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Abstract

Background: The study of typical morphological variations using quantitative,
morphometric descriptors has always interested biologists in general. However,
unusual examples of form, such as abnormalities are often encountered in
biomedical sciences. Despite the long history of morphometrics, the means to
identify and quantify such unusual form differences remains limited.

Methods: A theoretical concept, called dysmorphometrics, is introduced augmenting
current geometric morphometrics with a focus on identifying and modelling form
abnormalities. Dysmorphometrics applies the paradigm of detecting form differences
as outliers compared to an appropriate norm. To achieve this, the likelihood
formulation of landmark superimpositions is extended with outlier processes
explicitly introducing a latent variable coding for abnormalities. A tractable solution
to this augmented superimposition problem is obtained using Expectation-
Maximization. The topography of detected abnormalities is encoded in a
dysmorphogram.

Results: We demonstrate the use of dysmorphometrics to measure abrupt changes
in time, asymmetry and discordancy in a set of human faces presenting with facial
abnormalities.

Conclusion: The results clearly illustrate the unique power to reveal unusual form
differences given only normative data with clear applications in both biomedical
practice & research.

Keywords: Geometric Morphometrics, Dysmorphometrics, Procrustes ML-estimator,
Pinocchio effect, robust statistics, abnormalities, outlier-processes

Background
Morphometrics involves the measurement of morphology based on quantitative

descriptions [1]. Different definitions of form exist but the most commonly adopted is

that form is defined as size and shape independent of position and orientation [2].

Morphometric methods are designed to measure form and variations in form and have

been extensively used in evolutionary, developmental and systematic biology. In those

contexts, they provide information on phylogenetic relationships and the evolutionary

development of organisms [3]. They also allow for taxonomic discrimination of

sampled populations to test whether these were drawn from different (sub)species or

not [4]. However, in biomedical contexts unusual from instances such as abnormalities

[5] are often encountered and of interest. For example abnormalities may include
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deformations in form due to congenital malformation and/or environmental

constraints as well as abrupt changes in form associated with traumatic injuries and

surgical interventions. The occurrence of an abnormality is more than just variation in

form. Consequently, testing for hypothesized “unusual form” represents another type

of challenge and is dependent on the definition used. Here, we follow a pattern analysis

perspective where an abnormality is defined as a pattern in the data that does not con-

form to some expected behavior [6].

Morphometric analysis underwent a conceptual revolution during the 1980s and

1990s [7]. As a result, a variety of methods and approaches have evolved with some

clear conceptual and technical differences. Continuous boundary representations, such

as Fourier descriptors e.g., have been employed to quantify form based on outline data

[3,8]. In contrast, geometric morphometrics [9] uses homologous landmarks, these

being defined as “a point of correspondence on an object that matches between and

within populations” [10]. Within these landmark-based approaches three different ways

to deal with the confounders of position and orientation have been proposed [11]: (1)

Superimposition [12,13], involving placing the landmark data into a common frame of

reference, (2) Deformation [14-17], where form differences are described in terms of

deformation fields of one object into another and (3) Linear Distances [18], where all

possible distances between landmarks and not their absolute position and orientation

are measured. Advances over the past few decades have made morphometric analysis

easier, more accessible and therefore more attractive to use in practical studies. For

example, with the advent of three-dimensional (3D) tomographic imaging and rapid

surface scanning, the quantification of form can now be performed indirectly and vir-

tually both in 2D and 3D [19].

However, none of the existing approaches in morphometrics are particulary well sui-

ted to deal with abnormalities as such and hence are of limited use in their measure-

ment. One reason for this is that unusual form differences typically introduce a

Pinocchio effect characterized by a substantial, but localized, form change or difference

[4]. For example, congenital malformations often have a discontinuous impact on

form. A second and more important reason for the limited use of morphometrics, so

far, is that there is no real mechanism in place to separate unusual from usual form

differences. To address this dilemma, a new theoretical concept and associated model-

ling methodology, termed dysmorphometrics, is proposed. The topography of form

abnormalities is encoded in a dysmorphogram, which is used to visualize and facilitate

any subsequent quantification of the detected form differences of interest.

The manuscript is organized as follows: We start with the morphometric back-

ground. First, landmark superimposition following a likelihood formulation is shortly

introduced. Secondly, the influence of and current solutions to the Pinocchio effect are

given. The next section introduces and defines dysmorphometrics and extents the

superimposition accordingly to deal with form abnormalities. Furthermore, we illus-

trate the relationship with the known solutions for the Pinocchio effect. Throughout

the results and without loss of generality, we use human faces as example biological

forms of interest (Appendix A). We define three different but typical types of questions

related to facial form in clinical practice starting from 3D surface scans, e.g., and dys-

morphometrics is applied to answer these questions: measuring abrupt form changes,

asymmetry, and discordancy of features in human faces presenting abnormalities.
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A discussion centered on comparisons with current morphometric techniques follows

and future possibilities, limitations, and work of dysmorphometrics conclude the

article.

Methods
Morphometric Background

Landmarking

Homologous landmarks are fundamental to geometric morphometrics as a biomathe-

matical primitive. They are often defined as precise locations on biological forms that

hold some developmental, functional, structural, or evolutionary significance [11].

However, owing to the lack of anatomically discrete features in regions of the face

(cheeks and forehead for example), landmarks can only provide a sparse representation

of the complete facial form and salient features can be overlooked [20]. Therefore, in

addition to using true landmarks, points defined by relative locations (pseudo-land-

marks), for example “the point of highest curvature”, or defined relative to other land-

marks (semi-landmarks [21]), for example “halfway between the corners of the eyes”,

can be used as well [19]. Alternatively, a spatially-dense indicated set of landmarks can

be obtained using an anthropometric mask and mapping technique [22-24]. The latter

provides a spatially-dense set of quasi-landmark indications, which are used here and

are essentially obtained using a non-rigid surface registration (mapping) of a predefined

facial template (anthropometric mask) [25].

Independent of the kind of landmarks used, in order to compare different form

instances the same homologous or corresponding landmarks are indicated. Mathemati-

cally, a form instance is then represented as a (landmark) configuration consisting of

the coordinates of a list of ordered landmarks: C = {lj|j = 1,... K} with K the number of

landmarks and the ordering index j defining the unique label of the associated land-

mark lj = (xj, yj, zj) in 3D. Hence, a single form is defined as a K × 3 matrix.

Superimposition

When comparing a particular configuration or a group of configurations to another,

any and all orientation and/or position differences are considered unimportant. How-

ever, both orientation and position influence the actual recorded coordinates. As men-

tioned previously, several approaches exist to deal with this problem; one of which is

superimposition. Superimposition has the advantage of being quite intuitive and easy

to visualize. It accounts for the confounding variables related to position and orienta-

tion through the optimal transformation of further analysis. In the context of a so

called ordinary analysis, given two configurations C and C̀ , differences in form are

defined based on the residual spatial differences D after superimposition. This can be

formally written as:

C = T(C̀, θ) + D (1)

with T(., θ) a transformation model encoded by a set of parameters θ, that are

reflecting rotation, translation and scale operations (Appendix B). Finding the optimal

superimposition requires the estimation of the optimal transformation parameters θ

such that D reflects true differences in form. Following a likelihood formulation of this

problem requires a statistical model with an associated distribution that is assumed to

have generated the observed data [26]. The likelihood of transformation parameters is
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expressed as: L(θ) = Pr(C, C̀|θ) = Pr(D|θ) and the optimal superimposition is obtained

following a Maximum Likelihood (ML) − Estimator : θ̂ = arg minθ l (θ) where l (θ ) is

the negative log-likelihood (NLL): l (θ ) = - log L(θ ).

In morphometrics the Procrustes ML-estimators from Goodall [27], assuming a

Gaussian perturbation model, are the most commonly known and used. Here, the

form difference D is modeled as a zero-mean matrix of Gaussian displacements D ≈

NK × 3 (0, Ω). In its most general form, local perturbations for each landmark may be

unequal and may even be correlated with each other as specified by the elements in

the covariance matrix Ω. According to Goodall [27] this covariance or so-called model

metric accommodates two sources of variation in the observed data: measurement

error and variation in shape.

As a superimposition metric the covariance can be user-defined or may be set to an

estimate of the model metric. In the latter case any unknown parameters in the model

metric are to be estimated on top of the unknown transformation parameters. This

can prove to be challenging and a series of simplifications is therefore typically intro-

duced: (a) under the assumption that the directions of variation are the same between

different landmarks the full covariance matrix can be factorized using the Kronecker

product Ω = ∑ ⊗ Ξ. ∑ is a K × K covariance matrix for the rows of D reflecting var-

iances and correlations among landmarks. Ξ is a 3 × 3 covariance matrix for the col-

umns of D or the dimensions and D ≈ NK,3 (0, ∑, Ξ). (b) Under the assumption that

the displacements around a landmark are isotropic the dimension covariance matrix

becomes the identity matrix D ≈ NK,3 (0, ∑, I3). (c) Under the assumption that land-

mark differences are independent, the landmark covariance matrix is a diagonal matrix

and (d) under the assumption that the landmark differences are identically distributed

(i.e. they are homoscedastic) we have D ≈ NK,3 (0, s2I K, I3). Because of the indepen-

dency assumption, the probability Pr (D| θ ) can be factorized into a product of indivi-

dual landmark displacement (dj) probabilities
K∏

j=1
Pr(dj |θ) (e) Finally, under the

assumption that the distribution is the standard normal distribution we have D ≈ NK,3

(0, I K, I3). This results in the following series of NLL simplifications:

l(θ)(a) =
1
2
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l(θ)(a,b,c,d,e) =
K∑

j=1

∥∥∥T
(
l̀j, θ

)
− lj

∥∥∥2
(6)

Note that any constant term (independent from all parameters) in these simplifica-

tions has been omitted as they do not influence the ML-estimation. Also note that the

most simplified version with the NLL given in (6) is the frequently used Least Sum of

Squares (LSS) superimposition [12].

The Procrustes solutions to the superimposition problem are desirable in shape ana-

lysis because of the straightforward link between form differences as squared residual

errors and variances. This linkage with conventional multivariate statistics is known as

the Morphometric Synthesis [28]. The Procrustes ML-estimators are also used when

comparing more than two configurations simultaneously in a generalized setup (intro-

ducing an additional sum over the different configurations in the NLL’s). In this gener-

alized analysis different configurations are superimposed to a consensus configuration,

typically an estimated geometric mean.

The Pinocchio effect

In order to illustrate the challenge in studying form abnormalities we use the well-

known Pinocchio effect in shape analysis [4]. This effect is characterized by a substan-

tial, but localized, form change or difference, as depicted in Figure 1. The Pinocchio

effect influences a Procrustes superimposition using (6), e.g., between the honest (Fig-

ure 1(a)) and lying state (Figure 1(b)) of Pinocchio. The large differences of the

‘affected’ nose landmarks are contaminating the optimal placement of the ‘unaffected’

remaining landmarks as well. As a result all the landmarks are improperly aligned (Fig-

ure 1(c)) and any residual differences do not reflect true differences in form. An analy-

sis of the Pinocchio effect can be obtained by casting the superimposition into an M-

estimator formulation:

θ̂ = argminθ

K∑
j=1

ρ(dj) (7)

Figure 1 The Pinocchio effect. The Pinocchio effect known in shape analysis, is the large change of
limited features or landmarks in an object or organism. (a) Pinocchio honest. (b) Pinocchio lying. The tip of
the Nose grows forward by an amount of 30 mm. (c) Local landmark superimposition differences after a
LSS superimposition or Procrustes-fit of (b) onto (a). The color-scale ranges from 0 mm (white) to 2 mm
(dark red) to more than 2 mm (black) difference. Note the smearing out effect of the ‘affected’ landmarks
in the nose onto the ‘unaffected’ landmarks on the rest of the face after superimposition. (d) Same after
robust superimposition of (b) onto (a). Note the perfect alignment of ‘unaffected’ landmarks. (d) Also
depicts the dysmorphogram using a color-scale such that everything except white reflects outliers to some
degree with black being the strongest outliers.
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The r-function is a loss function having a unique minimum when the residual error

dj =
∥∥∥T

(
l̀j, θ

)
− lj

∥∥∥ is zero. The NLL in (6) for example is equivalent to using a Quad-

ratic M-estimator with a r-function defined as r(x) = x2 and illustrated in Figure 2(a).

An analysis of the Pinocchio effect is then performed by examining the equivalent M-

estimator through its influence function [29], which characterizes the bias that a parti-

cular measurement has on the solution and is proportional to the derivative of the r-
function. For the Quadratic M-estimator the influence function is ψ(x) = x which is

depicted in Figure 2(b). It can be seen that the influence of substantial form differences

increases linearly and without bound, as expected.

A robust alignment, not influenced by the Pinocchio effect, is illustrated in Figure 1

(d), which can only be obtained using an appropriately robust superimposition and

associated estimator. Chronologically, the first such robust technique in morphometrics

was suggested in [13] and is the so-called resistant-fit using a repeated median (RM)

estimator. However, this technique fails to be successful in practice as it exhibits a

high time complexity whilst convergence behavior is unclear and dependent on the

Figure 2 M-estimators. Different M-estimators (left column) and their outlier influence functions (right
column). (a,b) The Quadratic M-estimator, (c,d) The Lorentzian estimator and (e,f) The Truncated Quadratic.
The original Quadratic has a linear increasing outlier influence without bound, while both the Lorentzian
and the Truncated Quadratic have interesting saturating properties.
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initial alignment [10]. Another robust median-based estimator is the Least Median of

Squares (LMedS) estimator [30], where the sum in (7) is simply replaced by the

median.

Alternatively, as suggested by [10], any type of robust estimator can be used such as,

for example, robust M-estimators for which a wide range of possible choices has been

suggested within the field of robust statistics. Good choices are the redescending M-

estimators that have an influence function that is increasing near the origin but

decreasing towards zero again further away from it. Two such examples are the Lor-

entzian and the Truncated Quadratic (TQ) estimator whose r- and influence functions

are illustrated in Figure 2(c,d) and 2(e,f) respectively. They both completely ignore

gross form differences during superimposition but do not completely ignore moder-

ately large differences as the median approaches do. Note that different M-estimators

imply different underlying distributions that are not necessarily the same as the Gaus-

sian distribution used in Procrustes ML-estimators.

Only recently, tractable and constrained solutions to the model metric estimation for

heteroscedastic Gaussian distributed landmarks were formulated allowing for the mod-

elling of individual variances per landmark. Essentially, the model metric can be

adapted to allow for larger mobility (higher variance) in the affected nose landmarks

and lower mobility (lower variance) in the invariant substructure or unaffected land-

marks. The result is a variance weighted LSS solution. In [31] the NLL in (4) without

the log term is used and is theoretically linked with a scaled mixture model of Gaus-

sians enabling “large-scale” tolerant superimposition. Indeed, a scaled mixture of Gaus-

sians is a Heavy-tailed distribution known to provide robustness. The shape of the

Heavy-tailed distribution is dependent on the prior distribution constraining the var-

iance estimations. In the case of an inverse gamma prior distribution, e.g., the Student

T-model is obtained [31]. Similarly, but within a generalized analysis, a complete cov-

ariance model metric estimation also allowing for landmark dependency or correlation

(using the NLL in (2)) is given in [26].

Dysmorphometric Extensions

Motivation: The Pinocchio dilemma

Morphometrics is primarily focused on form related questions such as: What is the

average form and what are the patterns of variation around it within a population, or

how do groups differ in shape and what is the functional importance of those differ-

ences [9]? The morphometric dilemma raised by the Pinocchio effect is whether to

include or exclude this case completely or partially from the study, as the morpho-

metric approach studies only typical variation and co-variation over all the observed

landmarks in populations and not any atypical localized differences. If Pinocchio is

unique within a population sample, the strength of his uniqueness will influence the

analysis of typical variability in the population. For the model metric estimation of a

population with heteroscedastically distributed substructures, e.g., a higher variance

around the nose is estimated because of Pinocchio. In other words, the model metric

is stretched to include Pinocchio and this inclusion might not be desirable. One possi-

ble course of action is to use a robust procedure to superimpose first, analyze the resi-

duals and to ignore suspicious landmarks in a subsequent Procrustes analysis as

missing data [10].
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Dysmorphometrics, in contrast to morphometrics, is focused on questions such as:

What makes an individual different and what are the patterns of variation of that parti-

cular difference over a group of individuals? For example, it strives to provide an

answer to the question ‘what specific feature makes Pinocchio different?’ In such a

context, the only differences of interest are the ‘affected’ landmarks and a robust super-

imposition as in Figure 1(d) is preferred, if not crucial. Stated differently, in morpho-

metrics, typical (co-)variances are the variables of interest and the atypical variations

are the ‘nuisance’ variables needing to be discarded, whereas, by contrast in dysmor-

phometrics, the variables of interest are the atypical variations with the typical varia-

tions being the confounding variables. However, the challenge remains to define and

identify atypical variation whilst compensating for the confounding typical variation.

Modelling form differences as outliers

A morphological abnormality can be seen as a difference in form that is inconsistent,

discordant, and/or atypical. This definition inherently implies two important aspects.

Firstly, they are only relatively defined and can only exist given prior knowledge of

what is normal, consistent, harmonious, and/or typical. Hence, a representative norm

is required. Secondly, the difference is required to be significantly distant from the

norm. Employing this definition, the key point is thus to model form differences as

outliers.

Most often the studied abnormalities are spatially localized and do not extend over

the whole region of interest. In morphometrics such abnormalities will be represented

by an ensemble of landmarks positioned ‘suspiciously’ compared to the norm, while

the other landmarks are positioned as predicted by the norm. In order to distinguish

the ‘suspicious’ or outlier landmarks from the ‘normal’ or inlier landmarks, during a

superimposition, only the inlier landmarks need to be optimally aligned in the LSS

sense and used to estimate the model metric if necessary. Hence, an appropriate robust

superimposition and model metric estimation is required. Although many of the esti-

mator choices mentioned in the previous section can be used to obtain such a robust

placement of landmarks they, unfortunately, model outliers only implicitly. In other

words, these superimpositions are robust against outliers, as in not influenced by them,

but they do not allow for a meaningful outlier flagging/detection mechanism. Further-

more, they do not allow for a (robust) Procrustes model metric estimation as their

underlying distributions typically deviate from Gaussian distributions. Instead, dysmor-

phometrics models outliers explicitly using outlier processes. A problem formulated in

terms of explicit outlier-processes can be converted or viewed in terms of robust esti-

mators [32]. An outlier process formulation, however, is more general than the original

robust estimator. For example, due to the explicit nature of the outlier process, con-

straints on the spatial organization of the outliers can be formulated [33]. Based on the

relationship with robust estimators defined in [32], equivalent M-estimators can be

determined to analyze the influence of outliers on the superimposition.

Extending ML-estimators with outlier-processes

In practical applications, the assumed perturbation model in ML-estimators is only an

approximation to reality, and estimation of the parameters should not be severely

affected by the presence of unusual form differences. Indeed, the probability of an out-

lier according to the perturbation model is very low because the outlier cannot be

explained by the model and therefore limPr(dj |θ)−>0 log Pr(dj|θ) = −∞ . In order to
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deal with outliers a principled approach is adapted from [33]. The underlying idea is to

model inliers and outliers as separate random variables. Inliers/Outliers are landmarks

whose displacements have been generated by an inlier/outlier-process with associated

inlier/outlier-distribution. The complete process, having generated all displacements,

with associated complete distribution combines both inlier- and outlier-processes

through the introduction of a latent variable zj that signals whether the residual error

dj is an outlier (zj = 0) or inlier (zj = 1). This is achieved using mixture modelling and

the result is an augmented superimposition in which landmarks are superimposed and

outliers are flagged at the same time.

Given the observed landmarks, a joint estimation is now presented where besides the

transformation parameters θ also the outlier map of latent variables or unobserved

data Z = {zj|j = 1,..., K} is to be estimated. A popular tool for statistical estimation pro-

blems involving unobserved or incomplete data is the Expectation-Maximization (EM)

algorithm ([34,35]). Herein, the likelihood of transformation parameters can be re-writ-

ten in terms of the latent variables: Pr(D|θ) =
∑
Z

Pr(D, Z|θ) . EM then produces a

sequence of parameter updates
{
θ̂ (t)|t = 0, 1, . . .

}
by alternating two steps: the E-step

and the M-Step. In the E-step, the latent variables are estimated using the conditional

expectation resulting in the so-called Q-function. In the M-step, the Q-function is

maximized generating a new update for the transformation parameters. Note that the

Q-function is the equivalent robust M-estimator for the superimposition with an expli-

cit outlier-process formulation.

The challenge is to formulate all likelihoods and distributions involved taking into

account certain assumptions and prior knowledge of the augmented superimposition

problem. In Appendix C we give such a detailed formulation and derive a practical

extended Procrustes (Ext-P) ML-estimator. Here, we only summarize the practical Ext-

P ML-estimator.

A practical extended Procrustes ML-estimator

As an example ML-estimator extension, we start from the Procrustes ML-estimator

assuming a zero-mean Gaussian perturbation model with i.i.d landmark displacements

(using the NLL in (5)). Hence, the model metric reflects additive white Gaussian noise

(AWGN) with a single parameter s. This constitutes the inlier-distribution Pri(x). For

the outlier-distribution several choices can be considered. If some knowledge about the

associated distribution of the outlier generating process is given then this can be used.

In most cases, however, this knowledge is not known and could be estimated as well

[33,36]. However, we simply assume the outlier-distribution to be uniform such that

Pro(x) = δ with 0 <δ < 1. In this simplified case, the Q-function, written down as an

M-estimator (7), has a r-function equal to:

ρ(dj) =
bj

2σ 2
d2

j + bj log
√

2πσ − (1 − bj) log δ (8)

bj = EPr(Z|D,θ̂ (t))[zj] =
Pri

(
dj|θ̂ (t)

)
Pri

(
dj|θ̂ (t)

)
+ λ

(9)

Claes et al. Theoretical Biology and Medical Modelling 2012, 9:5
http://www.tbiomed.com/content/9/1/5

Page 9 of 28



λ =
1√

2πσ
exp

(
−1

2
κ2

)
(10)

In (8) we see that for inlier landmarks (bj = 1) the Ext-P ML-estimator is equal to

the original Procrustes ML-estimator (5). Furthermore, an outlier landmark (bj = 0)

does not contribute to the estimation of the transformation parameters θ or model

metric parameter s because log δ is independent of both. From (9), we see that the

estimation of the latent variables during superimposition is dependent on the estimated

s of the inlier-distribution and on a single parameter l that codes for prior knowledge

on the outlier distribution. Changing l changes the amount of outliers versus inliers. A

higher value suggests more outliers, while a lower value suggests more inliers. A

proper choice of this parameter is therefore required, but can prove to be challenging.

This choice is made easier and, more importantly, statistically relevant in (10) follow-

ing [37].

In statistics, an observation can be called atypical with respect to a given normal dis-

tribution if its (Mahalanobis) distance exceeds a predefined threshold. Therefore, in

(10) l is made inlier-distribution dependent and is re-parameterized using the more

interpretable prior outlier parameter �. The actual choice of � is equivalent to the

choice of a statistical significance level above which local form differences are consid-

ered atypical compared to the typical Gaussian (inlier-) distribution. For example � = 2

and � = 3 suggest a significance level of p = 0.05 and p = 0.001, respectively. Figure 3

depicts the r-function (8) (Figure 3(a)) and its influence function (Figure 3(b)). It is a

continuous approximation of the truncated quadratic function (thus having better sec-

ond derivate properties, which is important for reasons of optimization and conver-

gence) and resembling the Tukey-biweight function. Note that the width of the r-
function is equal to � × s and thus completely defined in terms of the inlier-distribu-

tion and prior outlier significance parameter. In Figure 3(c) and Figure 3(d) the r- and
influence functions are depicted for different values of � with fixed s or, equivalently,

different values of s with fixed �. It is observed that, apart from the intuitive choice of

�, a meaningful and adaptive outlier flagging mechanism is provided. Indeed, inlier

landmarks, encoding for typical form differences, are fitted in the LLS sense as in the

original Procrustes-fit and thus provide an estimate of typical form variation following

the assumed perturbation model. Outlier landmarks are then identified in terms of

being significantly atypical compared to the estimated typical variation. The resulting

Ext-P ML-estimator with significant outlier detection is used throughout the results

section with a fixed parameter setting � = 2, reflecting a common choice for statistical

significance (p = 0.05) in biology.

Results
In this section, we focus on the biological relevance of the results only and additional

computational comparisons such as time complexity can be found in Appendix D.

Throughout the results, human faces are used as example biological forms of interest

(Appendix A). They are the biological billboard of our identity, underlying genes, and

environmental exposures. Our visual-cognition system is very adept and capable of dis-

criminating between different faces and identifying or classifying facial abnormalities.

Claes et al. Theoretical Biology and Medical Modelling 2012, 9:5
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Furthermore, facial abnormalities have been studied in depth in the literature enabling

knowledge-based validation of our results.

Dysmorphometrics for abrupt facial changes

Abrupt changes in form may occur for many reasons and are highly variable making

their measurement challenging. The Pinocchio effect is such a (synthetic) toy-example.

Here, the true change was perfectly identified in the dysmorphogram (Figure 1(d))

using the proposed Ext-P ML-estimator. Biomedical examples of abrupt changes in

facial form include deformations associated with surgical interventions or traumatic

events. The capacity to measure the effects of surgical treatment over time has been

long sought after to audit outcomes and evaluate relapse [23]. Such measurements pro-

vide feedback and insight allowing for reflection on surgical improvements. An exam-

ple of a surgical intervention is illustrated in the top row of Figure 4. It shows a 19

year old woman treated for facial asymmetry coincident with right hemimandibular

hypertrophy. The discrepancy in the lower mandibular border was corrected with an

ostectomy and a wedged Le Fort1 osteotomy to resolve occlusal cant. 3D images were

taken pre- (Figure 4(a)) and post-treatment (Figure 4(c)).

Visual comparison of the pre and post-surgery images clearly shows regions that

have been altered by the intervention. In order for the superimposition to reflect true

changes in form, it has to be performed based on the unaltered regions only. A dys-

morphometric solution to this is to define the ‘norm’; in this case, e.g., the pre-surgical

situation. Then, an Ext-P ML-estimator is used for the superimposition of the post-

Figure 3 Equivalent M-estimator. Equivalent M-estimator and outlier influence functions for the
augmented superimposition with AWGN modelling (a) and (b) with s = 1 and � = 2. (c) and (d) similarly
but for s = 1 and � = 1, 2, 3 or equivalently � = 2 and s = 0.5, 1, 1.5 values, suggesting automatic
adaptation of the M-estimator in function of the inlier-distribution or typical variation.
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treatment situation onto the norm. The idea is that outlier-landmarks are situated in

regions that changed, while inlier-landmarks are located in the unchanged regions. The

variation encoded in the inlier-landmarks should ideally be zero as in the Pinocchio

example, but in reality this is never the case. This is because errors in the 3D scanning

and quasi-landmark mapping procedures introduce noise or small perturbations on the

landmark locations. Here, the level of this noise is considered typical variation (of no

interest) around the norm configuration and is modeled by the AWGN inlier-

Figure 4 Facial form change, asymmetry and discordancy. Facial form change, asymmetry and
discordancy of a 19 year old woman with a right hemimandibular hypertrophy. Top Row: Assessment of
facial change due to surgical intervention. (a) Pre-surgical facial surface, representing the norm. (b)
Dysmorphogram of facial change, depicting the features that changed. (c) Post-surgical facial surface.
Middle Row: Assessment of facial asymmetry. (d) Original facial surface being the norm. With a robustly
obtained mid-facial line (blue) and skewed symmetry line (red) obtained with an original Procrustes-fit. (e)
Dysmorphogram of facial asymmetry, depicting the asymmetrical features. (f) Mirrored facial surface,
according to the blue mid-facial line. Bottom Row: Assessment of facial discordancy (g) Pre-surgical facial
surface to assess (i) Norm-equivalent of the Pre-surgical facial surface, being the norm (h) Dysmorphogram
of facial discordancy, depicting the features that are considered abnormal compared to a normative
reference population.
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distribution of the Ext-P ML-estimator. Outliers or atypical differences are then

defined as significantly different with regard to the estimated noise-level. The resulting

dysmorphogram is shown in Figure 4(b). It depicts a continuous-valued [0,1] spatial

map of the local regions that are significantly different (’yes’, non-white regions) or not

(’no’, white regions). According to the intervention that took place these accurately

reflect the anticipated anatomical changes. Similar examples can be found in related

work [23].

Dysmorphometrics for facial asymmetry

Bilateral symmetry often occurs in organisms and is defined with respect to reflection

across the midsagittal plane dividing a perfectly bilaterally symmetrical organism into

equal right and left halves. During development in vertebrates imbalances in growth

will inevitably result in some degree of asymmetry. Mild facial asymmetries are thus

common in typical growth and development [38]. Severe and pathological asymmetries,

on the other hand, are a feature of disordered growth as a consequence of genetic and/

or environmental causes [39].

A protocol, grounded in geometric morphometrics, for the measurement of objects

displaying bilateral symmetry consists in undertaking a LSS Procrustes-fit of landmark

configurations and their mirror configurations [40,41]. However, when the asymmetry

in the face increases locally and develops abnormally, as in the pre-surgical presenta-

tion of the case shown in Figure 4(d), the original Procrustes-fit becomes influenced by

it. To obtain a robust assessment of asymmetry the superimposition involved has to be

done based on the more symmetrical regions only. A dysmorphometric solution is to

define the original configuration as the ‘norm’. Then, an Ext-P ML-estimator is used

for the superimposition of the mirror configuration onto the norm. The idea now is

that outlier-landmarks are situated in regions that are asymmetrical, while inlier-land-

marks are located in symmetrical regions. Again, errors in the 3D scanning and quasi-

landmark mapping procedures introduce noise on the landmark locations modeled by

the AWGN inlier-distribution.

The resulting dysmorphogram of the asymmetry case is shown in Figure 4(e). As a

by-product, after the superimposition, a robust estimate of the midsagittal plane can

also be obtained (blue line in Figure 4(d)). This ‘extended’ asymmetry assessment pro-

tocol has been used in related work [22,42]. There, the goal was to detect disordered

facial growth patterns in individuals characterized by asymmetries with reference to

the individual asymmetry variation found in the general population rather than to

some ideal of perfect symmetry, which rarely exists.

Dysmorphometrics for facial discordancy

Given a population of interest, an individual is concordant with that population if it is

within the boundaries of variation of the population. Stated differently, a concordant

form is in harmony with the population. Form discordancy, on the other hand, is the

lack of harmony. Biologically, this is manifested as the type of facial abnormalities that

are best known in craniofacial disorders and dysmorphologies. Assessment of such dis-

orders affecting facial morphology is typically performed compared to ‘normality’. This,

however, presents two major challenges. The first is to define normality or harmony in
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facial form. The second is to define the dysmorphic face with respect to normality by

identifying and localizing the discordancy in the form of the face.

A morphometric approach to this problem is to establish both normal and abnormal

population databases [43] and to assign a given individual to the most plausible popu-

lation, conceptually similar to a taxonomic discrimination in systematic biology. Nor-

mal variation can be learned starting from a proper reference dataset consisting of

healthy individuals without pathology. The collection of abnormal population data

however often proves to be more difficult and impractical particularly when dealing

with rare and highly variable situations. A dysmorphometric formulated solution

approaches the problem without the need to compile databases representing abnormal

populations as follows: Firstly, the normal population is chosen as the ‘norm’. Secondly,

an Ext-P ML-estimator is used for the superimposition of a configuration under inves-

tigation onto the norm. Here, the ‘population norm’ is represented as a Point Distribu-

tion Model (PDM) [10] using a principal component analysis (PCA) around the

consensus configuration of the population (Appendix B). One of the advantages of

using a PDM is that the within-population variation becomes part of the transforma-

tion model used during superimposition. As such, typical variation in the population is

treated and compensated for in the exact same way as other confounding variables of

no interest like orientation and position. The result of this superimposition is the crea-

tion of a norm-equivalent configuration, which is the harmonious counterpart of a

given form configuration and can be considered as an individual-specific typical or

normalized reference. Stated differently, the consensus configuration of the population

is allowed to change within the boundaries of typical variation to reflect the given con-

figuration as much as possible.

The superimposition or the creation of the norm-equivalent of a given dysmorphic

face has to be performed on regions in the face that are in harmony with the normal

population. From a dysmorphometric point of view, the idea is that outlier-landmarks

are situated in regions that are discordant, while inlier-landmarks are located in con-

cordant regions. Again, errors in the 3D scanning and quasi-landmark mapping proce-

dures introduce noise or small perturbations on the landmarks locations. The level of

this noise is considered typical variation (different to the population variation) and as

before is modeled by the AWGN inlier-distribution. Outliers or atypical differences are

then defined as significantly different w.r.t. the norm-equivalent configuration based on

the estimated noise-level, therefore reflecting significant discordancy after compensat-

ing for within-population variation. Note that by using the PDM within the transfor-

mation model of the superimposition, the simple but practical Ext-P ML-estimator

only modelling AWGN can be used to separate landmarks into concordant and

discordant.

For the lying Pinocchio toy-example (Figure 1(b)) the norm-equivalent according to a

clinically normal population turns out to be the honest Pinocchio (Figure 1(a)) (which

was the consensus of that population) with a dysmorphogram (Figure 1(d)) correctly

identifying the nose as significantly discordant. Assessment of facial discordancy is

further demonstrated in four different cases shown in Figure 4 (bottom row) and Fig-

ure 5. From left to right, the facial configuration under study, the dysmorphogram and

the norm-equivalent configuration are displayed. The norm-equivalent of each case is

clearly a patient-specific norm, which has not been previously available and is proving
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to be of value in clinical practice for treatment planning and auditing purposes. The

first case (Figure 4(g,h,i)) concerns a 19 year old woman with right hemimandibular

hypertrophy, treated for facial asymmetry. The dysmorphogram, as expected, localizes

the highly asymmetric right lower mandibular as discordant but indicates a displace-

ment as well of the mandible to the contralateral side and alveolar compensation in

the maxilla on the affected side. The second case (Figure 5(a,b,c) is a child with a

(mild) Treacher-Collins Syndrome (TCS), a rare genetic disorder characterized by cra-

niofacial deformities with occurrence prevalence of 1:10,000 [44]. The dysmorphogram

revealed regions known to be affected in TCS including malar, zygomatic, and perior-

bital regions. In addition, the nasal tip was highlighted, which has previously been

described but not considered a major symptomatic feature (GeneTests, http://www.

genetests.org). The third case (Figure 5(d,e,f)) is a person suffering from Lysosomal

Storage Disease (LSD, MPSII), which is a rare inherited metabolic disorder that results

in accumulations in glycosamminoglycans (GAGs) with a prevalence of <1:100,000

[45]. People with this condition have been described as having ‘coarse’ facial features;

the dysmorphogram demonstrated the fullness to the lips for example caused by accu-

mulated GAGs. The last case (Figure 5(g,h,i)) is a person with a Parry-Romberg Syn-

drome. This is a rare hemifacial atrophy disorder characterized by progressive

degeneration of the subcutaneous tissues and fat that can also involve bone, cartilage

and muscle. This progressive condition often affects the left maxillae adjacent to the

nose progressing to the corner of the mouth, around the eyes and brow but may vary

from case to case as it appears to occur randomly with unknown etiology [46]. The

dysmorphogram illustrates the extent of the disease in this young woman, in whom

the affected area appears to be confined to distinct connective tissue septa in the face.

All these cases illustrate features that have been previously known as distinctive fea-

tures of the condition. However, new and highly relevant spatial information can be

identified and quantified as well. This transforms previously descriptive dysmorphology

to much more informative quantitative dysmorphometrics.

Discussion
The study of form using quantitative, morphometric descriptors is fundamental to

many biological studies. Emerging technologies of 3-dimensional (3D) scanning and

geometric morphometrics are providing the means to establish objective criteria which

can be used for phenotypic investigations in combination with epigenetic investigations

[47,48]. Here, we have introduced dysmorphometrics as a means to identify and quan-

tify unusual form differences like abnormalities that are typically encountered in bio-

medical sciences. Dysmorphometrics builds upon existing geometric morphometric

techniques, but models form differences explicitly as outliers. Applying a test for out-

liers is referred to as a test of discordancy [49] and the practical Ext-P ML-estimator

clearly resembles known statistical tests for outliers. For example, the same result

could have been obtained by applying a Grubbs’ test using the inlier-distribution with-

out the need to explicitly define an outlier-process and associated distribution. How-

ever, the explicit case is more general and open to further assumptions or prior

knowledge about the outliers. The potential of this is strong and is still to be explored.

The key is to model the patterns and their analysis as biologically relevant based on

the right assumptions.
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The requirement for robustness during the analysis of unusual form variation has

been acknowledged by many others. For example, [50] advised the need for caution to

be taken into account when comparing preoperative with postoperative asymmetry

scores in faces. This was because the achievement of ‘best-fit’, using the LLS Procrustes

superimposition, was influenced by severe asymmetries in the preoperative situations.

This resulted in spurious changes and unrealistic reduction of the asymmetry post-

operatively in regions not affected by the surgical intervention. A popular way to

address this problem in practice is to work with “stable” landmarks only, based upon

which the superimposition is then performed. For example, the superimposition is

done on predefined areas in the face like the nose ridge in [51] or by carefully indi-

cated landmarks as in [39] and in [52]. Another strategy is to perform a LSS superim-

position first, then remove parts according to a threshold and redo the

superimposition using the remaining parts [53]. All these approaches try to achieve the

Figure 5 Facial discordancy of craniofacial disorders & syndromes. From left to right: original facial
surface, dysmorphogram of facial discordancy and norm-equivalent. From top to bottom: assessment of
persons with mild Treacher-Collins syndrome, a Lysosomal Storage Disorder and a Parry-Romberg
syndrome. A general note: eyes and areas in the face covered by hair, e.g. eyebrows, always contain 3D
surface mesh-artifacts (due to limitations of current scanning technology) such that spurious outliers are
visible in these areas. These are to be interpreted with caution.
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same result as a robust superimposition. However, they introduce subjectivity by the

obligation to manually select a region, landmarks or threshold of interest. They are

heuristic and different for different superimposition tasks. Unfortunately, at the time,

the known repeated median method that was used for resistant fitting [12] lacked

proper mathematical underpinning and convergence behavior compared to their origi-

nal LSS solution and was therefore never advocated as an alternative. In contrast, the

proposed modelling methodology of dysmorphometrics results in an adaptive and

robust superimposition with meaningful outlier detection. The underlying mathemati-

cal model is an extension of the original theory of Procrustes ML-Estimators [27].

Furthermore, it is shown that behavior against outliers equates that of re-descending

M-estimators, which are a popular and efficient class of estimators in robust statistics.

However, the difference here is that the underlying Gaussian perturbation model

assumption is kept intact. Alternatively, this is also achieved using the previously men-

tioned techniques of heteroscedastic variance estimation during superimposition

[26,31]. However, these techniques by themselves do not allow for a robust model

metric estimation, as the metric is stretched to include any higher variances caused by

outliers. This inclusion does not enable separating outliers from inliers and so might

be undesirable for further analysis. An interesting extension, however, would be to

combine both the techniques of heteroscedastic variance estimation and dysmorpho-

metric outlier flagging.

In the assessment of discordancy, which inspired the development of the concept of

dysmorphometrics, contrasts in strategy with morphometric analysis are apparent. For

example, [43] and [54] build distributions of form for both typical and atypical popula-

tions. To assess an individual a closed-classification is then performed. However, the

individual is always attributed to either one of the given populations, even in the case

when it does not belong to any of them. Furthermore, this morphometric approach

loses the power to individualize and can only visualize population differences expressed

as a difference between averages or a net difference. In contrast, a dysmorphometric

approach enables an open-classification, which is less restrictive and has a greater

range of applications. It also allows for an individual-specific assessment and visualiza-

tion of a problem or hypothesis. To conclude, the essence of dysmorphometrics is the

ability to identify and measure the unknown abnormality, if any; with a norm reflecting

what is known. This enables an alternative research strategy. Whereas morphometrics

is typically used in a deductive research approach, where a general theory is formed

and typical data observations are collected to test hypotheses, dysmorphometrics, on

the other hand, provides for an exploratory research approach. An initially unknown,

quantified observation is then made that can be subject to further testing by directed

data collection from which a general theory is derived. A good example is the extent

of the Parry-Romberg disease appearing to be confined by known connective tissue

septa in the face. Hypotheses to explain this single observation are to be validated by

collecting similar case data.

The use of dysmorphometrics is limited by two constraints. Firstly, but most impor-

tantly, an appropriate norm must be established. Hence, a straightforward comparison

between two different individuals without taking population variation into account, e.

g., cannot be done because neither one of the two individuals can be chosen as the

norm. Additionally, in case of a population-based norm, it may prove challenging to
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decide if an individual belongs to the norm or not and will be entirely dependent on

the application. Secondly, the number and extent of form abnormalities cannot exceed

the breakdown point of the outlier detection scheme employed. The breakdown point

of a detection scheme is the percentage of data allowed to be outliers before they

become undetectable.

Conclusions
Morphological abnormalities are often encountered and of great interest in biomedical

sciences and include, e.g., deformations in form due to congenital malformation and/or

environmental constraints as well as large changes in form associated with traumatic

injuries and surgical interventions. In current morphometrics, the means to identify

and quantify such unusual form differences remains limited. To address this shortcom-

ing, dysmorphometrics was introduced, which is a novel and unexplored concept that

augments current geometric morphometrics to deal with, quantify and spatially map

form abnormalities to facilitate their analysis. Essentially, an abnormality implies the

existence of a data pattern that cannot be explained by typical patterns. As such, dys-

morphometrics models form differences explicitly using outlier processes, resulting in

adaptive and robust superimpositions. Furthermore, dysmorphometrics builds upon

existing techniques such that the underlying mathematical model is a straightforward

extension of the original theory of Procrustes ML-Estimators.

Throughout the results, outliers were defined above an estimated noise-level, as

modeled in a practical Ext-P ML-estimator, therefore reflecting significant differences

in form with a biological meaning. The results are unique and illustrate the power of

this technique to reveal unusual form differences given only normative data either

representing a single individual or a population. In the case of a population norm, var-

iation within the population is considered of no interest and is treated as a confound-

ing variable just like orientation and position differences. Dysmorphometrics can

generate an individualized quantification of form abnormalities and leads to alternative

and more informative population comparisons and research strategies. The analysis of

multiple dysmorphograms for example can lead to novel and unexplored statistics in

morphometric analysis.

Appendix A: Facial Data Acquisition
Human faces are used as the biological data of interest for which appropriate Ethics

approval was received: (1) The Characterization of 3-Dimensional Facial Profile in

Young Adult Western Australians was granted from the Princess Margaret Hospital for

Children (PMH) ethics committee (PMHEC 1443/EP) in Perth, WA, Australia. (2)

Establishment of Identity from Quantitative Analysis of Facial Characteristics (Digital

3D facial modelling) was granted from the University of Melbourne, human research

ethics committee (HESC 050550.1) in Melbourne, VIC, Australia.

3D facial images of 800 healthy young people as well as patients between the ages of

5-25 were collected using a 3dMD facial scanning system. An anthropometric mask

(AM) [22,23] was mapped onto the 3D facial images in a (quasi) anatomical manner

using a non-rigid surface registration algorithm based on implicit functions described

and validated in [25]. As a result all the points defined in the AM were automatically
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indicated on each facial surface separately in a consistent way. Consequently, spatially-

dense (~10.000) quasi-landmarks are known on all 3D facial images.

Appendix B: Transformation Model
The transformation model stipulates how landmark configurations can be placed onto

each other and reflects prior knowledge on the superimposition problem. Sometimes,

not all transformations are feasible or realistic so that certain fitting constraints can be

imposed to ensure that the superimposition behaves according to the prior knowledge.

These constraints, inducing transformation regularizations, can be modeled probabilis-

tically using a Gibbs prior distribution [10] on the parameters θ, restricting the space

of possible solutions:

Pr(θ) =
1
Z

e−||L(θ)||2 (11)

This distribution expresses the probability of a certain transformation parameter set-

ting θ, within the range of possible parameters, favoring more plausible settings. Z is a

normalization constant and L is an operator defined on the space of parameter values

representing the regularization as a squared norm. Inclusion of the prior model into

the likelihood formulated superimposition follows a Bayesian inference strategy and

results in multiplying Pr (D|θ) by (11). After taking the negative log likelihood, an

extra term ||L(θ)||2 is therefore added to equations (2-6).

Single norm transformation model

The simplest transformation model is the class of rigid transformations, only compen-

sating for overall differences in pose by global translation, rotation and, if shape instead

of form comparison is wanted, also scaling:

T
(
C̀, θ

)
= sRC̀ + t (12)

R is a rotation matrix parameterized using three Euler angles, t is a 3D translation

vector and s is a scaling factor. This transformation model is well-known and exten-

sively used in geometric morphometrics. It is also used in dysmorphometrics when

dealing with a norm that is defined based on a single configuration as in the scenarios

of time related form changes and asymmetry assessments of individuals. Generally, no

particular rotation, translation and/or scaling is favored, hence due to the rigidity of

the transformation model the regularization simply reduces to ||L(θ)||2 = 0, such that

(11) is a constant term (and therefore omitted) not influencing the ML-estimation of

the parameters θ.

Population norm transformation model

In the case of a population defining the norm, the same rigid transformation model

(12) can still be used. In this scenario, a Generalized Procrustes-fit of all the configura-

tions in the population is performed and the norm consists of the resulting consensus

configuration in combination with the full covariance matrix Ω around it. The covar-

iance matrix is the model-metric coding for typical shape variation amongst individuals

in the normal population and can be plugged straight into a Procrustes ML-estimator

without the need to make any of the simplifying assumptions to create equations (2-6).
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Doing so, measures the Procrustes distance between the consensus configuration and a

given configuration relative to the within population variation known as the Mahalano-

bis distance in multivariate statistics as stated in [55] whilst referring to [56]. The

advantage is that the model metric is given based on a population sample and does

not need to be updated or estimated during superimposition. Furthermore, the analysis

is a clear multivariate analysis taking into account the complete configuration and

within population variation to determine harmony or lack thereof. The disadvantage,

however, is that it becomes difficult to localize the discordant regions in the configura-

tion and one is limited to keeping or rejecting the complete configuration as a whole.

Furthermore, the Mahalanobis distance requires an inversion of the full covariance

matrix that becomes computationally expensive and even practically impossible when

dealing with a vast amount of landmarks.

An alternative for a population norm is the use of a Point Distribution Model (PDM)

[10]. A PDM is a model for representing the mean geometry of a configuration and

some statistical modes of geometric variation inferred from a training set of configura-

tions. First a Generalized Procrustes-fit of all the configurations in the population is

performed as before. The consensus configuration represents the mean geometry. Sub-

sequently, a principal component analysis is done on the aligned data generating a

ranked set of principal components representing the modes of geometric variation

[57]. Doing so, allows for new configurations to be constructed based on the geometric

mean and a linear combination of modes of geometric variation:

C̀ = C̄ +
D∑

k=1

Ukck (13)

C̄ is the consensus configuration, Uk is the kth eigenvector or principal component

of the covariance matrix Ω, ck is the kth PDM parameter and reflects the loading or

contribution of the kth principal component and D is the number of principal compo-

nents used in the PDM. It is quite common to use only the top part of the principal

components explaining, e.g., 98% of the total variance in the population (under the

assumption that the last 2% corresponds to biologically insignificant variance due to

random errors or artifacts). Finally, plugging (13) into (12) defines the PDM based

transformation model T(C̄, θ) for a population norm. It starts from the consensus

configuration C̄ and allows compensating for rotation, translation, scaling and typical

variation differences as confounding variables to determine true differences in form,

defined as outliers, with a given configuration C. Note that C̀ is the norm-equivalent

configuration of C after ML-estimation. The full set of transformation model para-

meters θ to estimate are three Euler angles, three translation directions, a scaling factor

and D PDM parameters. Without favoring any rotations, translations or scaling the

transformation model regularization is completely dependent on the PDM parameters

only and the eigenvalues a of the eigenvectors and can be defined as:

||L(θ)||2 =
1
2

D∑
k=1

c2
k

α2
k

(14)
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This is the Mahalanobis distance of a PDM parameter setting favoring more plausi-

ble configurations within the population sample and statistics. Stated differently, it

restricts the PDM from diverging too far away from the consensus configuration taking

into account the within-population variation.

It is interesting to note that when using a PDM the covariance matrix of the within-

population variation is moved from being used as the superimposition metric to being

part of the superimposition transformation model. This allows for an additional super-

imposition metric to be defined like the modelling of i.i.d AWGN in the practical

extended Procrustes ML-estimator. Doing so, results in an analysis that remains multi-

variate in nature whilst being able to determine local regions of discordancy. They are

then defined as being significantly bigger than the estimated noise-level after compen-

sation for within-population variation in the norm-equivalent besides the other con-

founding variables.

Appendix C: Augmented Superimposition
Likelihood formulations

Given the observed landmarks a joint estimation is presented where besides the trans-

formation parameters θ also the outlier map of latent variables or unobserved data Z =

{zj|j = 1,..., K} is to be estimated. Following an Expectation-Maximization (EM) based

estimation strategy, the likelihood of transformation parameters can be re-written in

terms of the latent variables as:

Pr(D|θ) =
∑

z

Pr(D, Z|θ) (15)

EM produces a sequence of parameter updates
{
θ̂ (t)|t = 0, 1, . . .

}
by alternating two

steps: the E-step and the M-Step. In the E-step, the latent variables are estimated given

the observed landmarks and the current update of the transformation model para-

meters. This is achieved using the conditional expectation generating the so-called Q-

function:

Q(t+1) =
∑

Z

Pr
(
Z|D, θ̂ (t)

)
log Pr(D, Z|θ) =

EPr(Z|D,θ̂ (t))[log Pr(D, Z|θ)]
(16)

In the M-step, the Q-function is maximized generating a new update for the trans-

formation parameters:

θ̂ (t+1) = argmaxθQ(t+1) (17)

If the latent variable is modeled as a stochastic variable the outlier map Z becomes a

random map with an associated prior-distribution Pr(Z). Under the assumption that

the outlier map is independent from the transformation model parameters:

Pr(D, Z|θ) = Pr(D|Z, θ)Pr(Z) (18)

Focusing on the second factor in (18): Let P be the prior probability of having an

inlier (for example the fraction of form differences thought to be generated by the

inlier-process) and let 1 - P be the prior probability of having an outlier. Then,
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assuming Z to be i.i.d we can specify Pr (Z) as a product of i.i.d. Bernoulli distributed

variables zj :

Pr(Z) =
K∏

j=1

Pzj (1 − P)(1−zj) (19)

Note that extra constraints on the outliers can be incorporated here by choosing an

alternative prior distribution Pr(Z). For example, in [33] spatially coherent outliers are

modeled by considering a binary Markov-Random-Field with associated Gibbs prior.

Focusing on the first factor in (18): The complete likelihood under the assumption of

independent landmarks can be specified by conditioning individual residual likelihoods

on the state of the binary-valued latent variable zj signaling whether a local form differ-

ence was generated by the inlier-distribution Pri (.) or the outlier-distribution Pro(.):

Pr(D|Z, θ) =
K∏

j=1

Pr(dj|zj, θ) (20)

with

Pr(dj|zj, θ) =
{

Pri(dj|θ), if zj = 1
Pro(dj), if zj = 0

(21)

or, equivalently using a mixture model notation:

Pr(dj|zj, θ) = Pri(dj|θ)zjPro(dj)(1−zj) (22)

The extension of a negative log-likelihood assuming a perturbation model only into a

complete negative log-likelihood assuming an outlier-process as well is obtained by

taking the negative logarithm of (18) using (19-22):

l(θ) = −
K∑

j=1

zj(log Pri(dj|θ) + P)+

K∑
j=1

(1 − zj)(log Pro(dj|θ) + 1 − P)

(23)

In the E-step the Q-function of (23) is obtained by dropping any constant terms

independent from the parameters and by replacing the values of zj with their expected

conditioned values:

EPr(Z|D,θ̂ (t))[zj] =
∑

zj∈{0,1}
zjPr

(
zj|dj, θ̂ (t)

)
=

Pr
(
zj = 1|dj, θ̂ (t)

)
= bj

(24)

Using the Bayes Rule we can write:

bj =
Pr

(
dj|zj = 1, θ̂ (t)

)
Pr(zj = 1)∑

x∈{0,1}
Pr

(
dj|zj = x, θ̂ (t)

)
Pr(zj = x)

(25)
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Based on (19) and (22) we then obtain:

bj =
Pri(dj|θ̂ (t))P

Pri

(
dj|θ̂ (t)

)
P + Pro

(
dj|θ̂ (t)

)
(1 − P)

(26)

A practical extended Procrustes ML-estimator

As an example ML-estimator extension, we start from the Procrustes ML-estimator

assuming a zero-mean Gaussian perturbation model with i.i.d landmark displacements

(using the negative log-likelihood in (19)). Hence, the model metric reflects additive

white Gaussian noise (AWGN) with a single noise parameter s. This constitutes the

inlier-distribution Pri(x). For the outlier-distribution Pro(x) several choices can be con-

sidered. If some knowledge about the associated distribution of the outlier generating

process is given, than this can be used. In most cases, however, this knowledge is not

known and could be estimated as well [33,36]. However, we simply assume the outlier-

distribution to be uniform such that:

Pro(x) = δ with 0 < δ < 1 (27)

In this simplified case, the negative Q-function, written down from an M-estimator

point of view, has a r-function equal to:

ρ(dj) =
bj

2σ 2
d2

j + bj log
√

2πσ − (1 − bj) log δ (28)

with

bj =
Pri

(
dj|θ̂ (t)

)
P

Pri

(
dj|θ̂ (t)

)
P + δ(1 − P)

(29)

From (28) we see that for inlier landmarks (bj = 1) the extended Procrustes ML-esti-

mator is equal to the original Procrustes ML-estimator. Furthermore, an outlier land-

mark (bj = 0) does not contribute to the estimation of the transformation parameters θ

or model metric parameter s because log δ is independent of both. From (29), we see

that the estimation s of the latent variables during superimposition is dependent on

the estimated of the inlier-distribution and also on the prior outlier distribution para-

meters P and δ. In order to simplify the choice of prior values, we combine these

inter-dependent parameters into a single parameter l = δ(1 - P)/P such that:

bj =
Pri

(
dj|θ̂ (t)

)
Pri

(
dj|θ̂ (t)

)
+ λ

(30)

Furthermore, log δ can be substituted with log l in (28) without any effect to the

parameter estimation. Changing the parameter l changes the amount of outliers versus

inliers. A proper choice or fine-tuning of this parameter is therefore required, but can

prove to be challenging. This choice is made easier and, more importantly, statistically

relevant following [37]. Equation (30) reflects the posterior probability of a local
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residual to belong to the inlier-distribution, called the inlier-belief. The outlier-belief

can then be defined similarly as:

1 − bj =
λ

Pri

(
dj|θ̂ (t)

)
+ λ

(31)

The outlier-belief exceeds the inlier-belief if bj <0.5 or Pri

(
dj|θ̂ (t)

)
< λ which is

equivalent to MD2
j > −2 log λ

√
2πσ with MDj = dj

/
σ the Mahalanobis distance. In

statistics, an observation is called abnormal or atypical with respect to a given normal

distribution if its (Mahalanobis) distance exceeds a predefined threshold. Because of its

dependence on s in, the Mahalanobis distance threshold above which a local form dif-

ference is considered abnormal changes when s changes or is updated. Furthermore,

observations are more easily rejected from classes with a broad distribution (e.g. overall

big landmark displacements) than from classes with a narrow one, making the choice

of l dependent on the current superimposition problem, leading to a different l set-

ting for every different configuration to superimpose. Because of these problems it is

not clear how l should be chosen. Ideally, a spatial displacement should be considered

abnormal if MDj > �, where � >0 is an explicit Mahalanobis distance threshold that is

equal for all normal inlier-distributions alike. Therefore, taking into account the depen-

dence on s, l is replaced by:

λ =
1√

2πσ
exp

(
−1

2
κ2

)
(32)

l is now inlier-distribution dependent and re-parameterized using a more interpreta-

ble prior outlier-parameter �. The actual choice of � is equivalent to the choice of a

statistical significance level above which local form differences are considered atypical

(outlier) compared to a typical Gaussian (inlier-) distribution.

Appendix D: Computational results
In this section the results obtained using an outlier process as formulated in the Ext-P

ML-estimator are numerically compared to two commonly used alternative estimators:

the popular Procrustes least sum of squares (LLS) and the resistant-fit or repeated

median estimator.

Using increasing amounts of landmarks from the surgical intervention superimposi-

tion problem depicted in Figure 4(a) and 4(c), a time-complexity analysis is given in

Figure 6. It is obvious that the resistant-fit suffers from an exponential time-complex-

ity, whereas the LLS as well as the Ext-P ML estimator remain computationally practi-

cal even up to 10.000 landmarks.

Using the same surgical intervention superimposition problem, the Euclidean dis-

tance between landmark configurations after superimposition as a function of �

(Kappa) are given in Figure 7. For lower values of �, the Ext-P solution differs from

the LSS solution. A clear bending point is observed for � in-between 2 to 3, corre-

sponding to the typically used p-values of 0.05 and 0.001 for significance assessment.

As expected, for higher values of �, the Ext-P solution equates the LSS solution.

Finally, for the three types of assessment (abrupt changes, asymmetry and discor-

dancy) in Figure 4, the Ext-P ML-estimator is used with two different values of Kappa;
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� = 2 (robust superimposition) and � = 6 (un-weighted superimposition, mimicking

the Procrustes LSS superimposition (see Figure 7)). Histograms of pooled X, Y, and Z

directed local form differences after superimposition are visualized in Figure 8, with

the respective estimated AWGN models overlaid. The tighter the model-fit onto the

histogram, the better the respective model assumption and therefore the better the

superimposition. For all three assessments, the robust superimposition with � = 2, pro-

vides a better model in the case of a presented facial abnormality.

Figure 7 Superimposition differences. The difference, expressed as an Euclidean Distance between
resulting landmark configurations, between the Ext-P ML-estimator solutions for varying values of � and
the Least Sum of Squares Procrustes ML-estimator solution, using the surgical intervention superimposition
of Figure 4 (a-c).

Figure 6 Time Complexity. Time complexity analysis of the Ext-P ML-estimator in function of the amount
of landmarks against the resistant-fit (left) and Least Sum of Squares Procrustes ML-estimator (right).
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