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Influenza A virus (IAV) is a significant human pathogen causing annual epidemics and 
periodic pandemics. CD8+ cytotoxic T lymphocyte (CTL)-mediated immunity contrib-
utes to the clearance of virus-infected cells, and CTL immunity targeting the conserved 
internal proteins of IAVs is a key protection mechanism when neutralizing antibodies are 
absent during heterosubtypic IAV infection. However, CTL infiltration into the airways, its 
cytotoxicity, and the effects of produced proinflammatory cytokines can cause severe 
lung tissue injury, thereby contributing to immunopathology. Studies have discovered 
complicated and exquisite stimulatory and inhibitory mechanisms that regulate CTL mag-
nitude and effector activities during IAV infection. Here, we review the state of knowledge 
on the roles of IAV-specific CTLs in immune protection and immunopathology during 
IAV infection in animal models, highlighting the key findings of various requirements and 
constraints regulating the balance of immune protection and pathology involved in CTL 
immunity. We also discuss the evidence of cross-reactive CTL immunity as a positive 
correlate of cross-subtype protection during secondary IAV infection in both animal and 
human studies. We argue that the effects of CTL immunity on protection and immuno-
pathology depend on multiple layers of host and viral factors, including complex host 
mechanisms to regulate CTL magnitude and effector activity, the pathogenic nature of 
the IAV, the innate response milieu, and the host historical immune context of influenza 
infection. Future efforts are needed to further understand these key host and viral factors, 
especially to differentiate those that constrain optimally effective CTL antiviral immunity 
from those necessary to restrain CTL-mediated non-specific immunopathology in the 
various contexts of IAV infection, in order to develop better vaccination and therapeutic 
strategies for modifying protective CTL immunity.
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iNTRODUCTiON

Influenza A virus (IAV) causes acute respiratory tract infection and is a significant human pathogen 
causing annual epidemics and periodic pandemics (1). Annual influenza epidemics are caused by 
circulating “seasonal” influenza viruses, which currently include H1N1 and H3N2 subtype IAVs and 
influenza B viruses. The RNA genome of IAV has high mutation rates due to the high error rate 
of its RNA polymerase, allowing the viruses to quickly evolve under selection pressures to develop 
antigenically drifted strains. Occasional influenza pandemics are caused by the introduction of novel 
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antigenically shifted strains to human populations. These strains, 
including 2009 pandemic H1N1 IAV, often result from the reas-
sortment of different zoonotic IAVs (2). Reassortment also can 
generate antigenically distinct new subtypes that pose a pandemic 
threat to the human population, such as the recent outbreak of 
human infections of zoonotic H7N9 IAV in China (3). Due to their 
ability to constantly generate new strains through mutation and 
reassortment, IAVs pose continuing threats to human populations.

Upon encountering IAVs, the complex host immune system 
senses the invasion and then mounts innate and adaptive immune 
responses intended to clear the virus. Multiple arms of host immu-
nity are used for protection against influenza infection. The innate 
responses initiate inflammation, limit virus replication, and provide 
signals to activate adaptive immunity (4). The ultimate control of 
virus replication and clearance of virus-infected cells rely on the 
virus-specific adaptive immune responses, including antibodies 
and CD4+ and CD8+ T cells (5). IAV-specific antibodies bind and 
neutralize viral proteins (neutralizing antibodies) or mediate other 
virus clearance activities (non-neutralizing antibodies) in coopera-
tion with immune cells, including CD8+ T cells and lung-resident 
phagocytes (6–10). CD4+ T cells help B cells for antibody production 
and CD8+ T cells for activation and proliferation. It has been long 
acknowledged that CD8+ cytotoxic T lymphocyte (CTL)-mediated 
immunity contributes to virus clearance through cytolysis of the 
virus-infected target cells and production of cytokines that further 
enhance antiviral inflammation (11). However, there is accumulat-
ing evidence that the IAV-specific CD8+ T cells and their effector 
mediators also contribute to immunopathology during IAV infec-
tion. A variety of mechanisms have been uncovered to regulate the 
magnitude and effector activities of IAV-specific CTL responses 
for effective virus clearance while limiting inflammation during 
influenza infection.

Here, we first review the historical advances in understand-
ing protective and immunopathogenic roles of IAV-specific 
CTL responses using either IAV infection or non-viral infection 
models. Next, we focus on the current state of knowledge for how 
various regulatory mechanisms control immune protection and 
pathology by CTL responses during influenza infection. This is 
followed by a discussion of clinical findings about the role of CTL 
responses in human IAV infections, highlighting the evidence that 
emerged after the 2009 H1N1 pandemic and recent outbreaks of 
human infection by H7N9 IAVs. Finally, we summarize our cur-
rent understanding of the multiple layers of host and viral factors 
mediating the outcome of antiviral CTL responses and suggest 
future key research directions.

iAv iNFeCTiON iNDUCeS ANTiviRAL 
CD8+ T-CeLL ReSPONSeS

The mammalian airways have very large mucosal surfaces for gas 
exchange. IAV infection begins with virus invasion and replica-
tion in the upper airway epithelium, and from there, it can spread 
further into the lower airways and lung, causing severe infection. 
Meanwhile, the lung epithelial and endothelial cells and other 
airway resident innate cells, including several dendritic cell (DC) 
subsets, alveolar macrophages, and innate lymphoid cells, sense 
the viruses and initiate innate inflammation, acting as the first 

line of defense (4). Innate and epithelial cells use specific pattern 
recognition receptors (PRRs) to recognize various viral products 
containing pathogen-associated molecular patterns (PAMPs), 
including endosome-bound TLR3 (dsRNA), TLR7/8 (ssRNA), 
cytosolic RIG-I (ssRNA), and NLRP3 (viral ssRNA) (12). Innate 
sensing of viruses initiates production and/or release of various 
inflammatory cytokines, including type I interferon (IFN), IL-1β, 
IL-6, and TNF-α. These cytokines induce multiple mechanisms 
in the infected cells to limit virus replication and also stimulate 
DC activation for effective antigen acquisition and presentation 
to initiate IAV-specific adaptive responses.

At least three subsets of lung-resident DCs have been found 
to play a role in responding to IAV infection in mice (13, 14). 
Lung plasmacytoid DCs (pDCs) are classic potent producers of 
type I IFN after detecting virus (15) but were initially thought 
to be dispensable for antiviral T-cell immunity (16). However, 
recent studies found that pDCs also migrate into lung-draining 
lymph nodes (LNs) to play a different role in certain IAV infection 
contexts (17, 18) that will be discussed later in this review. Two 
subsets of lung DCs, CD103+ and CD11b+ DCs, are migratory 
DCs (19, 20) that bridge innate and adaptive immunity during 
influenza infection. After being activated by virus infection and 
innate cytokines, they migrate out of the inflamed lung into the 
lung-draining LNs in a CCR7-mediated way (21), carrying the 
acquired viral antigen; in the LNs, these migratory DCs either 
directly present antigens to naive T cells or transfer the antigen 
to other specific LN DC populations for further presentation to 
naive T cells (19). Naive T cells in the LNs recognize the presented 
IAV-specific antigens using their T-cell receptors (TCRs) and 
receive various costimulation signals from the activated DCs, 
sequentially undergoing clonal selection, expansion, activation, 
and differentiation into IAV antigen-specific effector CD4+ and 
CD8+ T cells. Studies have shown that, following IAV infection, 
accelerated migration of DCs carrying antigens from the infected 
lung to LNs occurs only during the early phase of infection (the 
first 36 h after infection) (22, 23), and activation of the naive T 
cells in the LNs then occurs in an ordered, sequential fashion, in 
accordance with the tempo of the DC migration (23).

Influenza A virus infection drives CD4+ T-cell differentiation 
mainly into Th1 effector T cells. These “helper” cells provide help 
to B cells and CD8+ T cells in different ways via costimulatory 
signals and cytokines. Notably, CD4+ T-cell help is not essential 
for the primary effector CD8+ T-cell responses (24), although 
it is important for the generation of the optimal magnitude of 
memory CD8+ T-cell responses after IAV infection (25). Effector 
CD8+ T cells then migrate from the LNs into the infected and 
inflamed lung where the survival and proliferation of the CTLs 
are further shaped by interactions with various non-migratory 
DC populations in lung (26–28). IAV-specific effector CD8+ T 
cells are cytotoxic cells equipped to specifically recognize and kill 
the virus-infected cells and produce various cytokines.

Following IAV clearance, the generated virus-specific B cells 
and CD4+ and CD8+ T cells undergo a rapid contraction phase 
with only a small proportion surviving and differentiating into 
memory cells, which form the memory pool necessary to pro-
tect against future infections with the same or similar viruses. 
During this process, chemokine receptors CCR5 and CXCR3 are 
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important in regulating the virus-specific CTL contraction and 
memory generation within the infected lung (29, 30). Studies 
have shown that residual IAV antigen depots in lung-draining 
LNs can persist for weeks after virus clearance; the prolonged 
presentation of the residual antigen does not prime new naive 
CD8+ T cells (31) but helps to maintain the large number of the 
memory CD8+ T cells in the draining LNs or in the lung airways 
possibly by regulating circulation patterns and activation states of 
the local memory CD8+ T cells (32–34). However, in contrast to 
the lung populations, this antigen is not required for maintenance 
and circulation of the peripheral memory CD8+ T cells (35). 
Recently, three major subsets of memory T cells are recognized 
based on their anatomical location, migration patterns, and 
additional phenotypic and effector markers: central memory T 
cells (Tcm), effector memory T cells (Tem), and tissue resident 
memory T cells (Trm). The biology of these different subsets is 
outside the scope of the current review.

It is worth noting that during the differentiation of naive CD8+ 
T cells into effector CTLs and then into distinct memory subsets, 
the cells undergo massive transcriptional programing that regu-
lates their effector or memory potential (36). IRF4 (37, 38) and 
Blimp1 (39) have been found as important transcription factors 
that regulate CTL clonal expansion, effector differentiation, and/
or effector activity during IAV infection.

In the following review, we discuss how the activation, pro-
liferation, survival, migration, localization, and effector activity 
of IAV-specific CD8+ T cells are tightly regulated by antigen 
load, multiple cytokines, and costimulatory and/or coinhibitory 
signals provided by various cells in the LNs and in the infected 
lung. Appropriate control of the magnitude and effector activity 
of IAV-specific CD8+ cells is required both for an effective antigen 
removal and for limiting the potential immunopathology.

iAv-SPeCiFiC CD8+ T CeLLS ARe 
CYTOTOXiC AND CYTOKiNe/
CHeMOKiNe-PRODUCiNG CeLLS

Influenza A virus-specific CD8+ CTLs play a vital role in 
eliminating IAV-infected host cells in the lung through their 
two well-defined effector activities: antigen-specific cytotoxic-
ity and cytokine/chemokine production. The CTLs target only 
virus-infected host cells, using their TCRs to recognize specific 
viral peptides (p) in complex with host major histocompat-
ibility complex (MHC) molecules (pMHC) on the cell surface. 
TCR recognition and engagement of pMHC is a prerequisite 
for subsequent CTL cytotoxicity and cytokine production. 
CTL cytotoxicity is mediated in three known ways: perforin/
granzyme-mediated cytolysis, apoptosis mediated by FasL/Fas, 
and TRAIL/TRAIL-DR signaling (40–43). CTLs contain a pore-
forming protein (perforin) and cytotoxic granules comprising 
proapoptotic proteases called granzymes. Perforin complexes 
form pores between the CTL and target cell, and the granules 
then release granzymes into the target cells through these pores, 
with granzyme B one of the most abundant (40). CTLs also use 
two membrane-bound TNF family ligands, FasL and TRAIL, for 
targeted cell killing. Engagement of these molecules with their 

cognate receptors (Fas and TRAIL-DR) on infected cells initiates 
an apoptotic signaling cascade (41–43).

Influenza A virus-specific CD8+ CTLs are also equipped to 
produce a range of cytokines and chemokines. Classically, IFN-γ 
and TNF-α are the most prominent effector cytokines produced 
by CTLs, and cells producing them are often referred to as classi-
cal “Tc1” cells. IFN-γ is a potent antiviral cytokine. It can enhance 
the cytotoxicity of other immune cells, promote further activation 
of DCs, and help B cells to promote antibody isotype switching 
(44). TNF-α is primarily a proinflammatory cytokine, induces 
non-specific death of infected cells, and regulates the function of 
other immune cells through TNFRs (45). CTLs are not the main 
source of IL-2, but a small proportion of CTLs can produce IL-2 
after receiving certain costimulatory signals, which in return may 
provide proliferation and survival signals to themselves and other 
CTLs (46). CTLs producing IFN-γ, TNF-α, and IL-2 are consid-
ered more potent than those producing only one or two cytokines 
(47). Different subsets of IAV antigen-specific CTLs differ in their 
ability to produce combinations of the three cytokines (48).

IL-10 is usually produced by regulatory CD4+ T cells (Treg) 
and/or helper CD4+ T cells. It is commonly recognized as an 
immune regulatory/anti-inflammatory cytokine that serves as 
a brake on ongoing inflammation. IL-10 was found to be pro-
duced in large quantities in IAV-infected lungs, and surprisingly, 
the effector CD8+ T cells that simultaneously produced IFN-γ 
contributed a large fraction of IL-10 (49). Blocking the action 
of IL-10 during IAV infection resulted in enhanced pulmonary 
inflammation and lethal injury (49). Thus, CD8+ T cells produce 
both anti-inflammatory IL-10 and antiviral IFN-γ to fine-tune 
the CTL activity to an effective but restrained level.

Recently, studies found small subsets of CD8+ effector T cells 
in the IAV-infected lung that could produce non-classical CTL 
cytokines (50–53): “Tc2” cells producing IL-4, IL-5, and IFN-γ 
and “Tc17” cells producing IL-17 and IFN-γ. In vitro polarized 
Tc2 and Tc17 cells are as cytotoxic as Tc1 cells, and the adoptive 
transfer of Tc2 or Tc17 cells into infected mice provided different 
levels of survival protection after otherwise lethal IAV infection 
(50, 52, 53). Relative to Tc1 cells, Tc2 and Tc17 cells account for 
a very small proportion of effector CD8+ T cells in vivo, and the 
extent of their effector activity during IAV infection in vivo needs 
to be further defined.

The two CTL effector activities (cytotoxicity and cytokine pro-
duction) are precisely regulated in the infected lung by a variety 
of factors, including their anatomic localization and their interac-
tions with different antigen-presenting cells with diverse pMHC 
density and costimulatory signals, to achieve effective target cell 
killing while limiting non-specific inflammation (Figure  1). 
These mechanisms will be discussed in detail below.

iAv-SPeCiFiC CD8+ T CeLLS ARe 
CRUCiAL FOR viRUS CLeARANCe AND 
PROviDe PROTeCTiON DURiNG iAv 
iNFeCTiON

The role of CTLs in clearing IAV has been demonstrated in 
multiple studies using adoptive transfer of IAV-specific CTLs into 
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FiGURe 1 | Regulation of CTL magnitude and effector activity. Right: CTL effector mechanisms against IAV in the infected lung or airway: the IAV-specific CTL 
targets IAV-infected airway epithelial cells by recognizing a viral peptide presented by MHCI molecules on the surface of infected cells; the CTL then induces cell 
death in the targeted cell through perforin/granzyme, FasL/Fas, and/or TRAIL/TRAIL-DR signaling; CTLs also can produce IFN-γ, TNF-α, IL-2, CCL3, CCL4, and 
other cytokines and chemokines to further enhance inflammation and immune activation in the infected lung. Left: various regulatory mechanisms to control the 
magnitude or effector activity of CTLs though costimulatory (upper) or coinhibitory (lower) signals provided in the lung-draining LNs or the infected lung. An optimal 
magnitude of protective CTL responses is achieved by balancing the costimulatory and coinhibitory signals, and dysregulation or imbalance among those signals 
can result in insufficient or exuberant CTL responses, leading to inefficient viral control or damaging immunopathology.
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naive recipient mice (Table 1). In these studies, after the adop-
tive transfers, lung virus titers and/or the time to virus clearance 
were reduced, leading to accelerated recovery from non-lethal 
infection or survival of otherwise lethal infection (54–56). The 
contribution of CTLs to protective anti-IAV immunity is further 
corroborated by studies using β2-M-deficient mice, which are 
defective in MHCI complex assembly and antigen presentation 
and thus fail to produce functional CD8+ T cells (57). The β2-M-
deficient mice showed a significantly delayed pulmonary virus 
clearance after non-lethal IAV infection and a significantly higher 
mortality rate after a lethal IAV infection than the control β2-M 
heterozygous mice (57), showing that CD8+ T-cell immunity is 
important in protection against IAV infection. However, both 
the β2-M-deficient mice and mice depleted of CD8+ T cells were 
able to eventually clear the virus and recover from non-lethal IAV 
infection (58), suggesting that the CTL response is not the sole 

effector of antiviral immunity during IAV infection. IAV-specific 
immunity consists of multiple immune mechanisms, including 
CTLs, antibodies, and CD4+ T-cell responses, which promote 
IAV clearance and host protection.

Both CTL effector activities (cytotoxicity and cytokine 
production) can contribute to protective immunity, but antigen-
specific target cell destruction by CTL cytotoxicity is believed to 
be the primary CTL activity used for IAV clearance (11). Earlier 
studies showed that either perforin/granzyme- or FasL/Fas 
signaling-mediated apoptosis provided sufficient CTL cytotoxic-
ity for efficient virus clearance (41). Later, TRAIL/TRAIL-DR 
signaling was found to contribute to CTL cytotoxicity and virus 
clearance (42, 43). In a non-viral infection model, in the absence 
of perforin, the antigen-bearing alveolar epithelial cells are not 
sensitive to FasL/Fas-induced cell death mediated by transferred 
antigen-specific CTLs, suggesting that CTLs may use different 
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TABLe 1 | Overview of studies demonstrating immune protection by the CD8+ T-cell responses during iAv infection.

experimental model iAv subtype/
infection type/
pathogenicity

Disease outcome after iAv 
infection

Measured CD8+ T-cell properties Conclusion 
about CD8+ 
T cells

Reference

effector 
mediator

Antigen 
specificity

Adoptive transfer of IAV-
primed lymphocytes into 
naive mice

A/WSN(H1N1); lethal 
dose

Lower lung virus titers in recipient vs. 
non-recipient mice

IAV-specific 
cytotoxicity

Homologous 
IAV-primed effector 
lymphocytes

T cells are 
protective

(54)

Adoptive transfer of IAV-
primed lymphocytes into 
naive BALB/c mice or naive 
nude mice

Mouse-adapted A/
Port Chalmers/l/73 
(H3N2, MRC-9); 
lethal infection

Lower lung virus titer and greater 
recovery in recipient vs. non-recipient 
mice, but no significant protection 
against lethal infection

IAV-specific 
cytotoxicity

Homologous 
IAV-primed effector 
lymphocytes

T cells are 
protective

(55)

Adoptive transfer of IAV-
specific CD8+ T-cell clones 
into naive mice

X31(H3N2) and A/
JAP/305/57(H2N2) 
for non-lethal 
infection; A/
PR/8/34(HINI) for 
lethal infection

Lower lung virus titer after non-lethal 
infection; complete survival after 
lethal infection in recipient vs. non-
recipient mice

IAV-specific 
cytotoxicity

Kd-restricted, 
NP-specific 
BALB/c clones 
T9/13 and BA4; 
Db-restricted, 
NP-specific C57BL 
clones B4 and B8

IAV-specific 
CD8+ T cells 
are protective

(56)

Wt and B2-M-deficient mice A/Port 
Chalmers/1/73 
(H3N2) for non-
lethal infection; A/
PR/8/34(H1N1) for 
lethal infection

Later virus clearance after non-lethal 
infection and greater mortality after 
lethal infection in B2-M-deficient vs. 
heterozygous mice, but virus could 
be cleared in the B2-M-deficient 
mice

IAV-specific 
cytotoxicity

Not described IAV-specific 
CD8+ T cells 
are protective

(57)

Fas-deficient mice; chimeric 
mice with T lymphocytes 
with/without perforin 
deficiency into mice with/
without perforin deficiency

X31(H3N2) infection Higher lung virus titer and later virus 
clearance in Fas-deficient mice; 
perforin-deficient CD8+ T cells 
resulted in later virus clearance in wt 
mice but uncontrolled virus titer in 
Fas-deficient mice

Not described Not described CTLs clear 
IAVs via 
perforin- and/
or Fas-
dependent 
processes

(41)

Adoptive transfer of IAV-
specific, in vitro polarized Tc1 
or Tc2 HA-specific CD8+ T 
cells into naive mice

A/PR/8/34(H1N1) for 
lethal infection

Tc1 effectors but not Tc2 effectors 
reduced lung virus titer during early 
infection; Tc1 effectors conferred 
higher survival protection than Tc2 
effectors against lethal infection

Tc1 and Tc2 were 
equally cytotoxic 
but produced 
different cytokines 
and chemokines; 
localized in the 
lung differently

Kd-restricted, 
HA-specific CD8+ 
T cells from a 
BALB/c clone 4 
TCR transgenic 
mice; in vitro 
polarized Tc1 or 
Tc2 effectors

Tc1 is more 
protective than 
Tc2 effectors

(50)

Same as above, Tc1 and 
Tc2 mice with/without IFN-γ 
deficiency were compared

A/PR/8/34(H1N1) for 
lethal infection

IFN-γ-deficient Tc1 cells were 
equally effective in viral control; 
IFN-γ-deficient Tc2 cells were 
effective in viral control but showed 
the severest impairment of lung 
function

Same as 
described above

Same as above 
but with/without 
IFN-γ deficiency

Tc2 but not 
Tc1 depends 
on IFN-γ for its 
protective role

(51)

Adoptive transfer of in vitro 
polarized Tc17 and Tc1 OT-I 
CD8+ T cells into naive mice

OT-I antigen-bearing 
A/PR/8/34(H1N1) for 
lethal infection

Tc17 and Tc1 provided equivalent 
survival protection against lethal 
infection; IFN-γ-deficient or FasL-
deficient Tc17 cells were less 
protective, and perforin-deficient Tc1 
cells were not protective

Tc17 primarily 
produced IL-17 
and some IFN-γ, 
TNF-α, and 
IL-2; negative 
for granzyme 
B, perforin, and 
cytotoxicity

OT-I CD8+ T 
cells were in vitro 
polarized into Tc17 
and Tc1 cells

Tc17 depends 
on IFN-γ and 
FasL; Tc1 
depends on 
perforin for 
cytotoxicity 
and protective 
efficacy

(52)

IAV infection of wt and TRAIL-
deficient mice; adoptive 
transfer of CD8+ T cells with/
without TRAIL deficiency into 
infected wt mice; antibody 
blockage of TRAIL signaling 
in IAV-infected wt mice

A/PR/8/34(H1N1) for 
lethal infection

Greater morbidity and virus load in 
TRAIL-deficient vs. wt mice; transfer 
of TRAIL-deficient CTLs into infected 
mice provided less survival protection 
than wt CTLs; delayed virus 
clearance after antibody blockade of 
TRAIL signaling

Lower CTL 
cytotoxicity in 
TRAIL-deficient 
vs. wt mice

Similar magnitude 
of IAV-specific 
CTLs in wt and 
TRAIL-deficient 
mice

CTLs utilize 
TRAIL-
mediated 
cytotoxicity 
to control IAV 
infection

(42, 43)

wt, wild type.
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cytotoxicity mechanisms depending on the lung environmental 
milieu. Such differences are especially evident in studies compar-
ing Tc1, Tc2, and Tc17 cells: after in vitro polarization and adop-
tive transfer into IAV-infected mice, Tc1 cell efficacy depended on 
perforin/granzymes, while Tc17s depended on FasL/Fas signal-
ing for cytotoxicity (50, 52) and Tc1 cells did not rely on IFN-γ, 
but both Tc2 and Tc17 cells required IFN-γ for their protective 
efficacy (50–52). Thus, CD8+ effector T cells can protect against 
IAV infection via a number of redundant effector mechanisms 
(53). The relative contribution of each mechanism to protective 
efficacy may depend on a variety of factors: the differentiation 
status of the effector CD8+ T cells; the target cell type, activation 
status, or receptor expression; the local lung environment in the 
context of IAV replication; and others.

iAv-SPeCiFiC CD8+ T CeLLS 
CONTRiBUTe TO iMMUNOPATHOLOGY 
DURiNG iAv iNFeCTiON

The two effector activities of IAV-specific CTLs allow effective 
specific killing of virus-infected cells but can also cause non-
specific, tissue-destructive inflammation. In an earlier study, IAV 
infection of athymic nude mice, which cannot generate functional 
T cells, led to a longer survival and a slower progression of lung 
pathology than infection of wild-type mice, but the nude mice 
had a lower eventual survival rate, persistent lung injury, and 
higher lung virus titers (59). This study provided a first glimpse 
into the double-edged effects of antiviral T-cell immunity: while 
it provides necessary protective immunity, it does so at the cost 
of immunopathology. Since that study, immunopathology caused 
by IAV-specific CTLs has been further elucidated (Table 2).

One study used a non-viral infection model with CD8+ T 
CTLs specific for an IAV hemagglutinin (HA) antigen adoptively 
transferred into mice whose alveolar epithelial cells constitutively 
expressed the HA antigen. The CTL-mediated immune response 
is initiated when the transferred CTLs recognize the HA antigen 
(60). In this model, the contribution of the IAV-specific CTLs 
to lung immunopathology can be isolated from inflammation 
caused by virus replication, allowing detailed dissection of lung 
immunopathology caused by CTL cytotoxicity, TNF-α/IFN-γ 
release, and their subsequent effects on alveolar epithelial cells 
(Table 2). This non-viral infection model was able to cause lethal 
lung injury. The recipient mice showed progressive weight loss, 
interstitial pneumonitis, compromised lung structure and func-
tion, and increased inflammatory cytokine levels in the lung, 
demonstrating that IAV-specific CTLs can cause immunopathol-
ogy (60, 61). Subsequent studies using this model revealed that 
the transferred CTLs were present only transiently (24–48 h) in 
the lung, and the targeted antigen-specific alveolar cells were 
stimulated by interaction with the CTLs to produce MCP-1 
and other inflammatory mediators before they underwent 
apoptosis, causing lung inflammation (62). The soluble TNF-α 
released by the CTLs induced further inflammatory cytokine 
production (65–67, 69) and non-specific apoptosis of bystander 
alveolar epithelial cells (63), contributing to both lung injury and 
inflammation. Additionally, IFN-γ production by the CTLs and 

subsequent IFN-γ signaling contributed to lung immunopathol-
ogy (64).

By isolating IAV-specific CTL responses, the non-viral infec-
tion model provided valuable insights into the CTLs’ contribu-
tions to lung immunopathology. It is also important to note 
that the sustained presence of IAV antigen in this model is not 
commonly found in the IAV infection model where the virus 
is eventually cleared; thus, the immunopathogenic effects of 
IAV-specific CTL responses were likely excessively amplified in 
this model and did not capture the protective effects that these 
cells provide in a natural infection. For example, a study using 
mice that express a TNF-α inhibitor in their alveolar epithelium 
demonstrates that TNF-α produced by the CTLs is a double-
edged sword: it indeed facilitates virus clearance but at the same 
time contributes to severe lung immunopathology (68). Thus, it 
is this delicate balance between immune protection and pathol-
ogy mediated by CTLs that determines the overall outcome in 
the host.

BALANCiNG THe iMMUNe PROTeCTiON 
AND iMMUNe PATHOLOGY OF CD8+ 
T CeLLS DURiNG iAv iNFeCTiON

After IAV infection, infiltration of the lung by IAV-specific 
CTLs and their subsequent effector activities are essential for 
virus clearance but also contribute substantially to lung immu-
nopathology; therefore, IAV-specific CTL responses must be 
balanced to mount effective antiviral immunity but limit tissue 
immunopathology. Studies using mouse models have provided 
insights into the complex, exquisite, control, and regulation of 
the magnitude of IAV-specific CTLs and their effector activities. 
These regulatory mechanisms include various costimulatory/
inhibitory signals, cytokine/chemokine signals, and different 
cell–cell interactions, among others, to balance the protective 
(Table  3) against pathological (Table  4) effects by IAV-specific 
CTLs (Figure 1).

In addition to antigen stimulation, effective CD8+ T-cell 
responses are commonly believed to require secondary costimu-
latory signaling from DCs and/or proliferation signals from 
CD4+ helper T cells. However, during IAV infection, the primary 
IAV-specific CTL response is largely independent of CD4+ helper 
T cells (24). Thus, various costimulatory signals from DCs and 
other innate immune cells are particularly important in generat-
ing effective IAV-specific CTL immunity. Studies using specific 
receptor-deficient mice and/or signaling blockade have shown 
that both CD80/CD28 and CD70/27 costimulatory signaling are 
pivotal for initial activation and expansion of IAV-specific naive 
CD8+ T cells in LNs (70, 83), and CD70/27 is especially critical 
for accumulation of the CTLs in the infected lung by sustaining 
their survival (46, 84). Other costimulatory signals, including 
4-1BBL/4-1BB, CD40L/CD40, and OX40L/OX40, collectively 
contribute to generate the optimal CTL response magnitude at 
late stages of infection and/or the optimal size and responsiveness 
of the memory CTL pool (83, 85, 86).

CD40L on the activated DC subsets provide important costim-
ulatory signals in optimizing the magnitude of IAV-specific CTL 
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TABLe 2 | Overview of studies demonstrating immunopathology caused by CD8+ T-cell responses during iAv infection.

experimental model iAv subtype/
infection type/
pathogenicity

Disease outcome after iAv 
infection

Measured CD8+ T-cell 
properties 

Conclusion about CD8+ T 
cells

Reference

Frequency/
number

effector 
mediator

Intranasal infection of BALB/c 
and athymic nude mice

Mouse-
adapted A/Port 
Chalmers/l/73 
(H3N2, MRC-9) 
causing lethal 
infection

Longer survival and slower 
progression of lung pathology, 
but eventually lower survival rate, 
persistent lung injury, and higher 
lung virus titers in nude vs. wt mice

Fewer 
and later 
lymphocytic 
lung 
infiltrates in 
nude mice

Nude mouse 
lymphocytes 
were non-
cytotoxic and 
functional

T cells provided protective 
immunity but also contributed 
to immunopathology

(59)

Adoptive transfer of 
HA-specific CD8+ T cells into 
mice expressing an IAV HA 
antigen in alveolar epithelial 
cells

Non-viral 
infection model

Progressive weight loss 
and interstitial pneumonitis, 
compromised lung structure and 
function, inflammatory cytokine 
production leading to lethal lung 
injury in recipient mice

Adoptive 
transfer of 
HA-specific 
CTLs

Cytotoxicity 
of HA-specific 
CTLs, activation 
of target 
alveolar cells to 
produce MCP-1 
cytokines

IAV-specific CTLs can cause 
severe lung injury after antigen 
recognition in the lung

(60–62)

Adoptive transfer of 
HA-specific CD8+ T cells with/
without perforin deficiency into 
mice expressing an HA antigen 
in alveolar epithelial cells; 
antibody blockage of TNF-α 
signaling

Non-viral 
infection model

Cell death and lung injury induced 
by perforin-deficient HA-specific 
CD8+ T cells in recipient mice 
depended on TNF-α not on Fas 
signaling; blockage of TNF-α 
signaling prevented lung injury

Adoptive 
transfer of 
HA-specific 
CTLs

TNF-α-
mediated 
apoptosis in 
bystander 
alveolar 
epithelial cells in 
the absence of 
perforin

TNF-α released by CTLs 
can cause severe lung injury 
by inducing non-specific 
apoptosis of alveolar epithelial 
cells

(63)

Adoptive transfer of 
HA-specific CD8+ T cells with/
without IFN-γ deficiency into 
mice expressing an HA antigen 
in alveolar epithelial cells

Non-viral 
infection model

More severe lung injury after 
transfer of IFN-γ-producing vs. 
IFNF-γ-deficient HA-specific CTLs; 
exacerbated lung injury in State1-
deficient recipients after transfer of 
IFN-γ-producing HA-specific CTLs

Adoptive 
transfer of 
HA-specific 
CTLs

IFN-γ released 
by IAV-specific 
CTLs

IFN-γ production of 
IAV-specific CD8+ T 
cells contributes to lung 
immunopathology and 
subsequent IFN-γ signaling 
of host cells regulates its 
inflammatory effects

(64)

Adoptive transfer of 
HA-specific CD8+ T cells with/
without TNF-α deficiency into 
mice expressing an HA antigen 
in alveolar epithelial cells

Non-viral 
infection model

More severe lung injury, morbidity, 
and mortality after transfer of TNF-
α-producing vs. TNF-α-deficient 
IAV-specific CTLs; TNF-α/TNFR1 
signaling activated target alveolar 
cells to express inflammatory 
cytokines MCP-1 and MIP-2

Adoptive 
transfer of 
HA-specific 
CTLs

TNF-α released 
by IAV-specific 
cells and TNF-α 
signaling-
induced 
inflammatory 
cytokines

Soluble TNF-α released by 
IAV-specific CD8+ T cells 
and TNF-α signaling induce 
inflammatory cytokine 
production and contribute to 
immunopathology

(65–67)

Adoptive transfer of IAV-
specific CD8+ T cells into (1) 
wt mice or mice expressing 
a TNF-α signaling inhibitor, 
adenovirus-14.7K protein, 
and (2) mice expressing an 
IAV antigen ± expression of 
inhibitor

(1) A/
PR/8/34(H1N1) 
infection and 
(2) non-viral 
infection model

(1) Less reduction of lung oxygen 
transfer in mice expressing TNF-α 
inhibitor than in wt mice, but 
delayed virus clearance and (2) 
less weight loss and lung injury 
in recipient mice expressing IAV 
antigen with TNF-α inhibitor

Adoptive 
transfer of 
IAV-specific 
CTLs

TNF-α released 
by IAV-specific 
CTLs

TNF-α released by CTLs and 
TNF-α signaling-mediated 
inflammation facilitate virus 
clearance but also cause 
lung injury and compromise 
lung function, contributing to 
immunopathology

(68)

Adoptive transfer of IAV-
specific CD8+ T cells into wt or 
TNF-R2-deficient IAV-infected 
mice

A/
Japan/57(H2N2) 
for lethal 
infection

Lethal infection in wt mice receiving 
no cells; complete survival 
protection in wt and TNFR2 mice 
receiving cells, but significant weight 
loss only in wt mice; no difference in 
virus control in mice receiving cells

Adoptive 
transfer of 
IAV-specific 
CTLs

TNF-α released 
by IAV-specific 
CTLs

IAV-specific CD8+ T cells 
protect mice from lethal 
infection but TNFR2 signaling 
of host cells mediates 
inflammation and contributes 
to immunopathology 

(69)
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responses in CD4+ T cell-independent immunity (71, 87). One 
study used an adenovirus-produced recombinant CD40L fused 
with IAV NP antigen (rAD-SNP40L) to target CD40 during IAV 
infection; this treatment successfully enhanced NP-specific CTL 
and antibody responses, reduced lung virus titers, and protected 
the mice from otherwise lethal IAV infection (71). Notably, type 
I IFN and IL-1 innate cytokines induced by IAV replication can 

activate DCs to increase the expression of these costimulatory 
molecules and thus promote IAV-specific CD8+ T-cell immunity 
(88, 89).

Another costimulatory receptor, 4-1BB, is differentially 
expressed on IAV-specific CTLs in lungs after infection with a 
low- and a high-pathogenic IAV. The higher level of 4-1BB is 
required to mount a higher magnitude of IAV-specific CTL 
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TABLe 3 | Tight regulation of CD8+ T-cell responses provides immune protection against iAv infection.

experimental model iAv subtype/
infection type/
pathogenicity

Disease outcome after 
iAv infection

Measured CD8+ T-cell properties Conclusion about 
CD8+ T cells

Reference

Frequency/number effector mediator

Wt and CTLA4Ig 
transgenic mice in which 
CD28 signaling on CD8+ 
T cells is blocked were 
infected with IAVs in the 
absence of CD4+ T cells

Mem/71(H3N1) 
infection

Virus clearance was 
significantly lower in 
CTLA4Ig transgenic than 
wt mice

Diminished proliferating 
IAV-specific CD8+ T cells 
in transgenic mice

Not described CD28 costimulation 
is crucial to mount 
efficient IAV-specific 
CTLs for efficient virus 
clearance

(70)

IAV infection of wt, 
CD40L-, CD4-, or CD8-
deficient mice treated 
with a NP-CD40L fusion 
protein (rAD-SNP40L)

A/
PR/8/34(H1N1), 
lethal infection

rAD-SNP40L treatment 
significantly protected 
wt and CD40L- or CD4-
deficient mice but not 
CD8-deficient mice from 
otherwise lethal infection, 
with reduced lung virus titer

Increased NP-specific 
CTLs and polyfunctional 
CD8+ T cells, along with 
increased NP-specific 
antibodies responses 
after treatment

NP-specific CTLs 
producing multiple 
cytokines

CD8+ T cells are crucial 
for rAD-SNP40L-
mediated protection 
against infection

(71)

IAV infection of wt and 
IL-7Ra449F-mutant mice

A/
PR/8/34(H1N1) 
infection

More severe weight loss 
and failure to control lung 
virus titer in mutant mice vs. 
wt mice

Significant reduction of 
IAV-specific CD8+ and 
CD4+ T responses after 
IAV infection in mutant 
mice

Not described IL-7 signaling is 
necessary for robust 
IAV-specific T-cell 
response needed for 
efficient virus clearance

(72)

IAV infection of wt and 
IL-12- or IL-18-deficient 
mice

X31(H3N2) 
infection

Delayed virus clearance 
from lung in IL-18-deficient 
mice vs. wt mice

Normal magnitudes 
of IAV-specific CTL 
responses in all groups 
after infection

Significantly reduced 
production of IFN-γ, 
TNF-α, and IL-2 by 
IAV-specific CTLs in 
the IL-18-deficient 
mice vs. wt mice

IL-18 induces optimal 
cytokine production 
by IAV-specific CTLs, 
which is necessary 
for the efficient virus 
clearance

(73)

Intranasal antibody 
blockade of PD-L1 
signaling during 
secondary IAV infection 

PR/8 challenge 
in X31-primed 
mice

Reduced weight loss and 
virus load in anti-PD-L1-
treated mice vs. untreated 
mice

Increased number of IAV-
specific CD8+ T cell in the 
lung in treated mice

Increased levels of 
granzyme B and 
IFN-γ production in 
the airway

Local PD-L1 blockade 
in airways enhances 
IAV CTL immunity, 
promoting virus 
clearance and recovery

(74)

Intraperitoneal antibody 
blockade of PD-L1 
signaling after infection 
with low- and high-
pathogenic IAVs

X31 and PR/8 as 
low- and high-
pathogenic virus 
for sublethal and 
lethal infections, 
respectively

Anti-PD-L1 treatment 
reduced lung virus titer only 
at late infection stage and 
only in PR/8 infection; no 
effect on illness or survival

Antibody treatment 
significantly increased 
IAV-specific CD8+ T cells 
only in PR/8-infected mice

No effects on CD8+ 
T-cell functionality

Systematic PD-L1 
blockade may enhance 
CTL protection in high-
pathogenic IAV infection

(75)

IAV infection of wt and 
Gal-9-deficient mice; 
blockade of Tim-3 
signaling via a Tim-3 
fusion protein (Tim-3Ig) 
after IAV infection

X31(H3N2) 
infection

Gal-9-deficient mice had 
faster virus clearance vs. wt 
mice; Tim-3 blockade in wt 
mice resulted in increased 
virus control

Enhanced IAV-specific 
CD8+, CD4 T cell and 
antibody responses in 
Gal9-deficient mice; 
Tim-3 blockade increased 
IAV-specific CTL number 
in the airway

Not described Gal-9/Tim-3 signaling 
constrains protective 
IAV-specific CTL 
immunity

(76)

IAV infection in wt and 
4-1BBL-deficient mice

X31 for sublethal 
infection; PR/8 
or PR/8-OVA for 
lethal infection

4-1BBL deficiency had no 
effect on disease severity 
after X31 infection, but 
resulted lower survival, 
higher virus titer, and 
reduced lung function after 
PR/8 infection vs. wt mice

Reduced IAV-specific 
CTLs in the lung of 
4-1BBL-deficient mice 
only after PR/8 infection

Not described 4-1BB stimulatory 
signaling is induced 
to control IAV-specific 
CTL magnitude to be 
commensurate with IAV 
infection severity

(77)
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responses for effective clearance of the high pathogenic IAVs 
(77). However, intranasal delivery of adenoviral-4-1BBL into 
the 4-1BBL-deficient mice after the high pathogenic IAV infec-
tion marginally improves survival at a low dose but exacerbates 
disease at a high dose; delivery of both doses of 4-1BBL-AdV into 
wild-type mice led to an increased mortality (77). This finding 
demonstrates an example that inducible costimulatory molecules 

have to be balanced to develop antiviral CTL immunity to a level 
commensurate with the pathogenicity of the IAVs.

Costimulatory signals can also result in exuberant T-cell 
inflammation that contributes to immunopathology. OX40 is a 
costimulatory receptor expressed only on activated T cells, and its 
interaction with OX40L on DCs imparts a survival signal to the T 
cells, preventing activation-induced cell death (90). Blockage of 
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TABLe 4 | Dysregulation of CD8+ T-cell responses contributes to immunopathology during iAv infection.

experimental model iAv subtype/
infection type/
pathogenicity

Disease outcome after iAv 
infection

Measured CD8+ T-cell properties Conclusion about 
CD8+ T cells

Reference

Frequency/
number

effector 
mediator

Administration of OX40 fusion 
proteins to IAV-infected mice

X31(H3N2) 
infection

Less weight loss, lower illness 
score, and no change in virus 
clearance in treated mice vs. 
untreated mice

Reduced total 
number of CD4+ 
and CD8+ T cells 
and reduced 
number of IAV-
specific CD8+ T 
cells in treated mice

Not described Exuberant T-cell 
infiltration during 
IAV infection 
contributes to 
immunopathology

(78)

IAV infection of wt and PD-1-
deficient mice

X31(H3N2) 
infection

Delayed weight loss during 
early infection but slower 
recovery in PD-1-deficient 
mice vs. wt mice; no 
difference in lung function

Significantly 
increased number 
of IAV-specific CTLs 
in PD-1-deficient 
mice

Increased 
granzyme B 
and CD107a 
(degranulation) 
levels in IAV-
specific, PD-1-
deficient CTLs

PD-1-negative 
regulation of IAV 
CTL immunity 
may limit 
immunopathology 
and facilitate 
recovery

(79)

IAV infection of wt and Qa-1b-
deficient mice; antibody 
blockage of NKG2A signaling

A/
Japan/57(H2N2) 
infection

Greater pulmonary pathology 
in the deficient mice vs. wt 
mice

Not described Enhanced TNF-α 
production by IAV-
specific CTLs

Excessive TNF-α 
production by 
CTLs causes 
immunopathology

(80)

IAV infection of wt and NKG2A-
deficient mice; adoptive transfer 
of CD8+ T cells with/without 
NKG2A deficiency to infected 
wt mice

A/
PR/8/34(H1N1) 
infection

Enhanced lung injury in the 
NKG2A-deficient mice vs. wt 
mice; greater inflammation 
and alveolar hemorrhage after 
transfer of NKG2A-deficient 
CD8+ T cells

Slightly increased 
frequency of 
NP-specific CTLs 
in NKG2A-deficient 
mice

Increased 
production of 
TNF-α, IFN-γ, and 
IL-2 by IAV-specific 
CTLs in NKG2A-
deficient mice

Excessive 
inflammatory 
cytokine production 
by CTLs causes 
immunopathology

(81)

IAV infection of wt and 
inmemTNFD1–9(K11E KI) mice 
(in which membrane-bound 
TNF-α cannot be cleaved into 
soluble form) and TNFR1-
deficient mice; depletion of CD8+ 
T cells in TNF-α-deficient mice

Non-lethal A/
PR/8/34(H1N1) 
infection

Greater weight loss, lung 
injury, and lung function 
compromise in both mutant 
mice vs. wt mice; depletion 
of CD8+ T cells in TNF-α-
deficient mice attenuated lung 
injury

Increased number 
of IAV-specific CTLs 
and of total CD4+ T 
cells in both mutant 
mice vs. wt mice

TNF-α signaling via 
TNFR1 on CD8+ 
T cells

TNFR1 signaling 
on CD8+ T cells 
limits its response 
magnitude and 
the reduce CTL-
mediated lung 
injury

(66)

IAV infection of wt and TRAIL-
deficient mice

A/
PR/8/34(H1N1) 
infection

Greater morbidity, mortality, 
and pulmonary pathology but 
no change in virus clearance 
in TRAIL-deficient mice vs. 
wt mice

Increased number 
of IAV-specific 
CTLs in the lungs 
of TRAIL-deficient 
mice due to less 
apoptosis and 
greater proliferation

Not described TRAIL constrains 
excessive 
magnitude of IAV 
CTL response 
to prevent 
immunopathology

(82)
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OX40L/OX40 signaling during IAV infection by administration 
of an OX40 fusion protein significantly reduced the magnitude of 
both IAV-specific CTL and CD4+ T-cell responses (78). However, 
unlike the effects of other costimulatory signals described 
above, reduction of T-cell responses by OX40L/OX40 blockade 
ameliorated disease symptoms without compromising effective 
virus clearance (78). Clearly, OX40L/OX40 signaling during IAV 
infection is not necessary for virus clearance but contributes to 
immunopathology.

On the other hand, there are also various coinhibitory 
receptors on T cells, mediating inhibitory signals to activated 
T cells. Coinhibitory signaling serves to prevent tissue damage 
by limiting the response magnitude but also may constrain the 
effective immunity necessary for protective efficacy. For example, 
tissue-expressed Galectin-9 (Gal-9) binds to its receptor Tim-3 
on T cells to limit the response magnitude. Gal-9 deficiency or 

blockade of Tim-3 signaling resulted in more robust virus-specific 
CTL and antibody responses to IAV infection, leading to a more 
rapid virus clearance and recovery (76), suggesting that Gal-9/
Tim-3 signaling constrains effective antiviral immunity. NKG2A/
CD94, another inhibitory receptor originally described mainly on 
NK cells, was found to be expressed on IAV-specific CTLs during 
IAV infection. Deficiency of NKG2A or its ligand Qa-1b, or block-
age of Qa-1b/NKG2A signaling, resulted in a greater pulmonary 
pathology accompanied by an enhanced TNF-α production by the 
IAV-specific CTL cells (80, 81); therefore, NKG2A-mediated nega-
tive signaling truly limits CTL immunity-mediated lung injury. 
Another inhibitory receptor, CD160, was also recently found 
on CD8+ T cells during influenza infection, and CD160-ligand/
CD160 signaling reduced the proliferation capacity and perforin 
expression of the CD8+ T cells (91), although the role of this nega-
tive signaling in the outcome of the IAV infection is unclear.
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PD-1 is another inhibitory receptor found to be unregulated on 
IAV-specific CTLs after primary or secondary IAV infection, and 
its ligand PD-L1 was found to be expressed on lung epithelial cells 
and innate immune cells (74, 75, 79). PD-L1/PD-1 signaling leads 
to severe functional impairment of CTLs. Inhibition of PD-L1/
PD-1 signaling during IAV infection by blocking either PD-1 
or epithelial PD-L1 with antibodies in wild-type mice enhanced 
CTL function and subsequent virus clearance and ameliorated 
disease severity (74, 75). However, in PD-1-deficient mice, CTL 
magnitude and function were improved after IAV infection, but 
recovery was delayed (79), suggesting that PD-1-negative signal-
ing is required to limit the adverse effects of the IAV-specific CTL 
responses. Clearly, this negative signaling is necessary to balance 
CTLs’ role in virus control, speed of recovery, and immunopa-
thology. Interestingly, another study found that only infection 
with highly pathogenic but not with low pathogenic IAV induced 
a greater PD-1 expression on the IAV-specific CTLs (75), dem-
onstrating that the optimal magnitude of antiviral CTL immunity 
can be dampened as a consequence of the high pathogenicity of 
a particular IAV.

Plasmacytoid DCs are also found to negatively regulate the 
magnitude of CTL responses in LNs after lethal infection with a 
high dose of IAV or with a highly pathogenic H5N1 IAV but not 
after sublethal infection (17, 18). After the lethal infections, pDCs 
accumulating in the LNs showed a high expression of FasL, driving 
the elimination of Fas+ CD8+ cells. The dampened IAV-specific 
CTL responses enhanced the lethality of the infections, providing 
another example of how the optimal magnitude of antiviral CTL 
responses can be compromised in infections with IAVs of high 
pathogenicity, consistent with the clinical findings of lymphopenia 
in patients infected with highly pathogenic H5N1 IAVs (92).

Various soluble cytokines induced during IAV infection also 
play an important role in the trafficking, survival, and effector 
activity of CD8+ effector T cells required for optimal antiviral 
CTL responses. For example, IL-15 is chemotactic, responsible 
for the migration of IAV-specific CTLs to the infected lung (93) 
and also contributes to the survival of the CTLs in the infected 
lung (27, 93). Both IL-7 (72) and IL-18 (73) are necessary for the 
development of a robust IAV-specific CTL response required for 
efficient virus clearance. IL-12 was also shown to be important for 
CTL cytotoxicity in vitro (94).

Two signaling molecules, TNF-α and TRAIL, used in the 
effector mechanisms of CTLs, can also constrain the magnitude 
of IAV-specific CTL responses to prevent the excessive damage. 
TRAIL deficiency (82) and TNF-α deficiency (66) increased the 
number of IAV-specific CTLs accompanied with decreased apop-
tosis and increased proliferation but increased host morbidity 
and mortality after IAV infection. Thus, both TRAIL/TRAIL-DR 
signaling and TNF-α/TNFR1 signaling have a dual role during 
IAV infection depending on the cell type in which the recep-
tors are expressed: they can kill IAV-infected cells for immune 
protection and also negatively regulate the magnitude of the CTL 
response to reduce the likelihood of immunopathology.

Various types of innate and adaptive immune cells, including 
IAV-specific CTLs, infiltrate the IAV-infected lung. These infiltrat-
ing cells, the lung-resident cells, and the cytokines that they pro-
duce compose the local inflammation milieu, which can further 

shape the antiviral CTL response. For example, maintaining an 
optimal magnitude of protective IAV-specific CTL responses 
requires interactions with multiple non-migratory DC subsets in 
the infected lung for essential survival and proliferation signals 
(26–28). An inflammatory monocyte population (sometimes 
referred to as TipDCs) is recruited from bone marrow to the 
infected lung by CCL2/CCR2-mediated chemoattraction. TipDCs 
and the TNF-α that they produce promote IAV-specific CTL 
expansion and survival in the lung, which are required for optimal 
protection (95). The IAV-infected lung is also characterized by a 
large neutrophil infiltration. Migrating neutrophils leaves behind 
long-lasting CXCL12-enriched trails and routes into the infected 
lung to facilitate efficient CD8+ T-cell migration and localization 
to the infection site, which is required for optimal CTL infiltration 
and effective virus clearance (96). In the lung interstitium, neu-
trophils also serve as antigen-presenting cells that promote IFN-γ 
production by CTLs (97). NKT cells are recruited to the lung, 
where they themselves have a protective role against IAV infection 
(98). Furthermore, NKT cells also promote the accumulation of 
CD103+ DCs in the LNs and promote the subsequent IAV-specific 
CD8+ T-cell response (99). Finally, IAV antigen-specific Treg cells 
are found in both primary and secondary IAV infections, nega-
tively regulate the proliferation of IAV-specific CTLs, and limit the 
pulmonary inflammation during secondary IAV infection (100).

During IAV infection, not only is the magnitude of the antiviral 
CTL response regulated by multiple signals from various cells, but 
also the antiviral effector activities of the CTLs are dictated by the 
target cell type encountered and the costimulatory signals and anti-
gen intensity the target cell carries. For example, CD45+ inflamma-
tory mononuclear cells in the lung interstitium, such as CD11c-high 
cells, which express costimulatory ligands (CD80/86), stimulate 
both CTL cytotoxicity and release of inflammatory cytokines, 
but CD45− respiratory epithelial cells expressing few stimulatory 
ligands trigger only CTL cytotoxicity (14, 101). Consistent with 
this finding, after adoptive transfer into IAV-infected mice, highly 
cytotoxic Tc1 cells were found to localize near the infected airway 
epithelium, but Tc2 cells localized within the clusters of other 
inflammatory cells distant from epithelium (50), suggesting that 
different subsets of CD8+ T cells might interact with the subsets of 
innate cells resulting in diverse effector activities.

During the CTL and target cell interaction, CTL TCR recogni-
tion of its cognate pMHCI complex on the target cells determines 
the specificity of CTLs, while the strength of TCR/pMHCI recog-
nition fine-tunes the extent of CTL effector activities (102–104). 
The requirements of TCR occupancy and signal strength to acti-
vate CTL cytotoxicity are very low to minimal, allowing rapid and 
specific target cell killing, while the requirement for the induction 
of inflammatory cytokines is much higher, limiting the extent of 
non-specific inflammation induced by the cytokines (102–104). 
Thus, the division of specialized roles among the different 
antigen-presenting cells and the two activation thresholds for the 
two CTL effector activities enable specific target cell killing while 
not necessarily causing excessive inflammation in the infected 
lung. In addition, from a temporal view of IAV replication and 
the antiviral CTL response, it is also reasonable to speculate that 
higher viral antigen load and stronger TCR signals on CTLs at 
the early phase of infection may promote terminal CTL effector 
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TABLe 5 | Overview of animal studies showing that iAv-specific CD8+ T-cell responses are a correlate of protection against heterosubtypic secondary 
iAv infection.

experimental model Disease outcome 
after second iAv 
infection

Measured CD8+ T-cell properties Conclusion about 
CD8+ T cells

Reference

First iAv infection 
(priming)

Second iAv infection 
(challenge)

Frequency/
number in second 
responses

CTL cross-reactivity

Udorn(H3N2) by IV, IP, 
or IN routes

4 weeks later, A/
PR/8/34(H1N1) lethal 
infection

20% survival in 
primed mice

Increased 
heterosubtypic CTL 
effectors in primed 
mice

Heterosubtypic CTL 
cytotoxicity detected 
during memory and second 
responses

CTLs are 
associated with 
heterosubtypic 
immunity

(109)

A/Quail/HK/
G1/97(H9N2) by IN 
route

4 weeks later, A/
HK/156/97(H5N1) lethal 
infection

Complete survival 
with less weight 
loss in primed 
mice

Not described Heterosubtypic CTL 
cytotoxicity detected 
during memory response

CTLs are 
associated with 
heterosubtypic 
protection

(110)

X31(H3N2) by IN route 4 weeks later, A/
PR/8/34(H1N1) lethal 
infection

Accelerated 
virus clearance, 
reduced clinical 
signs, reduced 
lung lesions, and 
increased survival 
rate in primed mice

Significantly greater 
NP-specific CTL 
population in 
primed mice

Not described Enhanced cross-
reactive NP-specific 
CTL response is 
associated with 
protection

(111)

A/
HongKong/2/68(H3N2) 
or a respiratory syncytial 
virus by IN route

4 weeks later, A/
Indonesia/5/05 (H5N1) 
lethal infection

Reduced clinical 
signs, weight loss, 
mortality, and lung 
virus replication in 
IAV-primed mice 
but not in RSV-
primed mice

Greater expansion 
of cross-reactive 
NP-specific CTLs in 
primed mice

Cross-reactive NP-specific 
CTLs

Expanded 
cross-reactive 
NP-specific CTLs 
are associated with 
protection

(112)

A/
Kawasaki/173/01(H1N1) 
by a combination of 
routes (nasal, ocular, 
and tracheal) in rhesus 
macaques

4 months later, A/
California/04/09(pandemic 
H1N1) infection

Faster virus 
clearance in 
primed animals

Earlier detection 
and higher number 
of activated CD8+ 
T cells in blood 
and lung of primed 
animals

Cross-reactive IAV-specific 
IFN-γ producing T cells

Cross-reactive 
CD8+ T cells 
is involved in 
protection

(113)

A/Chicken/Hong Kong/
TP38/03(H9N2), A/Hong 
Kong/33982/09 (H9N2), 
A/California/4/09(H1N1), 
or A/PR/8/34(H1N1) by 
IN route

10 weeks later, A/
Anhui/01/13(H7N9) lethal 
infection

Lower morbidity 
and mortality, 
pulmonary virus 
load, and time 
to clearance in 
primed mice

Earlier and greater 
airway infiltration by 
IAV-specific CTLs in 
primed mice

IAV-specific CTLs targeting 
conserved or cross-
reactive epitopes were 
detected during memory 
and second responses

Cross-reactive 
IAV-specific CTLs 
contribute to 
heterosubtypic 
protection and the 
magnitude of the 
IAV-specific CTL 
memory pool are 
the best predictors 
of protective 
efficacy

(114)

A/PR/8/34(H1N1) by 
IN route

5 weeks later, A/
Anhui/01/13(H7N9) lethal 
infection

Lower lung virus 
titer, morbidity, and 
mortality in primed 
animals

Not described Cross-reactive IAV-specific 
CD4+ and CD8+ cells 
detected during memory 
response

Cross-reactive T 
cells are associated 
with protection

(115)

IV, intravenous; IP, intraperitoneal; IN, intranasal.
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activity, while the lower antigen load and TCR signals on CTLs at 
late phases of infection or after virus clearance may promote CTL 
memory potential or differentiation.

In summary, during IAV infection, both the magnitude and 
effector activities of the CTL response are exquisitely regulated 
by various stimulatory and inhibitory signals, cytokines, 
and chemokines from a variety of cell types to achieve the 
goal of immune protection while minimizing potential 
immunopathology.

CD8+ T-CeLL ReSPONSe iS A POSiTive 
CORReLATe OF PROTeCTive iMMUNiTY 
AGAiNST HeTeROSUBTYPiC iAv 
iNFeCTiON

Human populations are challenged constantly by mutated 
variants of circulating seasonal IAVs (currently H1N1 and H3N2) 
and occasionally by novel pandemic strains. An estimated 5–20% 
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TABLe 6 | Overview of human studies showing that cross-reactive CD8+ 
T-cell responses are a correlate of protective immunity against human 
iAv infection.

Human iAv 
infection

Findings in CD8+ T 
cells and disease 
outcome after iAv 
infection

Conclusion 
about CD8+ T 
cells

Reference

Experimental 
infection with A/
Munich/1/79(H1N1) 
IAV

Greater CD8+ T-cell 
cytotoxicity in patient 
blood samples at day 2 
after inoculation was a 
correlate of lower virus 
shedding, faster virus 
clearance, and lower 
disease symptom score

High CTL 
responses 
is positively 
associated with 
recovery from 
seasonal H1N1 IAV 
infection

(122)

Natural infection 
with 2009 
pandemic H1N1 
IAV

Higher proportion of 
preexisting CD8+ T 
cells to conserved 
epitopes was observed 
in individuals who 
developed less severe 
illness

Preexisting CD8+ 
T cells specific 
for conserved IAV 
epitopes were a 
positive correlate 
of cross-protection 
against the severity 
of H1N1 IAV 
infection

(123)

Natural infection 
with H7N9 IAV

Patients with shorter 
hospitalization had 
an early, prominent 
H7N9-specific CD8+ 
T-cell response, while 
those with longer 
hospitalization had 
delayed or no T-cell 
activity

A robust CD8+ 
T-cell memory 
response 
is positively 
associated with 
protection against 
H7N9 IAV infection

(124)
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of the population worldwide is infected annually with a seasonal 
IAV (105). Thus, human IAV infections are almost invariably at 
least secondary, except in young children. Therefore, it is of great 
importance to understand heterosubtypic IAV immunity, which 
is generated by a given IAV subtype but offers some protection 
against challenge with another IAV subtype. In the face of a het-
erosubtypic IAV infection, the neutralizing antibodies generated 
by IAV-specific B cells can recognize only the specific IAV surface 
proteins from a previous infection, while IAV-specific CTLs 
target viral peptides that usually are derived from IAV internal 
proteins and are relatively conserved across different subtypes 
(106). Thus, cross-reactive IAV-specific CTLs generated by previ-
ous IAV infection are an essential component of heterosubtypic 
immunity (107, 108), as shown consistently in both animal and 
human studies.

Animal studies (Table 5) using a prime/challenge model with 
IAVs of different subtypes have shown that the cross-reactive 
CD8+ T cells generated by a first IAV infection are unable to 
prevent secondary IAV infection but clearly ameliorate morbid-
ity and mortality, reduce the virus load, and accelerate recovery; 
this protection can even boost survival after an otherwise lethal 
challenge with H5N1 or H7N9 IAV (109–115). These studies have 
consistently demonstrated that CD8+ T cells mediate heterosub-
typic immunity. One study found that the best predictor of pro-
tective efficacy against secondary infection was the overall size of 
the memory CTL pool generated by the priming infection, rather 
than conservation of known CD8+ epitopes between viruses 
(114). The size of the memory CTL pool may serve as a proxy 
indicator of the robustness and quality of the primary immune 
response and may be associated with the activation status and 
quality of memory CTLs. Meanwhile, this finding also illustrates 
our incomplete understanding of the full measure of CD8+ 
epitope diversity and other heterologous immune mechanisms 
generated by initial priming, which warrants future studies.

Due to the many challenges posed by human studies, the role 
of CD8+ T cells in mediating heterosubtypic protection against 
illness caused by natural IAV infection is far from certain, but 
studies using human samples have provided some useful insights. 
A number of studies of human peripheral blood cells have dem-
onstrated the existence of cross-reactive CD8+ T-cell immunity 
between distinct heterosubtypic IAVs, such as between seasonal 
IAVs and 2009 pandemic H1N1 IAV (116, 117), between the 
1918 pandemic H1N1 and 2009 pandemic H1N1 IAVs (118), 
between seasonal IAVs and avian H5N1 IAVs (119), and between 
seasonal IAVs and the novel H7N9 IAVs (115, 120, 121). These 
studies consistently show that prior IAV infection in humans can 
generate a measure of cross-reactive, or “heterosubtypic,” CD8+ 
T-cell-mediated immunity against other serologically distinct 
IAVs, for potential immune recall responses upon another IAV 
infection.

A few studies in humans have demonstrated that the cross-
reactive IAV-specific CD8+ T-cell response is a positive correlate 
of cross-protective immunity against secondary IAV infection 
(Table  6). An earlier human study using experimental H1N1 
challenge showed that the extent of CTL cytotoxicity in the 
blood of subjects at 2 days after challenge was closely associated 
with less virus shedding, faster virus clearance, and less severe 

symptoms (122), providing the first evidence that the preexist-
ing cross-reactive CTL response is a correlate of clinically 
cross-protective immunity (day 2 was too early to generate CTL 
responses to the challenge IAV). The 2009 H1N1 pandemic and 
the recent emergence of human infections with H7N9 IAV in 
China have provided unique opportunities to study the natural 
heterosubtypic IAV infection and cross-protective response in 
the absence of the specific neutralizing antibodies. One study 
followed a cohort of healthy adults through the pandemic waves 
in the UK (123), and another examined a cohort of hospital-
ized patients with severe H7N9 infection in China (124). Both 
studies found that the magnitude of the cross-reactive CD8+ 
T-cell response was positively correlated with a favorable clinical 
outcome in the patients. Although these findings are consistent 
with those obtained in mice, it is noteworthy that human studies 
often involve complex and uncontrollable variables, including 
demographic, environmental, and genetic differences. As a con-
sequence, extreme care must be taken in interpreting the results 
of human studies.

CONCLUDiNG ReMARKS

Due to their naturally high mutation rate and their ability to 
generate genetic reassortants, IAVs pose a continuing threat to 
human populations. In order to develop better therapeutic and 
vaccination strategies to appropriately modify CTL immunity 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


February 2016 | Volume 7 | Article 2513

Duan and Thomas CD8+ T Cells and Influenza

Frontiers in Immunology | www.frontiersin.org

for protection against IAV infection, it is a great need to better 
understand the regulation and balance of the immune protection 
and pathology involved in virus-specific CTL immunity during 
IAV infection. We argue that the counterbalance of these effects 
depends on multiple layers of host and viral factors, including 
complex host mechanisms that regulate CTL quantity, quality, 
and effector activities; the pathogenic profile of the IAV, especially 
its ability to induce different innate host response milieus in 
which CTL immunity is primed and regulated; and the historical 
immune context of influenza infection (e.g., primary, secondary, 
and postvaccination). We propose that future research efforts 
should refine our understanding of key host and viral parameters, 
their points of interaction, and the effects of these interactions 
under different contexts of influenza occurrence (primary, sec-
ondary, postvaccination challenge, or heterologous infection), 
especially to differentiate those that constrain optimally effective 
CTL antiviral immunity from those truly necessary to restrain 

CTL-mediated non-specific immunopathology. Further transla-
tional research efforts can then focus on developing preventive or 
therapeutic means to modulate these parameters and interactions 
to obtain the best clinical outcomes.
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