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THE BIGGER PICTURE Data analysis for single-cell transcriptomics requires sophisticated software pipe-
lines. By studying the interplay between two prominent tasks, imputation ofmissing data, and gene network
reconstruction, we point out the pitfalls of freely combining components as part of an analysis pipeline. In
our application, an earlier decision for a particular imputation algorithm is shown to largely determine the
results achievable in the later gene network reconstruction task. This interdependence constitutes the
flip side of the convenience that comes with the availability of user-friendly computational pipelines.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Despite the advances in single-cell transcriptomics, the reconstruction of gene regulatory networks remains
challenging.Both the largeamountof zerocounts inexperimental dataand the lackofaconsensuspreprocess-
ing pipeline for single-cell RNAsequencing (scRNA-seq) datamake it hard to infer networks. Imputation can be
applied in order to enhance gene-gene correlations and facilitate downstream analysis. However, it is unclear
what consequences imputationmethodshaveon the reconstructionofgene regulatorynetworks.Tostudy this,
weevaluate thedifferenceson theperformanceandstructureof reconstructednetworksbeforeandafter impu-
tation in single-cell data. We observe an inflation of gene-gene correlations that affects the predicted network
structures and may decrease the performance of network reconstruction in general. However, within the
modest limits of achievable results, we also make a recommendation as to an advisable combination of algo-
rithms while warning against the indiscriminate use of imputation before network reconstruction in general.
INTRODUCTION

Single-cell transcriptomics has revolutionized genomics. In

particular, this new type of data is widely assumed to advance

the unraveling of regulatory interactions in the cell. Thus, there

is great interest in the computational reconstruction of gene reg-

ulatory networks (GRNs) from single-cell transcriptome data.

Available methods for GRN reconstruction from single-cell

RNA-seq (scRNA-seq) data draw on a plethora of statistical ap-

proaches.1–6 Pratapa et al.4 provide an extensive benchmark

study evaluating the performance of various methods. However,

for GRN reconstruction, several authors have remarked that pre-

processing the data is important, mostly due to the sparse nature

of the data.7,8 Several computational analysis pipelines have

been suggested and are in wide use.9,10 Typically, as one of

the early steps, such a pipeline will include a data normalization
This is an open access article und
and/or imputation step, which statistically estimates unobserved

read counts in caseswhere themethod deems that experimental

or technical noise has led to the absence of a count (i.e., a so-

called dropout). While normalization attempts to correct for

different read depths between cells,11,12 imputation attempts

to recover gene counts by predicting missing data and eventu-

ally smoothen gene expression values.13–20 In some tools, a prior

normalization step is not required but is integrated within the

imputation method.15,18 Hou et al.21 extensively evaluated the

impact of imputation on clustering, differential expression anal-

ysis, and pseudotime inference and invoked cautious interpreta-

tions of the results.

It still remains unclear, though, how imputation methods affect

network structures.22 On the one hand, it is recommended to use

imputation to enhance gene regulatory correlations prior to

network inference14,15, but on the other hand, results based on
Patterns 3, 100414, February 11, 2022 ª 2021 The Author(s). 1
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Figure 1. Systematic evaluation of network

reconstruction from imputed and unimputed

data

Cubic evaluation matrix consists of seven cell types

from experimental scRNA-seq data, four imputation

methods (see text), and three network reconstruc-

tion algorithms. Imputed and unimputed (noimp)

scRNA-seq data provide input expression matrices,

which are used by the GRN reconstruction algo-

rithms using the BEELINE framework.4 We evaluate

the performances using the EPRs and compare

network results across different models. Addition-

ally, we inspect the effect of gene-gene correlation

on prediction classes (TPs, FPs, FNs) before and

after imputation, and we search for common motifs

within the reconstructed networks.
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imputed data should be interpreted with care.9,21,23 Thus, impu-

tation meets conflicting attitudes within the community.

Here, we systematically study the question of whether data

imputation as a preprocessing step affects results obtained us-

ing reconstructed GRNs. We build on previously published

benchmark studies and consider the best-performing scRNA-

seq-based tools for both imputation and network reconstruction

in our analysis. We measure the performance of different combi-

nations of imputation method and GRN reconstruction method

using multiple experimental datasets and evaluation networks

that have been used in other benchmark studies. We compare

the performance and network structures obtained using unim-

puted data and imputed data, respectively, and show that, in

most cases, GRN reconstruction does not profit from imputa-

tion. In order to explain the observed results, we analyze the ef-

fect of imputation on predicted gene interactions. Ultimately, we

present a recommendation on how to proceed in a data analysis

project.

RESULTS

Systematic evaluation of network models
Evaluating the combination between imputation and network

inference on different datasets results in a cubic matrix. To

manage this, we restrict our selection to state-of-the-art compu-

tational tools, both for imputation and network inference, that

performmost accurately and have been recommended in recent

benchmark studies.4,21 Consequently, we developed a compu-

tational pipeline to study seven cell types that were obtained

from different scRNA-seq experiments, using four state-of-the-

art imputation methods combined with the top-performing

GRN methods, as depicted in Figure 1.

Information on the seven cell types was derived from five

experimental scRNA-seq datasets: human embryonic stem cell

(hESC),24 human hepatocyte (hHep),25 mouse embryonic stem

cell (mESC),26 mouse dendritic cell (mDC),27 and mouse he-

matopoietic stem cell (mHSC).28 These were further separated

into the following subtypes: erythrocyte (mHSC-E), granulo-

monocyte (mHSC-GM), and lymphocyte (mHSC-L). We

preselected the datasets according to significantly varying tran-

scription factors (TFs) and the most highly variable genes across

pseudotime (see experimental procedures).

For the four imputation methods, we chose the following

methods, summarized in Table 1: two smoothing-based tools,
2 Patterns 3, 100414, February 11, 2022
magic14 and knnsmooth20; a Bayesianmodel-based tool saver16;

and a deep-autoencoder-based tool dca.15 We included dca

because the authors specifically expect to improve network

reconstruction. A baseline model was established using normal-

ized but unimputed data.

As for GRN reconstruction, we selected the following tools: an

information-based tool PIDC,2 and two tree-based tools,

GENIE329 and GRNBoost2.30 The PPCOR31 method is based

on partial correlations and, as such, also a contender for a

good network reconstruction method. However, PPCOR results

on single-cell data are clearly inferior to those obtained with any

of the first three methods, as shown in Figure S1. While we have

included PPCOR in this performance comparison, we focus the

study of the relationship between imputation and network recon-

struction on the other three methods. Table 2 gives an overview

about the underlying concepts and assumptions of each GRN

algorithm.

In the remainder of this paper, we use the term ‘‘model’’ to

refer to the combination of a GRN reconstruction algorithm

with an imputation method or no imputation, respectively. We

obtain the evaluation networks from the STRING (Search Tool

for the Retrieval of Interacting Genes/Proteins) database, a func-

tional protein-protein interaction network,32 as well as cell-type-

specific chromatin immunoprecipitation sequencing (ChIP-seq)-

derived networks provided by Pratapa et al. Studying gene

regulation, we only consider edges outgoing from TFs in the re-

constructed networks. To evaluate the performance of each

network model, we use the evaluation framework BEELINE4

(see experimental procedures). Furthermore, we inspect the re-

constructed network and compare the results with one another.

Imputation does not improve the performance of
network reconstruction in general
A compact overview of the results obtained under all the models

compared with the STRING network is provided in Figure 2. An-

alyses have been performed on sets of significantly varying TFs

along with 500 and, respectively, 1,000 most highly variable

genes (HVGs; see experimental procedures). Each box summa-

rizes results for one GRN reconstruction method. The perfor-

mance measurements achieved by the respective model on

the seven cell types are arranged on a vertical axis. Two perfor-

mance measures have been computed for each prefiltered gene

set correspondingly: the early precision ratios (EPRs),4 which are

shown in the three boxes of Figure 2A, and the log2 ratios



Table 1. Overview of selected imputation methods

Imputation

methods Concept

Distributional

assumption

Gene-gene

relation

predictions

dca deep

autoencoder

negative binomial

distribution with

or without zero

inflation

non-linear

knnsmooth kNN graph,

smoothing by

aggregation

negative binomial

distribution

linear

magic kNN graph,

smoothing by

diffusion

low rank

representation

(no data assumption)

non-linear

saver bayesian

modelling

negative

binomial

distribution

linear

Imputation methods are summarized based on their underlying concept.

The distributional assumption is used to reduce the noise in the count

data. The predictions with regard to gene-gene relation can be either

non-linear or linear.
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between EPRimputed and EPRunimputed , which are shown in the

three boxes of Figure 2B. EPR refers to the number of true-pos-

itive (TP) interactions within the top-k network normalized by the

network density. Here, k refers to the number of positive interac-

tions found in the evaluation network (see experimental

procedures). An EPR of 1 indicates a random predictor. The sec-

ond performance measure compares the performance of an

imputation method relative to the performance of not using

imputation. Here, a value of zeromeans no change, while a nega-

tive value indicates a detrimental effect of the imputation.

The EPR scores for unimputed data that were reported by Pra-

tapa et al.4 could be reproducedwithminor deviations in our anal-

ysis. The EPR scores are illustrated as a dashed line in Figure 2A

(DataS1). Results vary stronglywith thedatasets; the scores range

from approximately 2 (for the mDC dataset) to 8 (for mHSC-GM),

with lessvariationacrossGRNreconstructionalgorithms.Applying

imputationwith eitherdca, knnsmooth, ormagic does not improve

the performance inanyof theGRN reconstructionmethods.While,

in mDC data, the performance scores in each model scatter

around the unimputedmodel, inmHSC-GMdata the performance

scores vary strongly, dropping from8 to just below5 for themagic/

GENIE3 model. As pointed out above, for PPCOR we observe

considerably lower performance scores compared with the re-

maining GRN algorithms (Figure S1). The respective EPR scores

indicate predictions so close to a randommodel that we decided

to exclude PPCOR from further evaluations.

Focusing on the change of performance due to imputation as

measured using the log2 ratios between imputed and unimputed

EPR scores, we observe that only saver is able to improve the per-

formance (Figure 2B). The saver/PIDCmodel achieves log-fold ra-

tios up to +0.5 in five out of seven datasets and two out of seven

datasets combined with GENIE3 or GRNBoost2. All other imputa-

tionmethodsworsen the performancewith log-fold ratios down to

�1, which represents a performance decline of 50% in compari-

sonwith the unimputedmodel. Generally, the performance results

regarding the number of most HVGs are highly consistent, sug-
gesting that thepredictionsare irrespectiveof thenumberofgenes

selected as an input.

Furthermore, we use cell-type-specific networks derived from

ChIP-seq data as an evaluation network (Figure S1). Here, abso-

lute EPR scores report very poor performances close to or worse

than a random predictor regardless of the model or the number

of input genes across all datasets. Thus, the ChIP-seq network

does not serve us well for distinguishing between methods in

terms of their accuracy. The STRING database, on the other

hand, may contain indirect interactions reported in the protein-

protein interaction data. We will return to this issue below in

the context of network motif analysis. Nevertheless, indepen-

dent of the evaluation network, we do not see an improvement

of GRN reconstruction if imputation has been used in advance.

We further asked whether data quality as given by sequencing

depth is a determinant of the success of imputation prior to GRN

reconstruction. To answer this, we simulated cells in silico by

downsampling the gene counts of the given experiments to

60% of their sequencing depth, thereby lowering the detection

rate (Figure S2). The hope would be that imputation has a

more beneficial effect in these simulated datasets compared

with the original, higher-quality data. However, similar results

to those above were obtained when we subjected the lower-

quality in silico data to our analysis pipeline (Figure S3). As with

the original datasets, saver/PIDC obtain the highest improve-

ments compared with the downsampled unimputed datasets.

Nonetheless, on downsampled data, dca, knnsmooth, and

magic are able to improve performance in some of the tested da-

tasets, although not consistently.

Overall, our results demonstrate that model performances are

highly dataset dependent. Applying imputation on the original

data resulted mostly in a drop of performance of GRN

reconstruction compared with the unimputed model, although

potentially improving performance on low-quality data tested in

silico.

Imputation method rather than GRNmethod determines
results
The analysis presented in the preceding section raises the ques-

tion of how strongly either the choice of imputation method or of

network reconstruction algorithm affects the results. To answer

this question, we first address the variability in results when vary-

ing either the one or the other, and then study similarity among

computed networks across the models.

With regard to the performance variability, we compare the

variance of EPR log-fold ratios under a fixed GRN reconstruction

algorithm while varying across imputation methods, and, vice

versa, varying the GRN algorithm while keeping the imputation

method fixed. As Figure 3A shows, EPR log-fold ratios vary

much more strongly across the imputation methods than across

GRN methods (Wilcoxon test p value �7.86 3 10�6). Since this

analysis aggregates all datasets jointly, it discards the differ-

ences between datasets. Comparing, e.g., hESC and mHSC-L,

we see large differences between the distributions of variances

across imputation methods and GRN algorithms, respectively.

To resolve this, we perform an analysis of variance (ANOVA)

with respect to the EPR log-fold ratios for each dataset sepa-

rately. The results give evidence that imputation has a larger

contribution to the variance of performance scores compared
Patterns 3, 100414, February 11, 2022 3



Table 2. Overview of selected network reconstruction

algorithms

GRN

algorithms Concept

Assumptions

about

gene-gene

relation

Data

prerequisite

Edge

predictions

PIDC mutual

information

possibly

non-linear

discrete undirected

GENIE3 tree-based possibly

non-linear

continuous directed

GRNBoost2 tree-based

with

gradient

boosting

possibly

non-linear

continuous directed

PPCOR partial

correlation

Gaussian,

linear

continuous undirected

GRN algorithms are summarized based on their underlying methodology

and theoretical assumptions about gene-gene relation. Except PPCOR,

the algorithms do not have strong assumptions about gene-gene relation,

and thus non-linear interactions can possibly be inferred. PIDC requires a

data discretization, whereas all other methods work on continuous data.

The inferred network may contain causal interactions (directed) or asso-

ciated interactions (undirected).
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with GRN algorithms, prevalent in all datasets except mHSC-L

(Table S1). This implies that the choice of imputation method de-

termines the quality of results to a larger degree than the choice

of GRN reconstruction algorithm.

A direct consequence of this observation is the suspicion that

the topology of the predicted networks may also be largely

determined by the imputation method and, to a lesser degree,

by the GRN reconstruction method. To test this, we inspect

the overlap among the 500 most important gene-gene interac-

tions of the computed networks. Here, we calculate pairwise

similarity scores using the Jaccard index and use them to hierar-

chically cluster the networks. We found that networks tend to

cluster with respect to imputation methods but not GRN

methods (Figures 3B and S4). To make this more precise, we

use as a measure of cluster purity the adjusted Rand index

(ARI).33,34 ARI coefficients calculated across the seven different

cell types show higher cluster purity when labelled with imputa-

tion methods as opposed to network reconstruction algorithms

(Figure 3C).

We conclude that the imputation method largely determines

model performance, leaving little influence to the subsequent

GRN reconstruction algorithm. The choice of imputation

method further biases the outcoming network, leading to little

consensus across the most important recovered gene-gene

interactions as computed based on different imputation

methods.

Inflation of gene-gene correlations and its impact on the
network topology
Based on the reported results, we examine how imputation

generally affects gene-gene correlation coefficients. Although

not all network reconstruction algorithms use correlation-based

measures to recover interactions, we still use Pearson’s correla-

tion coefficient as a proxy for the association between two

genes. Subsequently, we will investigate whether the interac-
4 Patterns 3, 100414, February 11, 2022
tions within the reconstructed networks affect the global network

structure.

Exploring the overall distributions of gene-gene correlations

after imputation on scRNA-seq data we observe a strong

enhancement in gene-gene correlations (Figure 4A). Generally,

gene-gene correlations go from almost no correlation when

computed using unimputed data to very good anti- and positive

correlations due to imputation. Here, magic leads to the most

extreme enhancement. Surprisingly, even the unimputed distri-

bution within the mDC data is skewed toward positively corre-

lated values. We have checked that this is not due to selection

of the most HVGs but rather is already present in the dataset.

Figure 4B exemplifies the association between three genes

before and after imputation, transforming very weak correlations

to almost perfect (anti-)correlations. This particular set of gene

interactions was observed in the top-k network computed with

GRNBoost2 on hESC data, comparing no imputation with dca

imputation. Indeed, we commonly find such associations across

different datasets and imputation methods.

In order to see what impact this enhancement of correlation

has on the network structure, we next investigated the network

density after imputation in relation to the unimputed data using

log ratios (Figure S5A). Here, we looked at the top-k networks ac-

cording to the EPR score. Imputation methods alter the network

densities with log ratios ranging from �0.5 and +0.5 in hESC,

hHep, mDC, and mESC data, except for saver and PIDC in

hESC data with a slightly higher value of 0.59. For the three sub-

types of mHSC data, we observe larger changes in network den-

sity reaching log ratios beyond ±1. Especially here, imputations

combined with GENIE3 and GRNBoost2 lead to a sparser

network, whereas all combinations of imputation methods with

PIDC lead to a denser network structure. We assume that this

is due to redistribution of edges occurring in the tree-based algo-

rithms, which is also reflected in the node degree distribution

(Figure S5B).

Before imputation, we observe a heavy tail node degree distri-

bution predominantly in GENIE3 and GRNBoost2 indicating the

presence of many hub nodes. After imputation, the heavy tail

disappears when using dca, magic, and knnsmooth, while it still

exists when using saver. Generally, PIDC does not lead to this

structural change in node degree distribution.

As a conclusion, the enhancement of gene-gene correlations

due to imputation appears to lead to notable changes in the

topology of the predicted gene networks.

Increased correlation values lead to inflation of false-
positive predicted interactions
Since we have observed that imputation may decrease the per-

formance of GRN network reconstruction, we attempt to under-

stand how the altered correlations in imputed data affect

network reconstruction. To this end, we explore the change of

edge ranks and correlation values of the reported (i.e., positively

predicted) and missed (i.e., negatively predicted) interactions.

Overall, the ranks of TP interactions reported in the unimputed

data change significantly after imputation (Figures 4C, S6, and

Table S2). Some of the previously reported TP interactions could

be recovered after imputation. Nevertheless, the majority of pre-

viously reported TP interactions shift after imputation toward the

end of the gene interaction ranking list, and are considered less



Figure 2. Impact of imputation on network reconstruction performances
Results under all models with two different sets of genes compared with the STRING network.

(A) Absolute EPR scores across imputation methods (x axis label) and GRN inference algorithms (box) on seven different cell types (coded by shape and color).

Dashed lines represent EPR scores obtained without imputation. EPR = 1 corresponds to a random predictor.

(B) log2 ratios between EPR scores obtained using imputed and unimputed data. Log2 ratio = 0 represents no change in performance (gray dashed line) after

imputation.
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important. As a consequence, other interactions become more

important.

Therefore, we look at the change of correlation of positively

predicted interactions before and after imputation. Figure 4D

(and Figure S7) show scatterplots of gene-gene interactions

with the absolute values of correlation coefficients before impu-

tation on the horizontal axis and the correlation coefficient after

imputation on the vertical axis. For each model, red dots are

the TP interactions, yellow are the false-positives (FPs), and

blue are the false-negatives (FNs). The general shape of the scat-

terplot reiterates the observation that correlation coefficients

tend to get enhanced by imputation. For each class we

computed regression lines. For better recognition of TPs after

imputation, one would hope for the TP regression line (shown

in red in Figure 4D) to lie well above the others, which is not really
the case. We generally observe a strong enhancement of corre-

lations as indicated by the height of the intercept of the regres-

sion lines. In 11 out of 12 cases, the regression lines for both

TP and FP predictions are almost congruent with each other.

Note that the red color dominates the other ones and the dots

below a red one are not visible.

Interestingly, we see remarkably different regression lines if we

take the FN (blue) interactions into account. The majority of FN

correlations remain low after imputation, as indicated by the

height of the intercept in Figure 4D. Presumably, the FN correla-

tion values that actually get enhanced get lost in the background

due to the inflation of FP correlations in the inferred top-k

network. Thus, the boost of correlation values makes it harder

for GRN reconstruction methods to separate the actual signal

from the background.
Patterns 3, 100414, February 11, 2022 5



A B C Figure 3. Variability in network results largely

stems from imputation methods

(A) Variance distribution of EPR scores across

imputation methods. Left violin plot keeps the GRN

algorithm fixed and depicts the variances in EPR

log-fold ratios for each dataset across the imputa-

tion methods. Right violin plot shows the variances

for fixed imputation methods. ****p % 0.0001 by

Wilcoxon rank sum test.

(B) Clustered heatmap of network similarities

measured by Jaccard index within top 500 reported

interactions. Columns (horizontal axis, above) are

color coded by imputation methods. Rows (vertical

axis, left) are color coded by network inference al-

gorithms. More pure clusters are obtained by

imputation than by GRN algorithm.

(C) ARI obtained for clustering results in each cell

type by annotation label algorithm (pink) and impu-

tation (blue), respectively.
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Many GRN reconstruction methods have the goal of distin-

guishing direct interactions from transitively inferred ones.35

Therefore, we testedwhether theGRN reconstruction algorithms

analyzed in this study are able tomake the necessary distinction.

Given three genes X, Y, and Z, where X is correlatedwith Y, and Y

is correlated with Z, these genes form a network chain. However,

oftentimes by transitivity these associations seem to imply a cor-

relation between X and Z, thus forming a network loop. Gener-

ally, in network theory, it is challenging to distinguish chains

from loops, and algorithms deal differently with it. PIDC con-

strains the inferred interactions based on a confidence score

to discriminate between direct and indirect interactions. GENIE3

and GRNBoost2 allow the user to set a parameter for filtering out

presumably indirect interactions. In this context, we analyze how

the models deal with the identification of network chains from

imputed data among the top-k networks. Errors are counted if

a supposedly false loop is detected (FN) or a chain is detected

instead of a loop (FP). However, STRING is less suited as an eval-

uation network in this context because FP counts might be over-

estimated upon comparison with STRING. This is due to the fact

that the STRING database is not designed to contain only direct

interactions. For example, protein complexes are reported in

STRING and may contain indirect associations. Therefore, in

this analysis we use the ChIP-seq-derived networks as the

more appropriate evaluation networks. Figure 4E shows TP

counts together with the error counts in hESC data. Here, we

observe mainly lower motif counts after imputation. In general,

low count numbers in the motif search are indicative of isolated

edges between a gene pair. Hence, the algorithms detect fewer

connected edges among the top-k networks.

In order to measure the performance between true and false

predictions, we also calculate the TP rates (TPRs) and false dis-

covery rates (FDRs) for each network inference and imputation

method applied to each dataset (Figure 4F). Ideally, the values

for TPR should be higher (yellow), while the values for FDR

stay low (purple). Comparing the TPR and FDR scores after

imputation, however, we do not see systematic differences.

We conclude from this observation that the performance of

network motif detection among the top-k networks does not

seem to be affected by imputation. Hence, either imputation

methods do not necessarily induce transitive correlations or
6 Patterns 3, 100414, February 11, 2022
the network reconstruction methods deal well with transitively

induced correlations.

DISCUSSION

The advent of single-cell transcriptomics has rekindled the inter-

est in reconstructing GRNs from transcriptomics data, primarily

for two reasons. First, it is of great interest to study regulation

from single-cell data in the hope to eventually uncover how,

e.g., differentiation processes proceed. Second, the main

obstacle in gene network reconstruction from bulk transcriptome

data appears to be the low number of available samples in com-

parisonwith the large numbers of genes. For example, simulations

have demonstrated that high-quality reconstruction of gene net-

works requires amuch larger number of samples than the number

of genes.35 Seeing each single cell as a sample, the expectation

arose that single-cell transcriptomics would solve this conundrum

by providing a sufficiently large number of samples, thus putting

high-quality network reconstruction within reach.

It was sobering for us to see that, due to the sparse nature of

scRNA-seq data, individual cells cannot contribute as much in-

formation to network reconstruction as bulk samples. Indeed,

preprocessing of single-cell data for data analysis is crucial,10

and is implemented inmany computational pipelines. Imputation

has become a possible element of this preprocessing in the hope

it would supplement the missing information. In this study we

have, however, demonstrated that the choice of imputation prior

to GRN reconstruction influences the results in a 2-fold manner:

first, it affects the performance of network reconstruction, lead-

ing to highly variable accuracies, and, second, the reconstructed

network is determined more by the imputation method than by

the choice of network reconstruction method.

The focus of our work on the interplay of the imputation step

with GRN reconstruction clearly also limits the scope of our

work: we have not attempted to compare GRN methods as

such, or to improveGRN reconstruction.Manyother publications

are dedicated to these issues, with GRN reconstruction being a

particularly hard problem, as shownby the overall meager results

that canbeobtained.4,36 Still, what hasclearly beenunderstudied

is the interdependence between imputation, which is routinely

done in single-cell data analysis, and GRN reconstruction.



A B

C D

E F

Figure 4. Gene-gene correlation before and after imputation and its impact on the predicted interactions

(A) Gene-gene correlation distributions obtained in each cell type color coded by imputation method among top 500 most variable genes and significantly

varying TFs.

(legend continued on next page)
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We have systematically evaluated the effect of imputation on

GRN reconstruction using experimental scRNA-seq data on

seven cell types. In agreement with previous studies, we see

that imputation may boost gene-gene correlations in a question-

able way, thereby introducing FP edges in a network.23,37 Stein-

heuer et al.37 evaluated the impact of data imputation on network

inference via a gene correlation analysis using simulated data.

There, the authors downsampled bulk RNA-seq data, applied

imputation methods, and compared the gene module preserva-

tion and edge recovery upon imputation. Similar to our observa-

tion, they noticed a higher number of FP interactions after

imputation.

We have provided evidence that these FP may lead network

algorithms to reinforce dependencies that have been introduced

by imputation. For example, regression-based methods like

GENIE3 and GRNBoost2 will be strongly predisposed to

including imputation-generated correlations into a network. Ta-

ble 1 recalls which assumptions imputation methods make

with respect to signal distribution and the linear or non-linear na-

ture of interactions. Likewise, GRN reconstruction algorithms are

each based on their own respective assumptions (Table 2). This

may lead to reinforcement of imputation decisions or, generally,

to the identification of wrong gene-gene dependencies. Andrews

et al. have warned of this circularity before, albeit in the context

of differential expression analysis.38 Consistent with our findings,

Andrews et al. showed that saver introduces the smallest num-

ber of spurious gene-gene correlations. We speculate that the

combination of saver/PIDC works well because saver is a

model-based imputation method and PIDC is a mutual-informa-

tion-based algorithm discretizing the data beforehand; the two

approaches follow independent assumptions complementing

one another, thus avoiding the use of redundant information.

In this study, we have tested our hypothesis on experimental

datasets with fairly large library sizes and gene detection rates

(Figure S2). In order to test our hypothesis on more shallowly

sequenced single-cell experiments, we in silico lowered the

detection rate, introducing more zero counts. These results

again show that using saver with PIDC improves results in

most cases. Thus, if single-cell data are too sparse to avoid

imputation altogether, we recommend the use of saver and

PIDC. It should be noted, though, that we are not discouraging

imputation in general. There may be many other applications

that are not studied here, where imputation can be useful, de-

pending on the type of analysis that is subsequently performed.

We believe that the described interdependence among pro-

cessing steps within a data analysis pipeline is exemplary for
(B) Paired density scatterplots before and after imputation with dca. GRNBoos

among the top-k network after imputation in hESC data.

(C) Change of edge ranks in TP interactions identified by unimputedmodel after im

to the top-k network. Interactions below the dashed line represent TP within the

(D) Scatterplots comparing correlation values between genes before versus after

red crosses, FPs are yellow dots, and FNs are blue dots. For each scatterplot,

sponding color. For visualization purposes, we added a background color to the l

differ clearly from FN interactions.

(E) Counts of positively and negatively predicted network chain motifs in hESC da

networks (ChIP-seq-derived network). FP network chains are falsely positively p

network chains are falsely predicted as being feed-forward loops when they are

(F) TPR and FDR scores for network chain motifs obtained by statistics in (E). mDC

Ideally, TPR values should be close to 1, whereas FDR values should be close to
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many data analysis tasks. Software is generally being built to

allow the user to freely combine algorithms, each dedicated to

a particular step of the analysis. Little attention is given to the

possible influences one algorithm might have on the behavior

of the other. We are not referring to a syntactic interaction in

terms of data structures or variables passed, since good,

modular software design will exclude such conflicts between

processing steps. Much rather, as we demonstrated for imputa-

tion and GRN reconstruction, decisions taken within one

algorithm may predispose the results that can be obtained in a

downstream analysis step. Thus, user friendliness in pipeline

design allowing the free combination of algorithms may carry

substantial risk with respect to the scientific validity of data

analysis results.
Limitations of the study and future insights
The findings of the study presented have some limitations that

we want to address here. Above all, the wiring of the cell is still

not fully understood and thus the choice of gold-standard data-

set for GRN reconstruction will necessarily remain problematic.

While considering TF-based gene regulation, we follow the liter-

ature in that we use STRING and cell-type-specific datasets of

ChIP-seq-derived interactions for evaluation. However, all

methods studied have difficulties in identifying interactions

from the latter dataset. Thus, we learn more from the STRING

database, although it contains indirect interactions and does

not contain cell-type-specific information.

There is further room for improvement in exploiting pseudo-

time derived from single-cell data. However, the methods

geared toward this goal follow different principles, and Pratapa

et al.4 have shown that network reconstruction algorithms using

pseudotime information are very sensitive to the temporal

ordering of the cells. Thus, in addition to studying the depen-

dence between imputation and GRN reconstruction, it would

also be necessary to study the interplay between pseudotime

reconstructionmethod andGRN reconstruction. The preeminent

question following from our study is clearly how one can best uti-

lize the large number of cellular transcriptomes for the purpose of

GRN reconstruction without initially relying on imputation.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Martin Vingron (vingron@molgen.mpg.de).
t2 reported the pairwise interactions between ASXL1, SNAPC3, and ZNF488

putation in hESC data. Dashed line indicates the rank threshold corresponding

respective model. Low edge ranks represent highly important interactions.

imputation. Each scatterplot corresponds to one model in hESC data. TPs are

we fit one regression line for TPs, FPs, and FNs, respectively, with the corre-

ines to better distinguish the line and the dots. Positively predicted interactions

ta for each model. TP network chains agree both in prediction and evaluation

redicted chains being actual feed-forward loops in the evaluation network. FN

actually network chains in the evaluation network.

dataset is not included as no motifs could be found among the top-k network.

0.

mailto:vingron@molgen.mpg.de
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Materials availability

This study did not generate new unique reagents.

Data and code availability

This paper analyzes existing, publicly available data. Please see the section

‘‘data collection and preprocessing of scRNA-seq data’’ for more details.

All original code has been deposited at Zenodo under the DOI https://doi.

org/10.5281/zenodo.5710368 and is publicly available as of the date of publi-

cation. The release includes tutorials from data imputation to the evaluation of

the reconstructed networks. It covers the evaluation pipeline with the corre-

sponding analyses and plotting results.

Any additional information required to reanalyze the data reported in this pa-

per is available from the lead contact upon request.

Data collection and preprocessing of scRNA-seq data

We collected preprocessed and normalized experimental scRNA-seq count

data provided in the BEELINE paper.4 Here, the authors also provide the

corresponding pseudotime for each dataset/cell type. Please refer to the

BEELINE paper for information about preprocessing, normalization, and pseu-

dotime inference.

However, dca needs unnormalized raw count data. Therefore, we down-

loaded the fastq files using the corresponding accession numbers: GSE75748

(hESC),24 GSE81252 (hHEP),25 GSE98664 (mESC),26 GSE48968 (mDC),27 and

GSE81682 (mHSC).28 For human and mouse, we aligned the fastq files to

hg19 (GENCODE release 29) or mm10 (GENCODE release M19), respectively,

and counted the reads per gene using STAR (version 2.7.4a).39

Following the BEELINE approach, using normalized count data, we select

the top 500 most variable genes (or top 1,000 most variable genes, respec-

tively) across pseudotime using a general additive model (gam R package).

In addition to these genes, we also include significantly varying TFs (Bonferroni

corrected p < 0.01).

We filter both imputed and unimputed scRNA-seq data using the same set

of (1) top 500 most variable genes (or top 1,000 HVGs) and (2) all significantly

varying TFs, in order to make a fair comparison between networks inferred

using imputed and unimputed data.

Imputation

To impute scRNA-seq data, we use dca (version 0.2.3), knnsmooth (version

2.1), magic (Rmagic R package version 2.0.3), and saver (SAVER R package

version 1.1.2). Our rationale for selecting knnsmooth, magic, and saver is

based on a previous comprehensive benchmark evaluation of various imputa-

tion methods.21 Additionally, we also include dca as it has been explicitly

recommended as improving GRN reconstruction.15

We apply each imputation method to normalized count data, except for dca,

where we use the raw counts (see github page).

Network reconstruction via BEELINE

Several tools have been developed to infer GRNs from scRNA-seq data,

differing in their algorithmic approach. They can be categorized into four

main classes: correlation-, regression-, mutual-information-, or modelling-

based approaches.4 In this study, we evaluated PIDC, GENIE3, and

GRNBoost2, which have previously been recommended by Pratapa et al.4

Moreover, we included PPCOR as a partial regression-based algorithm

providing a baseline GRN algorithm. We use the imputed and unimputed

scRNA-seq data as input matrices for network reconstruction with PIDC,

GENIE3, and GRNBoost2 using default parameters. To this end, we use the

evaluation framework BEELINE (version 1.0). In order to evaluate PPCOR re-

sults, we adjusted the code of the BEELINE framework. In the publicly avail-

able version of BEELINE, PPCOR considers the corrected p values of each re-

ported interaction with its respective partial correlation value. However, in our

case there were only NAs produced due to ill-conditioned matrices. Thus, we

discard the p values and use a threshold of 0.1 absolute partial correlation

value and selected interactions higher than the threshold.

As part of the BEELINE pipeline, we first run BLRunner.py to reconstruct

the networks. Network reconstruction methods may compute undirected

or directed edges, while the STRING database contains undirected edges.

Thus, in evaluating a network reconstruction method that predicts undirected

edges, for both STRING and predicted networks undirected edges get

substituted by two opposing directed edges. For the comparison with the
evaluation networks, we only consider and filter for edges going out of

TFs. With this convention, bidirectional edges get counted only once

(except where two TFs are connected by an interaction). This is meant to

minimize the advantage that a method producing undirected edges might

possibly have.

Finally, we use BLevaluater.py to compute early precision scores evaluating

the performance of each network by comparing with to an evaluation network.

Here, we choose the functional protein-protein interaction database STRING

and cell-type-specific ChIP-seq -derived network provided by the BEELINE

framework. We filter the network genes that only occur in the input expression

matrix.

By using early precision scores, we only analyze the top-k networks.
Characterizing the reconstructed networks

Top-k network

For comparability reasons, we focus our analyses on the top-k networks. The

top-k network of a reconstructed network includes the first k interactions

selected by their ranks which were assigned by edge weights in descending

order. Here, k represents the number of positive interactions in the evaluation

network. Interactions can share the same ranks (e.g., the forward and back-

ward interactions in an undirected graph). So with k interactions reported in

the evaluation network, we select all interactions whose ranks are lower than

or equal to k, obtaining the top-k network. Note that the number of reported

interactions can be higher than k.

Network density and node degree

Taking into account the interaction between TFs and genes, only the network

density is calculated by numEdges/((numGenes 3 numTFs) � numTFs).

In order to calculate the node degree, we consider all out- and incoming

edges for a given node.
Methodology of evaluation

EPRs

Most of the network reconstruction algorithms infer networks that are close to

a full graph. Being more interested in the most important predicted interac-

tions, we analyzed the interactions with the highest (absolute) weights and

thus the top ranked interactions within the network (top-k network). For this

reason and to evaluate the performance of each inferred network based on us-

ing early precision (EP) scores, which is given by the number of TPs divided by

the number of positively predicted observations within the top-k network. EP

scores were calculated using BEELINE. Each dataset has a different underly-

ing evaluation subnetwork and, hence, different evaluations regarding the

random predictor. To account for these differences and in order to maintain

comparability across datasets, we divide the EP scores by the network density

(see formula above) of each evaluation subnetwork obtaining EPRs. Thus, EPR

of 1 is indicative of a random predictor in all experimental datasets. To

compare the performance of network inference in each imputation method

with the corresponding unimputed data, we calculate log2 ratios between

EPR imputed and EPR unimputed.

ANOVA

For each dataset, we performed a separate two-way ANOVA using the built-in

R function. First, we fit a linear model using the log2 ratios of EPR values as a

target variable and both the GRN algorithm and the imputation as regressor

variables. Second, we summarize the variancemodel of the linear fit and report

the p values. The source code is included on the github page.

Network similarities

In order to compare similarities across the reconstructed networks, we select

the top 500 interactions reported in eachmodel. Given two networks, similarity

scores are obtained by the Jaccard index, which is defined as the number of

overlapping interactions divided by the number of unified reported interac-

tions. Repeating this in a pairwise iterative manner, we obtain a similarity ma-

trix, which we use as an input for a heatmap that is clustered row- and column-

wise (pheatmap R package).

We calculate ARI scores (mclust R package) in order to evaluate the clus-

tering results based on an annotation label.33 As annotation labels, we use

the network reconstruction algorithm as well as the imputation method. We

compare ARI scores across datasets obtained by the two labels using the pair-

wise Wilcoxon rank sum test.
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