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Purpose: To assess the association of radiomics features based on multiparametric MRI
(mpMRI) with the proportion of intraductal carcinoma of prostate (IDC-P) and validate the
predictive models.

Materials and Methods: We retrospectively included pre-treatment MR images of
prostate cancer (PCa) with IDC components of high proportion (≥10%, hpIDC-P), low
proportion (<10%, lpIDC-P), and pure acinar adenocarcinoma (PAC) from our institution
for training and internal validation and cooperated cohort for external validation.
Normalized images of T2WI, diffusion weighted imaging (DWI) and apparent diffusion
coefficient (ADC) map, and dynamic contrast enhanced (DCE) sequences were used for
radiomics modeling. The clinical model was built based on serum total prostate specific
antigen (tPSA) and Gleason score (GS), and the integrated model was the combination of
Rad-score and clinicopathological data. The discrimination ability was assessed by area
under the receiver operating characteristic curve (ROC-AUC) in the internal and external
validation sets and compared by DeLong test.

Results: Overall, 97 patients with hpIDC-P, 87 lpIDC-P, and 78 PAC were included for
training and internal validation, and 11, 16, and 19 patients for external validation. The
integrated model for predicting hpIDC-P got the best ROC-AUC of 0.88 (95%CI = 0.83-0.93)
in internal and 0.86 (95%CI = 0.72-1.0) in external validation, which both outperformed clinical
models (AUC=0.78, 95%CI = 0.72-0.85, AUC=0.69, 95%CI = 0.5-0.85, respectively) based
solely on GS, and the radiomics model (AUC=0.85, 95% CI = 0.79-0.91) was slightly inferior
to the integrated model and better than the clinical model in internal dataset. The integrated
model for predicting lpIDC-P outperformed both radiomics and clinical models in the internal
dataset, while slightly inferior to the integrated model for predicting hpIDC-P.
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Conclusions: Radiomics signature improved differentiation of both hpIDC-P and lpIDC-P
versus PAC when compared with the clinical model based on Gleason score, and was
validated in an external cohort.
Keywords: radiomics, machine learning, prostate cancer, intraductal carcinoma, multiparametric MRI
INTRODUCTION

Globally, prostate cancer (PCa) is the most commonly diagnosed
cancer in men and ranks among the top five cancers for both
incidence and mortality (1). Interestingly, the 5-year survival rate
is > 60% in localized PCa, while the remaining ≈ 5% in patients
with distant metastasis (2). Intraductal carcinoma of the prostate
(IDC-P), which was recently defined by the World Health
Organization (WHO) in 2016, is a distinct clinicopathological
entity characterized by malignant prostatic epithelial cells
growing within preexisting ducts and/or acini. In addition, it is
associated with aggressive biological behavior and a clinical
course (3, 4). Most IDC-P tumors are considered to represent
the intraductal spread of adenocarcinoma and are almost always
adjacent to invasive acinar adenocarcinoma rather than
occurring on their own. Therefore, it is difficult to achieve an
accurate diagnosis via random sampling and categorize its
growth patterns (4, 5). Although previous studies have
confirmed that multiparametric MRI (mpMRI)/ultrasound
fusion targeted biopsy can enhance the detection of IDC-P (6),
as well as the fact that Gleason score (GS) 7 PCa with IDC
showed lower apparent diffusion coefficient (ADC) values than
those without IDC by using a small sample size (15 vs. 15 cases)
(7), the difference of overall intra-tumoral signal characteristics
between IDC-P and pure prostatic acinar adenocarcinoma
(PAC) have not yet been reported. Moreover, Zhao et al.
reported that a 10% or greater proportion of IDC of the
prostate is an unfavorable prognosticator for metastatic PCa (8).

Radiomics is the high-throughput extraction and mining
quantitative textures and features (region size, shape or
location, histogram of volume intensity, texture analysis,
transform analysis, fractal analysis) from a large amount of
medical imaging through semi-automatic or automatic
software (9). It offers the potential to analyze whole tumors in
3D, as well as sub-regions or ‘habitats’ within tumors. More
recently, the integration of radiomics and genomics has
developed radiogenomics, which specifically investigates the
associations between quantitative imaging features and
characteristics typically attributed to the genomics domain and
its immediate derivatives (9) Artificial intelligence is the field of
computer science aimed at making smart devices that perform
tasks that currently require human intelligence (10). Machine
learning is a subfield of artificial intelligence and is based on the
development and training of algorithms, by which computers
may learn from data and perform predictions without specific
prior programming (10, 11). Unlike classical rule-based
algorithms, it can take advantage of increased exposure to large
and new data as well as to improve and learn over time (11).
With the utilization of artificial intelligence and machine
2

learning, it expanded the directions of prostatic radiomics and
mainly focused on gland segmentation, assessing lesion
aggressiveness, identification of tumors through mpMRI,
creation of frameworks for automated PCa localization and
detection, prediction of prognosis and progression, and finally
management of treatment and toxicity (9, 10).

Thus, the purpose of this study was to differentiate high
proportion and low proportion IDC-P (hpIDC-P and lpIDC-P,
respectively) from PAC by using radiomic machine learning of
mpMRI. Further, an external cohort of an independent dataset
was used to validate the constructed models.
MATERIALS AND METHODS

Study Population
This retrospective multicenter study was approved by the local
Institutional Review Boards (No. 2019-1209), and written
informed consent was waived. Consecutive patients with
pathologically proven IDC-P with a proportion of at least 12
core needle biopsies or radical specimens were enrolled from
January 2015 to December 2020 for the analysis. The proportion
of IDC was calculated as the percent of the total area of IDC in the
total area of the entire PCa, which was primarily based on radical
specimens without utilizing neoadjuvant hormonal therapy
(NHT) and followed by puncture specimens. The PAC group
included simultaneous diagnoses via both needle biopsy without
NHT and radical specimen with or without NHT, and one-fourth
of the patients were randomly selected at our institution for
modeling. All biopsies were performed with systematic or
cognitive mpMRI target biopsy with at least 12 punctures. The
external validation set was collected from May 2019 to December
2020 from two cooperating institutions. All the included mpMRI
were comprised of pretreatments and with lesions possessing a
Prostate Imaging-Reporting and Data System (PI-RADS) score of
5 according to the standard of 2019 version 2.1. The exclusion
criteria included prior local or systemic therapies for any prostate
abnormality before the examination, any other mixed
histopathological components (ductal adenocarcinoma,
urothelial carcinoma, squamous cell carcinoma, neuroendocrine
carcinoma, mucinous adenocarcinoma, or cacinosarcoma) or
patients performed on 1.5T MRI scanners, as well as incomplete
sequences or poor quality of mpMRI. The process of patient
enrollment is shown in Figure 1.

MRI Acquisition
All the MR images from the training cohort were obtained by 3.0
T MRI scanners obtained from two vendors (Vendor 1: Skyra 3.0
T from Siemens, Erlangen, Germany; Vendor 2: DISCOVERY
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MR750w 3.0 T from GE Healthcare, Chicago, IL, USA), and the
external cohort images were obtained by two venders (Vendor 1:
Skyra 3.0 T from Siemens, Erlangen, Germany; Vendor 3:
uMR780 from United Imaging Health care, Shanghai, China)
with a pelvic phased array coil. The imaging parameters were
performed as follows: axial and sagittal T2-weighted turbo spin-
echo (TSE) sequence with small field of view (FOV) of 240 mm,
repetition time (TR)/echo time (TE) of 3235 - 6220 ms/104.0 -
149.4 ms, flip angle of 103.5 - 160°, slice thickness of 3.0 - 3.5 mm
and bandwidth of 122 - 260 Hz/Px; transverse diffusion-weighted
imaging (DWI) sequence of single-shot echo planar imaging with
FOV of 240-320 mm, TR/TE of 2083 - 5,100 ms/81.5 - 89 ms, slice
thickness of 3.0 - 3.5 mm, bandwidth of 1202 - 1953 Hz/Px and b
values of 50, 200, 800, and 1400 s/mm2, the ADC map was
automatically calculated; transverse 3D-fast field echo of dynamic
contrast-enhanced (DCE) sequence with a temporal resolution of
15 s after intravenous injection of 0.1 mmol/kg gadolinium chelate
at a rate of 2 mL/s, FOV of 240 - 380mm, TR/TE of 3.92 - 4.08 ms/
1.69 - 1.90 ms, flip angle, 9° - 12°, slice thickness, 2 - 3 mm,
bandwidth, 440 - 600 Hz/Px, measurement, 7.

Clinicopathological Data Collection
The baseline clinicopathological characteristics, including age,
biopsy according to the International Society of Urological
Frontiers in Oncology | www.frontiersin.org 3
Pathology (ISUP) grade group (GG), and serum total prostate
specific antigen (tPSA), of both the training and external
validation cohorts, were collected. The ISUP GG of the five-tier
grading systemwas used to record theGleason score as follows: GG
1 forGS 6,GG2 for 3 + 4,GG3 for 4 + 3, GG4 for 8, andGG5 for 9
or 10 (12). Pretreatment tPSA was categorized as the following
groups because there was no exact value when it exceeded 100 ng/
mL in our institution before 2018: < 10 ng/mL, 10 - 19.9 ng/mL, 20 -
99.9 ng/mL and ≥ 100 ng/mL (13). Clinical models for predicting
hpIDC-P and lpIDC-P were built and externally validated.

Feature Extraction and Selection
All the mpMRIs, including axial T2WI, DWI with a high b value
of 1400 s/mm2 and ADC map, DCE image with the most obvious
enhanced tumor, were reviewed by two experienced radiologists
with 9 years of experience (reader 1, L.Y.) and 6 years of
experience (reader 2, Z.Y.L.) in making PCa diagnoses to ensure
the existence of one index lesion with PI-RADS 5 for each patient.
The lesions were then semi-automatically segmented for
identifying the boundary of the tumors by reader 1 who was
blinded to the clinicopathological information. Any disagreement
was resolved via discussion or consultation with another senior
radiologist with 16 years’ experience (reader 3, J.Y.) in making
genitourinary system diagnoses.
FIGURE 1 | Diagram for the patient selection process. IDC, intraductal carcinoma; PAC, prostatic acinar adenocarcinoma; PI-RADS, Prostate Imaging Reporting
and Data System.
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The images were normalized automatically on the Research
Platform (Deepwise Inc., Beijing, China, http://keyan.deepwise.
com) before feature calculation. Radiomic features of the lesions
were extracted using the Python package PyRadiomics (version
2.2.0). In detail, each image was subtracted by the mean value
and was divided by the standard deviation value. Afterward, the
image was multiplied by 100 and resampled to the same
resolution. The volume of interest (VOI) of each lesion was
automatically extracted. A total of 2107 features (Supplementary
Table S1), including 414 first-order features, 14 shape features,
and 1679 texture features, were extracted from the VOI of each
sequence. via Fifteen patients from each group (for a total of 45
patients in the training institution) were randomly resampled for
the interclass (readers 1 and 2) and intraclass (reader 1 twice at
an interval of 1 month) correlation coefficient (ICC) analyses.
The radiomic features were retained after ICC analysis and
Pearson correlation coefficients analysis. Subsequently, the least
absolute shrinkage and selection operator (LASSO) regression
method was applied to select the most distinguishable features.
During the feature selection process, non-zero coefficient after
the shrinking process was selected.

Radiomics and Integrated Model
Construction
After feature selection, the support vector machine (SVM)
regression was used to construct the radiomics model. A five-fold
internal cross-validation was performed on the training set to
determine the optimal parameter configuration for the radiomics
model, after which it was validated by the external dataset. After the
radiomicmodelwas built for predicting hpIDC-P and lpIDC-P, the
corresponding Rad-score in the training and internal validation
datasets were calculated and combined with the variables of the
clinical model for training and validating the integrated model by
using logistic regression. Each clinical feature was assessed by
univariate logistic regression. The features revealed as statistically
significant with univariate logistic regression analysis were then
analyzedwithmultivariate logistic regression analysis for integrated
model-building.

Additionally, an external dataset was used for validation. In
addition, both the performance of the internal and external
validation of the clinical, radiomics and integrated models were
compared in the hpIDC-P and lpIDC-P predictive models,
respectively, as shown in Figure 2.

Statistical Analysis
All the statistical analyses were performed using R software (version:
3.6.1) and MedCalc Version 20.0.22 (MedCalc, Ostend, Belgium).
Differences in clinicopathological parameters were assessed by the
chi-squared test for categorical variables and the Mann–Whitney U
test for continuous variables. The radiomic features with ICC > 0.75
were retained for the analysis. Redundant features were removed by
Pearson correlation coefficients with a threshold value of 0.8. For the
establishment of clinical model, univariate logistic regression was
used to initially select the clinical predictors, after which those
variables with P < 0.05 were introduced into a multivariate logistic
regression. The receiver operating characteristic (ROC) curves of
Frontiers in Oncology | www.frontiersin.org 4
different models were compared by the DeLong test. Statistical
significance was set at P < 0.05.
RESULTS

Patient Characteristics
Overall, 262 patients from our institution, including 97 hpIDC-
P, 87 lpIDC-P and 78 PAC patients, met all the criteria and were
used for training and internal validation. Forty-six patients from
cooperating institutions were assigned for external validation,
including 11 hpIDC-P, 16 lpIDC-P and 19 PAC cases.

The clinicopathological characteristics and statistical results
are shown in Table 1. There were no significant differences in
patient age or tPSA distribution (all P > 0.05) among any of the
subgroups in the training and external validation cohorts.
There was a significant difference in biopsy GG in the training
cohort (P < 0.001), whereas there was no significant difference in
the external validation cohort (P > 0.05).

Clinical Model
Among the clinicopathological parameters, only biopsy GG
was a predictor of hpIDC-P (OR = 4.107, 95% CI, 2.67-6.319,
P < 0.001) and lpIDC-P (OR = 2.714, 95% CI, 1.877-3.924, P <
0.001) in the training set via multivariate logistic regression and
was used to build the clinical model. The AUCs of the clinical
model were 0.78 (95% CI, 0.72-0.85) for predicting hpIDC-P and
0.74 (95% CI, 0.66-0.81) for lpIDC-P in the training set; in
addition, the AUCs were 0.69 (95% CI, 0.5-0.85) and 0.68 (95%
CI, 0.50-0.83) in the external validation set, respectively.

Radiomics Model
After excluding features with ICC values ≤ 0.75 including
606 features of T2WI, 681 features of DWI, 362 features of
ADC, and 382 features of DCE, 5589 features of the above
mentioned four sequences were retained and used for the follow-
up analysis.

For the radiomics model of hpIDC-P and PAC
differentiation, there were four features in DCE, two features in
T2WI, four features in DWI, and two features in ADC, for a total
of 12 features (Supplementary Table S2), which contained six
gray level cooccurrence matrix (GLCM), four gray level
dependence matrix (GLDM), and two gray level run length
matrix (GLRLM) features after using the LASSO regression.
The AUCs of the training set, internal validation set, and
external validation set were 0.95 (95% CI, 0.92-0.98), 0.85
(95% CI, 0.79-0.91), and 0.86 (95% CI, 0.72-1.0), respectively.

For the radiomics model of lpIDC-P and PAC differentiation,
there were seven features in DCE, five features in T2WI, and
three features in DWI, for a total of 15 features (Supplementary
Table S3), which contained nine GLCM, three GLDM, two
GLRLM, and one gray level size zone matrix (GLSZM) features
after using the LASSO regression. The AUCs of the training set,
internal validation set, and external validation set were 0.86 (95%
CI, 0.81-0.92), 0.8 (95% CI, 0.73-0.87), and 0.74 (95% CI, 0.56-
0.91), respectively.
June 2022 | Volume 12 | Article 934291
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Clinical-Radiomics Integrated Model
The clinical-radiomics integrated model incorporating biopsy GG and
Rad-score obtained AUCs of 0.88 (95% CI, 0.83-0.93) in the internal
validation set and0.86 (95%CI, 0.72-1.0) in the external validation set of
thehpIDC-Pmodel; inaddition, therewereAUCsof0.83 (95%CI,0.76-
0.89) and 0.76 (95% CI, 0.59-0.92) for the lpIDC-Pmodel, respectively.
Frontiers in Oncology | www.frontiersin.org 5
Comparison of Performance Between
Different Models
Table 2 and Figure 3 detail the comparison results on the AUC
and ROC curves of different models in the internal and external
validation sets. For predicting hpIDC-P, both radiomics and
integrated models had significant advantages compared to the
FIGURE 2 | Radiomics workflow.
June 2022 | Volume 12 | Article 934291
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clinical model, and the integrated model outperformed the
radiomics model, with statistical significance being observed in
the internal validation set (all P < 0.05). The integrated model also
outperformed the clinical model with statistical significance (P <
0.05), whereas there was no significant difference between the
radiomicsmodel and integrated and clinical models in the external
validation set (both P > 0.05). For predicting lpIDC-P, integrated
models had significant advantages compared to both radiomics
and clinical models (both P < 0.05), whereas the radiomics model
was not significantly different from the clinical model (P > 0.05) in
the external validation set. There were no significant differences
between any two models.

The verification of the hpIDC-P outperformed the lpIDC-P
models between the same type of model without a significant
difference (all P > 0.05), except for the integrated model of the
internal validation set (P = 0.030).

Overall, both radiomics and integrated models achieved good
performance for predicting hpIDC-P and lpIDC-P in the
internal and external validation sets, and the effectiveness of
the integrated model of hpIDC-P was even better than that of
lpIDC-P in the internal validation set.
DISCUSSION

IDC-P is an aggressive type of prostate cancer, which is
independently associated with the adverse clinical and
pathological features on both biopsy and radical prostatectomy.
Frontiers in Oncology | www.frontiersin.org 6
In these patients, there are higher Gleason score and likelihood of
seminal vesicle invasion, as well as worse progression-free, cancer-
specific, and overall survival (14). Furthermore, patients with IDC-
P on radical prostatectomy have higher pathologic T stage,
increased likelihood of extraprostatic extension, and increased
risk of biochemical recurrence and metastasis (14). Therefore,
diagnosis and early reporting is critical for choosing the most
appropriate patient management. The majority of IDC-P lesions
have been identified in close proximity to invasive carcinoma of
Gleason pattern 4 or 5, rather than in formation of a single solid
tumor (4), which has made it difficult to be macroscopically
diagnosed by radiologists. The advantages of radiomic machine
learning techniques via detailed analyses of tumor morphology
and internal texture features may be helpful to assist radiologists in
the diagnosis of IDC-P. In this retrospective study, we built
clinical, radiomics, and clinical-radiomics integrated models to
identify IDC-P with high and low proportions and compared the
verification effectiveness among these models. Overall, the
integrated model showed good predictive performance via
internal cross and external validation for predicting both
hpIDC-P and lpIDC-P, especially for hpIDC-P.

All the final features used for radiomics modeling in this
study were based on the semi-automatic sketching mode and PI-
RADS 5 score lesions which could help ensure excellent inter-
reader agreement (15), and were gray level matrix features for
predicting hpIDC-P and lpIDC-P. First, IDC components were
scattered in the entire tumor, which resulted in a certain
correlation and regularity in the distribution of signal intensity
TABLE 1 | The clinicopathological data of patients in training and external validation cohorts.

Training cohort External validation cohort

Group PCA(78) lpIDC-P(87) hpIDC-P(97) PCA(19) lpIDC-P(16) hpIDC-P(11)

Age,y (IQR) 69 (64-74) 69 (63-73) 68 (62-75) 74 (71-78) 69 (65-76) 72 (66-79)
tPSA,ng/mL
<10 8 (10.3) 4 (4.6) 10 (10.3) 0 (0.0) 0 (0.0) 0 (0.0)
≥10 <20 21 26.9) 14 (16.1) 15 (15.5) 2 (10.5) 0 (0.0) 0 (0.0)
≥20 <100 34 (43.6) 46 (52.9) 39 (40.2) 10 (52.6) 7 (43.7) 3 (27.3)
≥100 15 (19.2) 23 (26.4) 33 (34.0) 7 (36.8) 9 (56.3) 8 (72.7)
biopsy GG * *
2 (GS3+4) 6 (7.7) 2 (2.3) 0 (0.0) 1 (5.3) 0 (0.0) 0 (0.0)
3 (GS4+3) 36 (46.2) 11 (12.6) 7 (7.2) 5 (26.3) 0 (0.0) 1 (9.1)
4 (GS8) 13 (16.7) 11 (12.6) 14 (14.4) 5 (26.3) 5 (31.3) 1 (9.1)
5 (GS≥9) 23 (29.5) 63 (72.4) 76 (78.4) 8 (42.1) 11 (68.7) 9 (81.8)
J
une 2022 | Volume 12 | A
*P < 0.001 lpIDC-P vs. PAC and hpIDC-P vs. PAC in training cohort.
TABLE 2 | The performance of internal and external validation of predicting hpIDC-P and lpIDC-P.

Model Internal validation External validation

hpIDC-P vs. pPAC AUC 95% CI Youden index AUC 95% CI Youden index
Clinical Model 0.78 0.72-0.85 0.489 0.69 0.5-0.85 0.359
Radiomics Model 0.85* 0.79-0.91 0.564 0.86 0.72-1.0 0.646
Integrated Model 0.88*#§ 0.83-0.93 0.587 0.86* 0.72-1.0 0.737
lpIDC-P vs. pPAC AUC 95% CI Youden index AUC 95% CI Youden index
Clinical Model 0.74 0.66-0.81 0.429 0.68 0.50-0.83 0.266
Radiomics Model 0.8 0.73-0.87 0.474 0.74 0.56-0.91 0.382
Integrated Model 0.83*# 0.76-0.89 0.501 0.76 0.59-0.92 0.401
*P < 0.05 vs Clinical model, #P < 0.05 vs Radiomics model. §P = 0.030 vs. lpIDC-P model.
rticle 934291
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among the voxels. Second, the included cases of PCa in this study
mainly consisted of Gleason patterns 4 and 5. The difference in
first-order statistical features based on the intensity distribution
of individual voxels may not be so obvious between the groups.
Third, PCa has a relatively unique nondestructive infiltration
pattern of intervening stroma between benign preexisting glands,
thus creating irregular tongues of tumor tissue that form
scattered and irregular shapes regardless of GS (16). Therefore,
the value of the morphological features in distinguishing
subgroups of PCa is limited.

In previous studies, radiomics models based onDWI sequences
were more efficientin predicting high-grade PCa, whereas the
T2WI sequence was more likely to differentiate low-grade PCa
with similar grades (17–21). The possible reason for this
phenomenon is that the DWI sequence or ADC map may be
more sensitive to detect the changes in restricted diffusion of water
molecules caused by high-grade PCa, whereas T2WI was better at
demonstrating the signal changes caused by slight differences in
Frontiers in Oncology | www.frontiersin.org 7
PCa grade through its high tissue resolution, which was consistent
with our findings. The radiomic features of the hpIDC-P model
were more based on DWI and ADC maps, whereas the lpIDC-P
model was greater on T2WI. In addition, both radiomics models
were highly counted on the DCE sequence. Bleker et al. found that
when removing DCE features from the combined T2WI+DWI
+DCE model to quantify clinically significant PCa, the AUC
would be reduced from 0.870 to 0.816 (22). Although there is a
current trend of highlighting the usefulness of biparametric MRI
by omitting DCE imaging from routine mpMRI to diagnose PCa
(23, 24), our study suggested that DCE features may play a role in
identifying subtypes of PCa.

Several studies on predictive models of high-grade (GS > 7)
PCa, clinically significant PCa, and extraprostatic extension have
shown similar results, in that the radiomics model outperformed
the clinical model and was comparable with the clinical-radiomics
combined model (18, 25, 26). The internal validation efficiency of
the integrated models of both hpIDC-P and lpIDC-P were
A B

C D

FIGURE 3 | Comparison of ROC curves for the validation of clinical, radiomics, and integrated models for predicting hpIDC-P (A internal, B external) and lpIDC-P (C
internal, D external).
June 2022 | Volume 12 | Article 934291
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significantly outperformed the clinical and radiomics models, as
did the radiomics model of hpIDC-P outperformed the clinical
model, but not the model of lpIDC-P. Moreover, our results
showed that the addition of radiomics signature with the clinical
model improved the differentiation of both hpIDC-P and lpIDC-P
versus PAC. Conversely, themportantce of ISUP GG for the
prediction of IDC-P (especially for lpIDC-P) was based on the
fact that GS would increase when the occurrence of IDC
encountered invasive carcinoma, according to the 2016 ISUP
consensus. From the perspective of microscopic structure of
tumor cells, most lpIDC-P in our study had 2% or 5% of IDC
components scattered in the entire tumor, which was closer to the
PAC than hpIDC-P. Therefore, the difficulty was increased for
identifications via the sole use of radiomic matrix features. In the
future, the integration of patient socio-demographic, clinical, and
biochemical characteristics in the pathway of the imaging-based
radiomics features might help to increase their clinical
practicability (27).

There are some limitations in this study. First, the main
limitation of this study was the retrospective nature of failing to
unify the scanning protocols among MRI acquisition which could
represent a potential bias, as well as the fact that the proportion of
IDC-P was solely quantified by using biopsy specimens, as some
patients have no opportunity for radical prostatectomy. To
improve the quality of the tissue sampled for pathological
evaluation, several targeted biopsy (TBx) techniques are
currently available, including MRI-TRUS (transrectal
ultrasound) fusion TBx, trans-perineal fusion biopsy, MRI In-
bore TBx (both trans-rectal and trans-perineal), and cognitive
registration TRUS-TBx (28). Second, another limitation was that
the small study population of the external cohort, which was
mainly caused by the importance of IDC-P diagnoses, has not yet
been fully realized. Third, the inclusion of the PAC group was
randomly selected rather than using consecutive patients because
of the considerable difference in the sample sizes of IDC-P and
PAC. Finally, we excluded cases with a PI-RADS score less than 5
mainly because small or uncertain tumor foci would add a more
unexplainable radiomics signature for this issue.

In conclusion, the radiomics signature improved the
differentiation of both hpIDC-P and lpIDC-P versus PAC
compared with the clinical model based on the Gleason score.
The integrated model for predicting hpIDC-P also outperformed
the clinical model in the external validation set.
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