstrated controlled sorting of miRNA into exosomes,
and 13 of the 227 miRNA identified were specific for exosomes. Investigation of the potential pathways
that are regulated by these specific exosomal miRNAs may lead to the identification of targets in
pathways promoting embryo implantation [40,41]. By bioinformatics analyses, potential target genes
related to ECM-receptor interactions, the Jak-Stat pathway, VEGF signaling, and Toll-like receptor
signaling were identified.

Exosomes derived from human endometrial epithelial cells were shown to be taken up by
trophoblasts to enhance their adhesive potential partially by enhanced focal adhesion kinase
signaling [42]. In addition, in a mouse model, miRNAs present in exosomes were shown to be transferred
from the receptive endometrial epithelium to embryonic trophectoderm, improving the adhesive
ability of the pre-implantation embryo. Exosome-derived miR-30d could induce overexpression of
genes involved in embryo adhesion, such as integrin beta-3, integrin alpha-7, and cadherin-5 [43].
A regulatory function for cell invasion was described for exosomal miR-520c-3p from chorionic
villous trophoblasts. MiR-520c-3p targeted CD44 in extravillous trophoblasts, and downregulation of
endogenous miR-520c-3p accelerated EVT invasion [44].

Evaluating exosomes in the uterine luminal fluid of sheep demonstrated that vesicle transported
proteins could affect the implantation and fertility outcomes. Released by the endometrial epithelium,
vesicles were taken up by blastocysts and the endometrium around the uterus [45]. A total of 195
vesicular proteins were identified by nano-LC-MS/MS analysis with 40 and 76 unique to the cyclic and
pregnant ewes, respectively. Mass spectrometry analysis of the isolated extracellular vesicles found
many proteins expressed by the endometrial epithelia and/or conceptus trophectoderm including
cathepsin L1, gastrin releasing peptide, lipoprotein lipase, and prostaglandin synthase 2 [45].

4.4. The Influence of Pregnancy-Associated EVs on the Maternal Immune System

The fetus is antigenically distinct from the mother and therefore it is necessary to establish a
tolerant immune state to prevent the rejection of the developing organism [46]. The role of exosomes
released by embryonic cells and the placenta seems to be crucial for the fetus to evade the maternal
immunosurveillance and destruction of the fetal ‘allograft’. The immunosuppressive potential of
exosomes is well recognized in cancer [47]. Cancer-derived exosomes prevent the differentiation and
activation of immune effector cells, modulate antigen expression, induce T cell apoptosis, and transport
immunosuppressive cytokines. Recently, we provided evidence that melanoma-derived EVs were
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able to confer antigen-specific immunosuppression by simultaneously transporting MHC molecules
presenting cancer-specific antigenic peptides and immunosuppressive cytokines [48]. Antigen-specific
immunosuppression seems to occur during pregnancy as well and could be partially mediated by EVs.
Embryo-derived exosomes are taken up by cells of the maternal immune system, resulting in inhibition
of the host immune system to facilitate the establishment of pregnancy, fetal development, and survival
during pregnancy [49]. Exosomes derived from villous cytotrophoblasts (VCT) reduced the production
of Th1 cytokines in PBMCs. Exosome-associated syncytin-2 (Syn-2), an immunosuppressive molecule,
mediated this effect, as it was not observed in Syn-2-silenced VCT exosomes [50]. Most importantly,
exosomes can inhibit activation of T-lymphocytes and natural killer cells that are potentially harmful to
the embryo [51]. The immunosuppressive character of placenta-derived vesicles is partially mediated
by the expression of death messengers including the pro-apoptotic molecules FasL (Fas ligand), PD-L1
and TRAIL [16]. Engagement of the cognate receptors triggers apoptosis in activated peripheral
blood mononuclear cells (PBMCs) [52,53]. In a normal pregnancy, placental exosomes become critical
in modulating T-cell activation, suppressing effector T cells by enhancing lymphocyte apoptosis
and CD3-zeta loss [16]. CD3 loss affects the selection of T lymphocytes leading to decreased T
lymphocyte-mediated responses. Embryonic exosomes also down-regulate the activating NK cell
receptor NKG2D during pregnancy impairing NKG2D-mediated cytotoxicity [52,53]. NKG2D is
down-regulated on NK cells by exposure to its soluble ligands [54]. The NKG2D ligands MIC-A and
MIC-B are expressed by the placenta and are released via exosomes to inhibit NK cell activity.

Trophoblast-derived EVs were further shown to induce the differentiation of T cells into Treg
(regulatory T) cells [55]. Treg cells exert a strong antigen-specific immunosuppression [47]. The Treg
induction was mediated by HSPE1 (heat shock 10kDa protein 1) carried by the EVs [55].

In cattle, placenta-derived exosomes are abundant in the circulation of pregnant cows and
exosome-derived miR-499 attenuated the expression of proinflammatory cytokines by inhibiting
NF-κB signaling, thereby attenuating inflammatory responses and forming an immune-tolerant
microenvironment in the uterus. Inhibition of miR-499 lead to inflammatory deregulation and
increased risk of pregnancy failure [56].

A role in preventing the embryo from being attacked by the maternal immune system was
described for glycosphingolipids (GSLs) in exosomes [57]. GSL expressing exosomes derived from
villus trophoblast cells significantly induced macrophage M2 polarization during a normal pregnancy.
Mature macrophages can acquire a pro-inflammatory M1 phenotype or become polarized towards an
immunosuppressive M2 state [47].

Inflammation is part of an active immune response. Considering the necessity for inducing
tolerance for the embryo, is might seem counterintuitive that the implantation requires a slightly
inflammatory status. However, this condition does not affect the fetus directly, but facilitates tissue
remodeling and embryo implantation [58]. Placental vesicles are thought to play a role in the maternal
systemic inflammatory response by modulating cytokine release [59]. Exosomes isolated from pregnant
women promoted the release of proinflammatory cytokines (IL-4, IL-6, IL-8, IFN-γ, TNF-α) from
human umbilical vein endothelial cells (HUVECs) and this effect was significantly greater when
exosomes isolated from gestational diabetes mellitus (GDM) pregnancies were used [59]. In addition,
macrophage-derived exosomes internalized by placental cells increased the release of pro-inflammatory
cytokines such as IL-6, IL-8 and IL-10 [60].

4.5. The Angiogenic Potential of Exosomes in Pregnancy

Initial stages of pregnancy are characterized by spiral artery remodeling and physiological
adaptations in the cardiovascular system to provide sufficient supply of nutrients and oxygen to the
growing fetus [61]. Coordinated fetal vasculogenesis and maternal vascular remodeling requires
invasion and differentiation of trophoblast cells. The invasive cytotrophoblasts replace the endothelial
layer of the maternal spiral arteries, transforming them from high-resistance vessels into large-scale
capacitance vessels suitable for sufficiently nourishing the fetus [62]. Placenta-derived EVs are reported
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to induce vasculogenesis and angiogenesis through an oxygen-sensing mechanism, especially under
the hypoxic conditions during the early stages of pregnancy. Furthermore, vascular endothelial growth
factor A (VEGFA), an angiogenesis stimulator and vessel growth factor, along with exosomal miRNAs,
is released by the implanted embryo to regulate blood supply [63]. Both, maternal and umbilical
serum exosomes enhance endothelial cell proliferation, migration, and tube formation. In umbilical
serum exosomes, altered expression of a subset of migration-related miRNAs including miR-210-3p,
miR-376c-3p, miR-151a-5p, miR-296-5p, miR-122-5p, and miR-550a-5p has been identified [64].

Exosomes derived from porcine trophectoderm cells induced the proliferation of the maternal
endothelial cells and promoted angiogenic processes due to the presence of specific miRNAs. Increased
miR-150 levels in the EVs stimulated the proliferation and migration of endothelial cells, thereby
exhibiting a pro-angiogenic effect. A reduced expression of porcine miR-150 in the umbilical cord
blood-derived exosomes of pigs showed intrauterine growth restriction [65]. MiRNAs involved in
modulation of angiogenesis at the maternal-fetal interface were identified in porcine trophectoderm
cell lines. 14 miRNAs were selectively present in CD63 positive EVs of which miR-126-5P, miR-296-5P,
miR-16, and miR-17-5P were the most abundant angiogenic miRNAs [66].

5. Exosomes in Pathological Pregnancies

Placental exosomes are reported to be involved in the pathology of pregnancy as well [3,67].
The quantity and content of placental exosomes could be linked to placental dysfunction—specifically
to preeclampsia, gestational diabetes, and preterm birth [3,19,68]. Increased secretion of vesicles
was detected during pregnancies complicated by gestational diabetes [20] and preeclampsia [69].
Partially, differences in exosomal miRNA levels could be associated with these pathological states.
Besides, cell-free DNA (cfDNA) of exosomal origin is considered as biomarker of pregnancy
complications [70,71].

5.1. Preeclampsia

One of the most serious and common complications of pregnancy is preeclampsia (PE). It occurs
especially in the third trimester of pregnancy. PE and associated hypertensive disorders are responsible
for nearly 40% of premature births [72,73]. In the pathogenesis of PE, placental exosomes show
variations in quantity and protein cargo, and exert some impact on maternal immune tolerance.
In mouse models, EVs derived from injured placentas were shown to induce PE including hypertension
and proteinuria [74]. The number of extracellular vesicles in pregnant women was tested as predictive
marker for PE. The total number of microvesicles was significantly elevated in plasma obtained from
women with normal pregnancy and late-onset PE compared with non-pregnant women matched by
age, but there was no significant difference in pathological and normal pregnancies [75]. Shedding of
vesicles and debris from trophoblast cells into the maternal circulation during PE contributed to
vascular inflammation and endothelial injury, which are associated with the pathophysiology of
PE [76]. Placental syncytiotrophoblast-derived extracellular vesicles contain endothelial nitric oxide
synthase (eNOS), an enzyme that produces nitric oxide (NO) required for the regulation of the
vascular tone and blood supply [77]. Based on diminished NO biological activity, EVs enable
the prediction of pregnant disorders including PE [78]. Other studies also related low NO with
placenta-derived exosomes. The exosomal miR-155, which is highly expressed in the plasma and
placenta of preeclampsia patients, inhibited the expression of eNOS in endothelial cells [79]. Relevant
for hypertension, EVs released by placental syncytiotrophoblasts carry neprilysin, an enzyme from
the family of membrane-bound metalloproteases. Neprilysin cleaves vasopeptides, thus contributing
to the establishment of hypertension, a hallmark of PE [80]. Interestingly, the rate of early onset of
PE in high risk women could be significantly reduced by aspirin and this effect was mediated by
down-regulation of miR-155 transported by EVs [81,82].

Both, exosomal miRNAs and proteins, were successfully employed as predictive biomarkers [83].
Small RNA sequencing of serum derived samples from women who later developed PE allowed for
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the discovery of miRNAs whose levels were deregulated in this condition [84]. The identified miRNAs
were compared to the miRNAs found by 19 preceding studies pursuing similar aims. An overlap was
found for 11 up-regulated and 5 down-regulated miRNAs in PE as compared to healthy pregnancies.
MiR-155 was again among the up-regulated miRNAs. Furthermore, three miRNAs (miR-26b-5p,
miR-7-5p, and miR-181a-5p) previously associated with hypertension, one of the hallmarks of PE, were
among those deregulated in PE [84]. In another study, hsa-miR-486-1-5p and hsa-miR-486-2-5p were
identified as microRNAs with predictive potential [85].

Proteomic studies identified about 400 proteins in syncytiotrophoblast EV samples with 25 proteins
(including integrins, annexins, and histones) unique to PE compared to healthy pregnant controls [86].
Syncytin-2 was less abundant on the surface of serum-derived exosomes isolated from patients with
PE. The levels of specific proteins in exosomes in pregnant women, such as syncytin-2, can be used as
biomarkers for the prediction and diagnosis of PE [50,87]. Isolation of sub-populations of exosomes
using their affinity to Cholera toxin B chain or annexin V followed by protein quantification by ELISA
allowed to identify PE-predictive biomarkers. Three proteins, Tissue Inhibitor of Metalloproteinases
1 (TIMP1), Plasminogen Activator Inhibitor Type I (PAI1), and Placental Growth Factor (PlGF),
showed excellent predictive robustness [88]. Furthermore, a combinatorial measurement of copeptin,
Placental Growth Factor and Annexin V-positive microparticles could be used for PE prediction and
discrimination from other pregnancy complications [89]

5.2. Pre-Tterm Birth

According to the World Health Organization, an estimated 15 million infants are born too early
each year [90]. Complications following preterm birth are the leading cause of death among children
under five years of age and are responsible for about one million deaths each year globally. A pre-term
birth in humans is defined as birth before 37 completed weeks of gestation. PE is one of the major
medical causes of pre-term birth.

In pregnant mice, the concentration of exosomes was significantly lower in preterm birth induced
by inflammation compared to animals with normal delivery [91]. Pathway analysis after determination
of exosomal protein profiles at term and preterm birth pointed at changes in inflammatory and
endocrine signaling, which might disrupt pregnancy maintenance [92]. To test the influence of exosome
signaling on parturition timing, vesicles were isolated from the blood of pregnant mice either during
early or late pregnancy. Then, these EVs were injected into a separate group of pregnant mice in a
pregnancy stage corresponding to the beginning of the third trimester in human [93]. The injection of a
high concentration of late pregnancy exosomes was able to cause labor-associated changes without the
other hormonal and chemical triggers usually involved in this process. In contrary, the injections of the
early pregnancy exosomes had no effect [93].

A range of miRNAs isolated from maternal plasma were described as predictive biomarkers
for pre-term birth, however, whether these miRNAs were transported by EVs was not evaluated
in these studies [94–97]. Identification of miRNAs transported by EVs also revealed potential
biomarkers for the prediction of pre-term birth [98]. Changes of the protein composition of circulating
placental EVs could also be used for the identification of a high-risk status for pre-term birth across
gestation [99]. Ninety-six proteins were expressed at significantly different levels, and a bioinformatics
analysis revealed their connection to inflammatory pathways, epithelial mesenchymal transition,
and coagulation/complement activation.

5.3. Gestational Diabetes Mellitus (GDM)

Another important complication of pregnancy, which can harm both the fetus and the mother, is
gestational diabetes mellitus (GDM). During normal pregnancy, at the time of the second and third
trimester, limited insulin resistance gradually increases as a normal phenomenon to ensure sufficient
nutrient supply for the fetus. A pregnant mother with pathologic insulin resistance—acquired or
chronic—is not able to compensate for the increased circulating glucose concentrations because of β-cell
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dysfunction. As a result, maternal hyperglycemia occurs, leading to increased risk of disease for both the
mother and the fetus [100]. GDM is defined by any degree of abnormal glucose metabolism diagnosed
during pregnancy and/or glucose intolerance that was not present or recognized before pregnancy.
GDM associated hyperglycemia, hyperinsulinemia, and hypoxia may adversely affect the maternal-fetal
vascular exchange and placentation, leading to preterm birth, fetal distress, fetal death, and other
adverse pregnancy outcomes. GDM was associated with elevated levels of exosomes in the maternal
circulation. Placental exosomes from GDM pregnancies decreased insulin-stimulated migration and
glucose uptake in primary skeletal muscle cells obtained from patients with normal insulin sensitivity.
In contrary, the exosomes derived from normal glucose tolerant patients increased the glucose uptake
in response to insulin in skeletal muscle cells from diabetic subjects [101]. A connection between
increased exosome levels and glucose concentration in GDM was also described in first-trimester
trophoblast cells inducing the release of cytokines from endothelial cells [102]. It was suggested that
increased placental glycogenolysis in GDM accelerates glucose transfer to the fetus, resulting in fetal
overgrowth. There is a significant association between high body weight and diabetes, and adipose
tissue-derived exosomes were shown to influence the placental glycogenolysis. Pathway analysis
of exosomal proteins revealed differential expression of mitochondrial function-related proteins in
adipose tissue-derived exosomes of GDM [103].

A proteomic study identified 78 proteins with significantly altered levels in GDM-derived
exosomes compared to normal ones. Pathway analysis revealed that many of these proteins are
involved in energy production and inflammation [104]. Analysis of urinary exosomes revealed that the
damage associated molecular pattern (DAMP) protein S100A9 was present at higher levels in exosomes
in GDM and could be used as valid biomarker of inflammatory processes and immune responses [105].
In addition, increased levels of miRNA members of the C19MC region were found in exosomes
during GDM: miR-518a-5p, miR-518b, miR-518c, miR-518e, miR-520c-3p, and miR-525-5p [106,107].
Furthermore, the expression of specific exosomal miRs including miR-125a-3p, miR-99b-5p, miR-197-3p,
miR-22-3p, and miR-224-5p were detected at elevated levels in the placenta, in circulating exosomes
and in skeletal muscle in GDM [101]. Several studies analyzed the miRNA changes in GDM in plasma
samples without isolating EVs [108–110]. All of them identified candidates suitable for GDM prediction.
The usage of exosomes to treat GDM was suggested recently [111].

6. Conclusions

The contribution of exosomes in fetal-maternal communication during pregnancy has been
firmly established (Figure 3). It is even conceivable that exosomes are necessary for the successful
implantation of the embryo and its normal development. Despite growing interest in elucidating the
role of exosomes during normal and complicated pregnancies, progress in the field seems to be quite
slow. One of the reasons may be connected to problems with the isolation of placental exosomes from
the maternal circulation. An improved workflow for their isolation was recently described [112,113].
Changes in exosomal concentration, composition, and/or their bioactivity, such as interaction with
maternal cells, may participate in the development of pathological states, and exosomes can be used as
biomarkers in the prediction of pregnancy complications such as preeclampsia, fetal growth restriction,
and preterm birth [29,114–116]. Furthermore, exosomes have the potential to serve as new therapeutic
targets in infertility [117]. The unique characteristics of exosomes and their ability to carry cargo
to distant destinations in the body makes them ideal candidates to signal between feto-maternal
tissues during pregnancy [15]. Studying the contribution of exosomes in pathological pregnancies
and related diseases, such as infertility or pregnancy failure can open the way for new exosome-based
therapies [118].
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