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Abstract: Depression and breast cancer (BC) demonstrate significant clinical comorbidity,
yet their shared molecular mechanisms remain unclear, particularly regarding immune
pathway regulation. This study systematically analyzed Depression-associated gene ex-
pression profiles (Gene Expression Omnibus (GEO) database) and BC transcriptomic data
(The Cancer Genome Atlas (TCGA) database), identifying overlapping differentially ex-
pressed genes (DEGs). Functional enrichment (Gene Ontology (GO)/Kyoto Encyclopedia
of Genes and Genomes (KEGG)) and protein–protein interaction (PPI) network analyses
(STRING/Cytoscape) were employed to elucidate biological processes, followed by least
absolute shrinkage and selection operator (LASSO) regression and receiver operating char-
acteristic (ROC) curve validation to prioritize key genes. Immune infiltration patterns
were assessed via the xCell algorithm, with Spearman correlation linking genes to immune
subsets, and single-gene Gene Set Enrichment Analysis (GSEA) evaluating pathway ac-
tivity. In total, 93 overlapping genes were identified, with predominant involvement in
immune-related pathways being revealed by functional enrichment analysis. BHLHE41,
EpCAM, and GSTM2 were prioritized as mechanism-associated genes through integrated
LASSO regression and ROC analyses. Significant correlations were observed between these
genes and specific immune cell populations. GSEA further linked these genes to immune
response pathways, suggesting their regulatory roles. These findings highlight immune
dysregulation as a shared mechanism underlying Depression-BC comorbidity, providing a
foundation for developing early diagnostic strategies and therapeutic strategies targeting
both conditions.

Keywords: depression; breast cancer; bioinformatics; mechanisms; immune infiltration

1. Introduction
Depression, a prevalent neuropsychiatric disorder characterized by persistent low

mood and anhedonia, affects over 350 million individuals globally, representing approxi-
mately 4.4% of the world’s population [1]. Breast cancer (BC), a heterogeneous malignant
neoplasm originating from abnormal proliferation of mammary gland cells, has emerged
as the most prevalent cancer diagnosis and leading cause of cancer-related mortality
worldwide since 2020 [2]. This complex disease develops through synergistic interactions
between genetic predisposition and environmental determinants [3]. A systematic review
revealed that the global prevalence of Depression among BC patients reached 30.2% [4].
Epidemiological studies have established Depression as a potential causal factor in BC de-
velopment, demonstrating a significantly elevated risk of BC incidence among Depression
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patients [5,6]. Furthermore, longitudinal cohort studies have revealed that BC patients with
comorbid Depression experience poorer clinical outcomes compared to their non-depressed
counterparts [7]. These compelling associations underscore the critical need to elucidate
the molecular mechanisms underlying the Depression-BC relationship.

The genetic architectures of Depression and BC demonstrate both divergence and
convergence. Large-scale genome-wide association studies (GWAS) have identified nearly
200 common risk loci for depression, though their effect sizes vary substantially depending
on phenotypic definitions. Rare protein-truncating variants (PTVs) and disruptive mis-
sense mutations in loss-of-function intolerant genes (pLI ≥ 0.9) confer significant disease
risk. While polygenic risk scores (PRS) and rare variants exhibit additive effects, PRS
accounts for a greater proportion of heritability [8]. A multi-ancestry GWAS identified
53 novel Depression risk loci, with fine-mapping and multi-omics integration pinpointing
43 high-confidence genes including DRD2 (dopamine receptor D2) and mitochondrial
gene NDUFAF3, revealing substantial ancestral heterogeneity in genetic architecture [9].
In a meta-analysis of 135,458 Depression cases and 344,901 controls, researchers identified
44 independent risk loci encompassing genes involved in metabolic regulation (OLFM4,
NEGR1), neuronal splicing (RBFOX1), and synaptic function (LRFNS). Immune-related
signals emerged in the major histocompatibility complex (MHC) region. Strong associations
in evolutionarily conserved regions (20.9-fold enrichment, p = 1.4 × 10−15) and splicing
regulatory pathways highlight developmental and post-transcriptional mechanisms in
Depression pathogenesis [10]. Through multi-omics Mendelian randomization integrating
GWAS, eQTL, and mQTL data, Zhang et al. identified ATG10 and RCCD1 as core BC
regulatory genes. ATG10 demonstrated risk reduction via autophagy-related mechanisms
(OR = 0.89–0.95, p < 1 × 10−8) mediated by methylation site cg17942617, while RCCD1
methylation (cg01710897/cg04851675) correlated with improved survival (p = 0.010) [11].
Cross-tissue splicing quantitative trait locus analysis revealed 88 novel susceptibility genes
through splice variants, including 17 distal to GWAS loci and 110 detectable only via
intronic splicing alterations. Aberrant RNA splicing events (e.g., AZGP1-GJC3 fusion)
influence BC pathogenesis through estrogen signaling and immune evasion pathways [12].
Notably, genome-wide analyses reveal positive genetic correlation between Depression
and BC (rg ≈ 0.08), with shared heritability observed for both ER+ and ER− subtypes. Key
shared loci cluster in 6p22.1 (encompassing ZSCAN12 and ABT1) and MHC regions (HLA-S,
FLOT1), implicating immune–inflammatory pathways. Additional loci at 9q31.2 (KLF4) and
rs56101042 (14q32.32 near TRAF3) suggest epigenetic and inflammatory mechanisms [13].
Mendelian randomization analyses further support a causal effect of Depression on BC risk
(OR = 1.09–1.12), persisting after adjustment for smoking and alcohol consumption [6].

Previous studies have established a significant association between Depression and
BC development, mediated through multiple pathophysiological mechanisms including
chronic inflammation, oxidative stress, immune dysregulation, and hypothalamic–pituitary–
adrenal (HPA) axis dysfunction [14]. Depression exhibits close associations with elevated
systemic inflammatory cytokines including interleukin-6 (IL-6), IL-1β, tumor necrosis
factor-α (TNF-α), and C-reactive protein (CRP) [15]. Peripheral pro-inflammatory cytokines
can traverse the blood–brain barrier to activate neuroglial cells, triggering central neuroin-
flammation that disrupts synaptic plasticity and monoaminergic neurotransmission [16].
Persistent inflammatory signaling plays pivotal roles throughout cancer pathogenesis,
where cytokine-mediated activation of epigenetic mechanisms (DNA, miRNA, and lncRNA
regulation) in epithelial cells modulates oncogene and tumor suppressor expression [17].
Chronic stress induces excessive reactive oxygen species (ROS) accumulation, compromis-
ing DNA repair mechanisms and driving malignant transformation of mammary epithelial
cells [17,18]. Concurrently, oxidative stress contributes to Depression pathogenesis through
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cerebral functional alterations, impaired neuronal plasticity, and volumetric reductions in
the prefrontal cortex and hippocampus [19]. Genome-wide analyses demonstrate signifi-
cant enrichment of immune-related pathways (e.g., IL-6 signaling and natural killer cell
pathways) in patients with Depression [20]. Stress-induced behavioral changes are accom-
panied by microglial pruning of synaptic elements, potentially mediating neuroplasticity
deficits. Both microglia and macrophages, as innate immune components, show distinct
associations with stress vulnerability versus resilience [21]. Clinical evidence indicates
that Depression compromises immune surveillance, increasing BC recurrence, metastasis
risk, and mortality [22,23]. Immune checkpoint inhibitors (ICIs) demonstrate enhanced
antitumor efficacy in early-stage triple-negative BC (TNBC) and PD-L1+ HR+/ERBB2-
tumors [24]. The HPA axis dysfunction, hallmarking Depression pathophysiology, also
exhibits oncogenic potential in BC development [25]. Cortisol dysregulation during HPA
hyperactivity disrupts cellular growth signaling, with epidemiological studies revealing
positive associations between flattened diurnal cortisol rhythms and BC risk [26–30]. Al-
though emerging evidence has begun to delineate these mechanisms in Depression-BC
comorbidity, the precise molecular pathways underlying Depression and BC remain largely
elusive. Leveraging advanced bioinformatics approaches, we conducted comprehensive
analyses to identify molecular signatures linking Depression and BC pathogenesis, with a
focus on immune-inflammatory crosstalk, to lay the groundwork for novel strategies in
prevention, early diagnosis, and targeted therapeutic interventions.

2. Results
2.1. Identification of Differentially Expressed Genes (DEGs) in Depression and Breast Cancer (BC)

Differential expression analysis identified 983 DEGs in the Depression dataset
(GSE76826), comprising 293 upregulated and 690 downregulated genes (Figure 1A). In
the BC dataset (The Cancer Genome Atlas (TCGA) database), 2749 DEGs were detected,
including 964 upregulated and 1785 downregulated genes (Figure 1B). Hierarchical cluster-
ing revealed distinct expression patterns for these DEGs in both conditions (Figure 1C,D).
Comparative analysis identified 93 overlapping DEGs in Depression and BC, including
9 consistently upregulated and 35 consistently downregulated genes (Figure 1E–G), which
may represent crucial molecular regulators in Depression and BC pathogenesis.

2.2. Results of Enrichment Analysis of Overlapping Genes

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) en-
richment analyses revealed that these genes were primarily associated with mucin-type
O-glycan biosynthesis, negative regulation of B cell-mediated immunity, and negative reg-
ulation of immunoglobulin-mediated immune response (Figure 2A–D). Metascape-based
analysis further corroborated the significant involvement of immune response pathways
in Depression and BC pathogenesis [31] (Figure 2E). Through integrated analysis using
the STRING database and Cytoscape, we identified 13 hub genes: ADH4, GSTM2, BACH2,
BHLHE41, EBF1, DPP4, NT5E, EpCAM, NR3C2, DTX1, PDGFRA, GADD45G, and ID4
(Figure 3). These hub genes may represent critical regulatory nodes in the molecular
network underlying Depression and BC.
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Figure 1. Depression and breast cancer (BC) differentially expressed genes (DEGs) analysis.
(A) Volcano plot of DEGs based on Depression dataset GSE76826. (B) Volcano plot of BC DEGs
based on The Cancer Genome Atlas (TCGA) dataset. (C) Heatmap of Depression DEGs analysis
results based on GSE76826 dataset. (D) Heatmap of BC DEGs analysis results based on TCGA
dataset. (E) Identification of DEGs in Depression and BC. (F) Identification of co-upregulated DEGs.
(G) Identification of co-downregulated DEGs.
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Figure 2. Pathway enrichment and functional enrichment of Depression and BC DEGs. (A) Significant
enrichment of Gene Ontology (GO)-biological processes (BP). (B) Significant enrichment of GO-
cellular components (CC). (C) Significant enrichment of GO-molecular functions (MF). (D) Significant
enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. (E) Enrichment analysis
of 93 DEGs using Metascape online tool, https://metascape.org/, accessed on 3 March 2025.

2.3. Machine Learning for Identification and Validation

Least absolute shrinkage and selection operator (LASSO) regression identified five
candidate genes (BHLHE41, EPCAM, ADH4, GSTM2, GADD45G) from the Depression and
BC datasets (Figure 4). Receiver operating characteristic (ROC) analysis demonstrated
robust diagnostic performance across multiple datasets. In the Depression-GSE76826
dataset, the area under the curve (AUC) values were BHLHE41 (0.8333), EPCAM (0.7500),
ADH4 (0.7500), GSTM2 (0.8333), and GADD45G (0.8500) (Figure 5A). The BC-TCGA dataset
showed improved performance: BHLHE41 (0.8477), EPCAM (0.8271), ADH4 (0.9437),
GSTM2 (0.8428), and GADD45G (0.7357) (Figure 5B). Further validation was conducted
using independent datasets. In the Depression-GSE169459 validation set, the AUC values
were BHLHE41 (0.8667), EPCAM (0.8667), ADH4 (0.5333), GSTM2 (0.9333), and GADD45G
(0.8667) (Figure 5C). Validation in the BC-GSE42568 dataset confirmed consistent per-
formance: BHLHE41 (0.7274), EPCAM (0.9610), ADH4 (0.6855), GSTM2 (0.7124), and
GADD45G (0.6994) (Figure 5D). Overall, BHLHE41, EPCAM, and GSTM2 consistently
suggested their potential as reliable mechanism-associated genes for Depression and BC,
with AUC values exceeding 0.7 across both training and validation datasets.

https://metascape.org/
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Figure 3. Screening of hub genes. (A) Protein–protein interaction (PPI) network of overlapping genes.
Nodes represent genes; edges indicate interaction confidence (STRING score ≥ 0.4). (B) Network
construction using Cytoscape software. The connected lines signify the potential existence of either a
direct physical binding or a functional association between two proteins.

2.4. Literature Validation

To validate the biological relevance of mechanism-associated genes, we conducted a
comprehensive literature review using the PubMed database to investigate their reported
associations with Depression and BC. The literature mining analysis revealed that BHLHE41
and GSTM2 have been previously implicated in both Depression and BC pathogenesis,
while EPCAM has been primarily associated with BC. These findings are systematically
summarized in Table 1, providing supporting evidence for the potential roles of these genes
in Depression and BC.
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Figure 4. Identification of candidate genes by Least absolute shrinkage and selection operator
(LASSO). (A,B) LASSO regression analysis of the Depression-GSE76826 dataset. (C,D) LASSO
regression analysis of the BC-TCGA dataset. The left vertical dotted line (λ.min) indicates the model
with the minimum cross-validation error. The right vertical dotted line (λ.1se) represents the most
simplified model.

Table 1. Literature validation of Depression and breast cancer (BC) mechanism-associated genes.

Gene Depression BC References

BHLHE41
√ √

[32–39]
EpCAM ×

√
[40–44]

GSTM2
√ √

[45–50]

2.5. Immune Cell Infiltration and Correlation Analysis

Given the critical role of immune function in Depression and BC pathogenesis revealed
by enrichment analysis, we investigated immune response patterns in both conditions.
Comparative analysis revealed contrasting immune cell profiles between Depression and
BC relative to normal controls. Specifically, B-cell lineages (including naive B-cells, memory
B-cells, and class-switched memory B-cells), CD8+ T-cells, endothelial cells, osteoblasts, and
Th2 cells were significantly downregulated in Depression compared to healthy controls,
while showing marked upregulation in BC samples (Figure 6A,B). These immune profiles
suggest immunological mechanisms underlying Depression and BC pathogenesis.



Int. J. Mol. Sci. 2025, 26, 5229 8 of 18

Figure 5. Results of receiver operating characteristic (ROC) analysis. (A) ROC curves of five candidate
genes in the Depression-GSE76826 dataset. (B) ROC curves of 5 candidate genes in the BC-TCGA
dataset. (C) ROC curves of 5 candidate genes in the Depression-GSE169459 validation set. (D) ROC
curves of 5 candidate genes in the BC-GSE42568 validation set.

While immune cell composition alterations represent one aspect of the pathogenic
mechanisms, further investigation of mechanism-associated genes and immune cell inter-
actions is crucial to understand their immunological implications. Correlation analysis
revealed immune interaction patterns between Depression and BC datasets. In the De-
pression dataset, BHLHE41 showed significant positive correlation with activated B cells
(p < 0.01) but negative correlations with macrophages (p < 0.01), natural killer cells
(p < 0.05), and effector memory CD4+ T cells (p < 0.05). EpCAM exhibited positive cor-
relation with mast cells (p < 0.05) but negative correlations with activated CD4+ T cells
(p < 0.05) and activated B cells (p < 0.01), patterns that were inversely observed in the
BC dataset (p < 0.01) (Figure 6C,D). Additional analyses identified consistent negative
correlations between BHLHE41 and activated dendritic cells (for Depression: p < 0.05; for
BC: p < 0.01), EpCAM and immature B cells (for Depression: p < 0.05; for BC: p < 0.01), and
GSTM2 and γδ T cells (p < 0.05) across both datasets (Figure 6C,D). These findings suggest
that these genes may regulate autoimmune processes through modulation of immune cell
expression profiles.
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Figure 6. Correlation of mechanism-associated genes with immune cell infiltration in Depression and
BC. (A) Boxplot of immune cell infiltration patterns in Depression-GSE76826 dataset. (B) Boxplot
of immune cell infiltration patterns in BC-TCGA dataset. Blue color represents normal subjects and
red color represents Depression/BC patients. (C) Heatmap of the correlation between mechanism-
associated genes and immune cells in Depression-GSE76826 dataset. (D) Heatmap of the correlation
between mechanism-associated genes and immune cells in BC-TCGA dataset. Red color indicates
positive correlation and blue color indicates negative correlation. * p < 0.05; ** p < 0.01; *** p < 0.001;
ns, not significant.

Additionally, single-gene Gene Set Enrichment Analysis (GSEA) analysis revealed
significant enrichment of BHLHE41 in GO terms related to B cell-mediated immunity, cell–
cell adhesion via plasma membrane adhesion molecules, positive regulation of leukocyte
adhesion, production of immune response molecular mediators, and immunoglobulin
complexes. KEGG analysis of BHLHE41 indicated enrichment in pathways such as calcium
signaling, cell adhesion molecules, focal adhesion, neuroactive ligand–receptor interactions,
and olfactory transduction (Figure 7A,B). For EpCAM, GO analysis showed enrichment in
stress-induced muscle hypertrophy, positive regulation of muscle hypertrophy, olfactory
perception, T cell receptor complex, and olfactory receptor activity. KEGG analysis of
EpCAM highlighted pathways including ascorbate and aldarate metabolism, intestinal
immune network for IgA production, olfactory transduction, pentose and glucuronate
interconversions, and porphyrin and chlorophyll metabolism (Figure 7C,D). As for GSTM2,
GO analysis revealed enrichment in ncRNA 3′-end processing, RNA 3′-end processing,
snRNA metabolic processes, snRNA processing, and integrator complex. KEGG analysis of
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GSTM2 demonstrated enrichment in pathways such as ascorbate and aldarate metabolism,
olfactory transduction, pentose and glucuronate interconversions, porphyrin and chloro-
phyll metabolism, and systemic lupus erythematosus (Figure 7E,F). These results suggest
that these genes may play roles in immune processes involved in the pathogenesis of
Depression and BC.

Figure 7. Results of single-gene Gene Set Enrichment Analysis (GSEA) analysis for mechanism-
associated genes. (A,B) Results of single-gene GSEA analysis of BHLHE41. (C,D) Results of single-
gene GSEA analysis of EpCAM. (E,F) Results of single-gene GSEA analysis of GSTM2.

3. Discussion
By integrating datasets from GEO and TCGA databases, we employed differential

expression profiling, protein–protein interaction network topology screening, LASSO re-
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gression modeling, and ROC curve validation to identify BHLHE41, EpCAM, and GSTM2
as mechanism-associated genes connecting Depression with BC. Their central role was fur-
ther confirmed through external dataset validation and cross-referencing with the existing
literature evidence. Functional enrichment analysis combined with immune microenviron-
ment profiling revealed the cross-disease activation of the MAPK signaling pathway, while
demonstrating that these three genes participate in disease pathogenesis by regulating
immune regulatory axes, thereby serving as molecular bridges for comorbidity develop-
ment. The final mechanistic model positions these genes as regulatory hubs and the MAPK
pathway as a dynamic signaling framework, deconstructing the profound interconnection
between depression and BC at the molecular network level. This work not only provides a
mechanism-driven theoretical foundation for understanding comorbidity in heterogeneous
diseases but also opens new avenues for pathway-based interdisciplinary diagnostic and
therapeutic strategies.

Basic Helix-Loop-Helix Family Member E41 (BHLHE41), a key member of the basic
helix-loop-helix (bHLH) transcription factor family, plays multifunctional roles in cellular
homeostasis by regulating cell cycle progression, circadian rhythms, stress responses, and
oncogenic processes. Molecular characterization reveals BHLHE41’s dual role as both a
downstream effector and modulator of p38 MAPK signaling, where its downregulation
initiates a pathogenic cascade involving p38 MAPK-mediated microglial activation and sub-
sequent neuroinflammatory responses through elevated pro-inflammatory cytokines (IL-6,
IL-1β, TNF-α), while simultaneously impairing monoaminergic neurotransmission (notably
5-HT signaling) to disrupt emotional regulation [51–54]. Experimental evidence demon-
strates that BHLHE41 silencing induces robust activation of the JNK signaling pathway,
triggering neuronal apoptosis and dendritic atrophy in limbic system structures, particu-
larly the amygdala and hippocampus, which mechanistically contributes to depression-like
pathophysiology [55]. Pharmacological inhibition of the MAPK/JNK signaling pathway
rescued the impaired tumor cell invasiveness caused by BHLHE41 knockdown, suggesting
that BHLHE41 primarily promotes MCF-7 cell invasion via activation of the MAPK/JNK
axis [56]. Activation of the downstream p38 MAPK signaling in breast cancer cells up-
regulates epithelial–mesenchymal transition (EMT) markers and promotes tumor cell
invasion [57]. Concurrently, BHLHE41 modulates cancer progression through competitive
binding at promoter regions of EMT master regulators (Snail, Slug, and Twist), thereby
facilitating EMT-driven breast cancer cell invasion and metastasis [58,59]. These findings
are complemented by recent work, collectively positioning BHLHE41 as a critical node
linking neuropsychiatric and oncological pathologies through shared signaling pathways.

Epithelial cell adhesion molecule (EpCAM), a single-pass type I transmembrane gly-
coprotein, serves as a critical regulator of intercellular adhesion and tissue homeostasis.
In malignant transformation, EpCAM undergoes regulated intramembrane proteolysis,
generating two functionally active fragments: the intracellular domain (EpICD) translo-
cates to the nucleus where it forms a transcriptional complex with β-catenin, FHL2, and
LEF1 to drive expression of genes associated with proliferation, stemness maintenance, and
epithelial–mesenchymal plasticity, while the extracellular domain (EpEX) engages EGFR
through its EGF-like motif to activate ERK/MAPK signaling, which simultaneously sup-
presses FOXO3a tumor suppressor activity through inhibition of nuclear translocation and
stabilizes PD-L1 to establish an immunosuppressive microenvironment [60]. Pathologically
elevated EpCAM expression orchestrates a coordinated oncogenic program involving HtrA2
downregulation-mediated apoptosis resistance, PD-L1 upregulation, Treg recruitment, and
CD8+ T cell functional impairment, collectively facilitating immune evasion in breast
carcinoma [61]. EpCAM overexpression promotes breast cancer invasion by activating
the JNK signaling pathway and enhancing the transcriptional activity of the downstream
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AP-1 transcription factor [62]. Although the existing literature has not established a direct
correlation between EpCAM and Depression (Table 1), emerging evidence suggests that
EpCAM may contribute to depressive pathogenesis through multiple neuroinflammatory
pathways. Specifically, EpCAM potentially promotes the secretion of pro-inflammatory
cytokines IL-6 and TNF-α via ERK activation. These circulating cytokines could com-
promise blood–brain barrier (BBB) integrity, subsequently infiltrating the central nervous
system (CNS) where they activate microglia and suppress hippocampal neurogenesis [63].
Moreover, the observed positive correlation between EpCAM expression and mast cell
activation indicates an additional mechanism whereby histamine-mediated increases in
vascular permeability may further disrupt BBB function (Figure 6C). Consequently, EpCAM
serves as a potential molecular link underlying the comorbidity between neuropsychiatric
disorders and cancers.

GSTM2, a Mu-class glutathione S-transferase (GST) isoenzyme, serves as a crucial
regulator of cellular redox homeostasis through its catalytic activity in detoxifying ROS
and electrophilic substrates, wherein functional deficiencies precipitate pathological ROS
accumulation that initiates multiple pathophysiological cascades [64]. The resultant oxida-
tive stress mediates dual activation of the MAPK signaling pathway via direct oxidation-
induced conformational changes in redox-sensitive kinases (notably JNK and p38) and
oxidative inactivation of MAPK phosphatases (MKPs), collectively establishing a self-
amplifying cycle of sustained pathway activation that potentiates pro-inflammatory cy-
tokine secretion [65]. Structural studies reveal that GSTM2 exerts its regulatory function
through steric hindrance of apoptosis signal-regulating kinase 1 (ASK1) oligomerization
via high-affinity binding to its N-terminal tetratricopeptide repeat (TPR) domain, thereby
preventing autophosphorylation and subsequent activation of the JNK/p38 signaling cas-
cade [66]. Pathological GSTM2 downregulation disrupts this inhibitory mechanism, leading
to persistent JNK/p38 activation that transcriptionally upregulates oncogenic transcription
factors (AP-1 and NF-κB), thereby establishing a pro-inflammatory milieu that induces
epithelial–mesenchymal plasticity and confers metastatic competence to tumor cells [67–69].
Importantly, this peripherally generated cytokine storm induces BBB dysfunction through
tight junction protein dysregulation, facilitating CNS infiltration of inflammatory mediators
that activate microglial cells and sustain neuroinflammatory responses, while concurrently
diverting tryptophan metabolism from serotonin (5-HT) biosynthesis to neurotoxic kynure-
nine pathway metabolites, thus mechanistically coupling GSTM2-mediated oxidative stress
with both malignant progression and neuropsychiatric pathology [70]. Additionally, our
study revealed a negative correlation between GSTM2 expression and γδ T cell infiltration,
suggesting that GSTM2 deficiency may lead to excessive accumulation of γδ T cells in
the tumor microenvironment, which is consistent with previous reports [71]. Notably,
depressed patients also exhibit elevated levels of γδ T cells, implying that excessive inflam-
matory responses mediated by γδ T cells may represent a common pathogenic mechanism
underlying both conditions [72]. However, the precise molecular mechanisms connecting
γδ T cell dysregulation with disease pathogenesis remain to be fully elucidated and warrant
further investigation.

Although previous studies have reported associations between BHLHE41/GSTM2 and
both depression and BC, this research is the first to focus on their regulatory roles through
the immune system and MAPK pathway. Furthermore, the study uncovers that EpCAM,
a gene previously linked to BC progression, may also contribute to the pathogenesis of
depression, addressing a critical gap in this field. All three genes demonstrated robust
diagnostic performance with an area under the ROC curve (AUC) >0.7, highlighting their
potential clinical value. However, several limitations of this study should be acknowl-
edged. First, the inherent heterogeneity between Depression and BC datasets from different
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databases may introduce variability due to differences in data collection protocols, sample
processing methods, and population characteristics. Second, while our findings provide
valuable insights into the common molecular mechanisms underlying Depression and BC,
they require validation through larger, well-designed clinical studies with longitudinal
follow-up to establish robust clinical correlations and therapeutic implications.

Our comprehensive analysis reveals that immune dysregulation mediated by three
mechanism-related genes (BHLHE41, EpCAM, and GSTM2) through MAPK pathway ac-
tivation, coupled with their dual promotion of neuroinflammation and EMT, forms the
comorbid mechanism network between depression and BC, establishing a fundamental
biological link underlying their co-occurrence.

4. Materials and Methods
4.1. Enrichment Analysis of Overlapping Genes

Depression expression profiles (20 cases, 12 controls) were obtained from the GSE76826
dataset in the GEO database [73]. BC transcriptomic data (1118 cases, 113 controls)
were acquired from TCGA database [74]. To maintain analytical consistency, all sam-
ples were collected from peripheral blood mononuclear cells (PBMCs). Raw expression
data were preprocessed through platform-specific annotation mapping to gene symbols and
log2(X + 1) transformation using R software (version 4.4.0), generating standardized ex-
pression matrices for downstream analyses.

4.2. Differential Expression Analysis

Differential expression analysis was conducted using the “limma” package, ver-
sion 3.60.6, with thresholds applied to Depression (|logFC| > 0.5 and p < 0.05) and BC
(|logFC| > 1 and p < 0.05) datasets [75]. Differentially expressed genes (DEGs) were iden-
tified separately for each condition, with their distribution visualized through volcano
plots generated in GraphPad Prism, version 8.0. The DEGs lists for Depression and BC
are presented in Tables S1 and S2, respectively. Expression patterns were illustrated via
hierarchical clustering heatmaps, while overlapping genes were identified using Venny 2.1
(https://bioinfogp.cnb.csic.es/, accessed on 3 March 2025).

4.3. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
Pathway Analysis

Functional enrichment analysis of overlapping DEGs was conducted using the Micro-
biotics platform (https://www.bioinformatics.com.cn/, accessed on 3 March 2025), with
significant terms identified at p < 0.05 [76]. Comprehensive GO annotation was performed
across three categories: biological processes (BP), molecular functions (MF), and cellu-
lar components (CC). KEGG pathway analysis was subsequently employed to identify
molecular pathways in Depression and BC pathogenesis.

4.4. Construction of the Protein–Protein Interaction (PPI) Network

A PPI network was constructed for overlapping genes using the STRING database
(https://cn.string-db.org/), with a confidence score threshold of ≥0.4 to ensure biologically
meaningful interactions. Isolated nodes (proteins lacking interactions) were excluded to
focus on functionally connected modules. The resulting network was visualized and
analyzed using Cytoscape software, version 3.10.0, with interacting nodes selected as hub
genes for subsequent functional analyses.

4.5. Mechanism-Associated Gene Selection and Validation

LASSO regression, a machine learning algorithm employing L1 regularization to
enhance model performance, was utilized for feature selection and dimensionality reduc-

https://bioinfogp.cnb.csic.es/
https://www.bioinformatics.com.cn/
https://cn.string-db.org/
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tion [77]. This shrinkage-based approach effectively addresses multicollinearity while
optimizing feature selection for disease classification. The diagnostic performance of
candidate genes was evaluated through ROC curve analysis, with the AUC serving as a
quantitative measure of discriminatory power. Genes demonstrating AUC values > 0.7
were considered clinically relevant, with higher values indicating superior predictive
performance in distinguishing disease states from normal controls.

4.6. Immune Infiltration Analysis

To investigate immune-related mechanisms in Depression and BC progression, im-
mune cell infiltration patterns were analyzed using the xCell algorithm, version 1.1.0 imple-
mented in R [78]. This computational method estimates relative abundances of 64 immune
cell types based on immune cell-specific gene expression signatures. Enrichment scores for
each immune cell type were calculated to quantify immune microenvironment composition
across samples. Spearman’s rank correlation analysis was subsequently performed to
evaluate potential associations between mechanism-associated genes and immune cell
infiltration patterns.

4.7. Single-Gene Gene Set Enrichment Analysis (GSEA) Analysis

Single-gene GSEA was conducted to investigate biological functions and molecular
pathways related with mechanism-associated genes, employing comprehensive annotations
from both GO and KEGG databases [79].
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