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Abstract

In order to facilitate foodborne outbreak investigations there is a need to improve the meth-
ods for identifying the food products that should be sampled for laboratory analysis. The
aim of this study was to examine the applicability of a likelihood ratio approach previously
developed on simulated data, to real outbreak data. We used human case and food product
distribution data from the Norwegian enterohaemorrhagic Escherichia coli outbreak in
2006. The approach was adjusted to include time, space smoothing and to handle missing
or misclassified information. The performance of the adjusted likelihood ratio approach on
the data originating from the HUS outbreak and control data indicates that the adjusted
approach is promising and indicates that the adjusted approach could be a useful tool to
assist and facilitate the investigation of food borne outbreaks in the future if good traceability
are available and implemented in the distribution chain. However, the approach needs to be
further validated on other outbreak data and also including other food products than meat
products in order to make a more general conclusion of the applicability of the developed
approach.

Introduction

The impact of widespread foodborne outbreaks has increased in modern times. Many out-
breaks of foodborne diseases that were once contained within a small community may now
take place on a global scale [1-3]. This may be attributed to the globalisation of food produc-
tion and changes in trade patterns [4].

A recent example of a large international outbreak is the European enterohaemorrhagic
Escherichia coli (EHEC) outbreak in 2011. Investigation of the outbreak was challenging. Epi-
demiological studies and trace back studies identified bean sprouts as the source but the patho-
gen was never isolated from food samples [5,6].
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The investigation of a foodborne disease outbreak usually includes epidemiological, envi-
ronmental and food and laboratory investigations [7]. However, it may at times be difficult to
identify the source using traditional epidemiological and microbiological methods. A person is
usually unable to remember all the types of foods consumed during the incubation period of
the infection [7], leading to recall bias. Therefore misclassification and missing information
should be expected, which will increase the uncertainty of epidemiological studies. Further-
more, the laboratory examinations may not detect the causative agent as samples from the rele-
vant product may not be available for testing, the pathogen may not be present in the samples
taken due to heterogeneous distribution of the pathogen in the product, or the tests may not be
sufficiently sensitive to detect the pathogen.

In 2006, Norway experienced a national outbreak of EHEC infections with 17 reported
cases. The investigation was complicated and it took four weeks from when the alert was raised
until contaminated fermented sausage was identified as the source of the outbreak [8]. Isolates
with identical pulsed field gel electrophoresis (PFGE) and multi-locus variable number tandem
repeat analysis (MLVA) profiles were isolated from the patients and the sausage products.
However, all the isolates from the products lacked the stx genes [9]. Loss of stx genes during
culturing and passaging has previously been described [10,11].

In outbreaks where the traditional methods fall short and the outbreak occurs over a longer
period and/or in a larger geographical area, there is a need for additional tools to aid the out-
break investigations. Norstrom et al. [12] have suggested analysing the association between
case and food product distribution to rank different food products as being the possible source
of the outbreak. Doerr et al. [13] proposed a likelihood ratio approach independent of the
underlying food distribution. Kaufman et al. [14] compared the likelihood ratio approach with
a pairwise Spearman’s correlation method on simulated outbreaks using actual data on food
distributions over a three year period without taking time into account. They found that a like-
lihood ratio approach best described their simulated outbreaks. The aim of our study was to
examine the applicability of this likelihood ratio approach on real case and food distribution
data from the Norwegian EHEC outbreak in 2006 and, if necessary, adjust the approach. Fur-
thermore, the aim was to expand the approach by including time and space smoothing.

Material and Methods

The likelihood ratio approach described by Kaufman et al. [14] was applied to real outbreak
data from 2006. The methodology was further adjusted to include time, space smoothing and
missing or misclassified information. All analyses were performed using the municipality as
the geographical unit.

Ethical statement

Human case data were provided by the Norwegian Public Health Institute. No informed con-
sent was required because there were no ethical issues relevant to the study design and no indi-
vidual-level analysis was performed. In this study the data have been de-identified prior to
aggregation and analysis.

Case Data

From January to March 2006 a total of 17 patients from 16 households were assigned to an out-
break of EHEC caused by enterohaemorrhagic Escherichia coli 0103 in Norway [8]. Only the
primary case in each household was included in this study; consequently, the study included 16
cases (Fig 1).
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Fig 1. Weekly incidence of the Norwegian enterohaemorrhagic Escherichia coli 0103 outbreak in 2006. The incidence is shown as the number of
cases each calendar week. The sequence in which the cases were reported is illustrated by the numbering of the cases case 1, case 2 etc. The arrow
indicates the outbreak alert. Later, case 5 was excluded from the outbreak based on laboratory examinations.

doi:10.1371/journal.pone.0134344.g001

One of the cases (case 5) was later excluded from the 2006 outbreak as E. coli 0103 was not
laboratory-confirmed in faeces or blood and the patient had a positive serological reaction to
E. coli O157. Since case 5 was assumed to be part of the outbreak during the investigation, the
analysis was performed both with and without this case in order to assess how robust the
approach would be for misclassification of cases.

The case exposure interval was based on the incubation period for the pathogen and defined
as the time window in which the case could have been exposed to the contaminated food. The
exposure interval will vary for different pathogens based on different incubation periods. For
enterohaemorrhagic E. coli the exposure interval was defined as 1 to 14 days before the onset of
illness [15-17].

The cases were assumed to primarily have consumed food purchased within their munici-
pality of residence, but could have consumed food that had been bought outside their munici-
pality of residence. Data from questionnaire surveys regarding the food purchase patterns or
places where food had been consumed were available for most of the cases. Where this infor-
mation was missing, the probable purchase pattern in neighbouring municipalities was used to
impute missing data. Each case was assigned to one or several municipalities based on munici-
pality of residence, neighbouring municipalities and information regarding the municipalities
where food products could have been bought or consumed within the incubation period. For
each case (i), each municipality (m) was given a weight (w(i,m) €[0,1]) where the sum of
weights for each case was 1. One patient had been on holiday in another municipality during
parts of his case exposure interval, and this municipality and its neighbouring municipalities
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Fig 2. Schematic overview of most of the relationships between batches and lots from product X. Product X was the most suspected product. The
batches and lots shown in this figure are those where most of the volume was sold during the outbreak. The food product units shown in red are the

suspected batch and lot.

doi:10.1371/journal.pone.0134344.9002

were treated in the same way as the municipality of residence and its neighbouring municipali-
ties. The weights were adjusted to the length of the stay in each municipality.

The cases were included in the analysis in the same order as they were reported (Fig 1); that
is they were included as they would have been during a real outbreak investigation.

Food product data

The outbreak in 2006 was attributed to contaminated fermented sausage with a median shelf
life varying from approximately two to six months. A batch is the production of one type of
sausages starting at a particular date made as one unit. This batch was fermented for several
weeks. After curing, the sausage was sliced and put into consumer packages [18]. One type of
sausage that was sliced on a particular date was designated as a lot. One batch could be the ori-
gin of one or more lots, and one lot could originate from more than one batch (Fig 2). We have
designated product, batch and lot by the term food product unit and have been used this term
in the following when appropriate.

During the outbreak investigation in 2006, distribution data for three different fermented
sausages (hereby defined as product X, Y and Z) were collected. All deliveries of consumer
packages of these products to individual retailers from 1°* December 2005 to 22"* March 2006
were included, in total 53,551 deliveries. For all deliveries of product X, Y and Z, the following
information was available: the product name, the package size, the weight and number of con-
sumer packages, name and address of the individual retailers and the planned delivery dates. In

PLOS ONE | DOI:10.1371/journal.pone.0134344  August 3, 2015 4/13



@’PLOS ‘ ONE

Food Tracing to Solve Foodborne Outbreaks

addition, the expiry dates, the lot numbers and the batch IDs were available for the batches
where the majority of the batches had been delivered during a period that could be connected
to the outbreak. Only the food product unit ID, the municipality ID, the number of packages,
the date delivered and the date expired have been included in the analysis.

Based on delivery and invoice address, each delivery was assigned to the municipality in
which the receiving food retailer was located. For 19 (0.5%) of the retailers representing 0.4%
of the consumer packages, the information was insufficient to assign to any municipality and
the consumer packages in these deliveries was therefore only included in the total number of
packages sold. For each delivery, the probable consumption interval was defined as the period
from the delivery date to the expiry date. Missing values of the expiry date (1,682 deliveries,
3.1%) or unrealistically short expiry dates (1,905 deliveries, 3.6%) were imputed by adding the
median period between delivery dates and expiry dates for the specific product to the delivery
date given.

The number of consumer packages delivered was aggregated per date and municipality
for each product, batch and lot. From 2006 there were three products, 51 lots and 85 batches,
in total 139 different food product units that were included in the analyses. The number of
municipalities to which the consumer packages belonging to a food product unit were delivered
ranged from six to 425 municipalities, with a median value of 75 out of the total 430 municipal-
ities. Not all deliveries could be attributed to a specific lot or batch as data on lot number and
batch ID were difficult to acquire in 2006. These data were only collected for batches where a
large proportion of the amount had been delivered within the outbreak period and was
assumed to be a potential source of the outbreak. Consequently, for lots and batches that were
considered unlikely as the source of the outbreak, lot and batch IDs were missing. However,
these deliveries were still included at the product level constituting 56%, 51% and 51% of prod-
uct X, Y and Z, respectively.

In 2006, epidemiological investigation found that one production lot in particular - lot
A3CI of product X - was repeatedly linked to the patients (Fig 2)[9]. Furthermore, when com-
paring the PFGE and MLV A profiles of E. coli O103 isolates from sausages and patients, the
profiles most strongly related to the human cases were found in lot A3C1 and product X [9].
Therefore, lot A3C1, Batch A and Product X were considered the most probable food product
unit responsible for the outbreak in this study [19].

In addition, data on food product units delivered to retailers in autumn 2009 and spring
2010 were used as control data. The manufacturer provided data of 91,679 deliveries for 16
products representing 275 lots (batch was not relevant for these data), in total 291 food product
units. The information included the amount (in weight and number of consumer packages)
delivered to individual retailers with the planned delivery date, the expiry date and the lot num-
ber. Only the food product unit ID, the municipality ID, the number of packages, the date
delivered and the date expired have been included in the analysis. The distribution of the deliv-
ered consumer packages of a food product unit in the control data ranged from three to 390
municipalities with a median value of 145 out of the total 430 municipalities. For each food
product unit belonging to the control data, the delivery dates were changed so that the product
unit was delivered in a period that it could have caused the outbreak. The delivery dates was
changed to the first possible date where at least one delivery could have been the cause of dis-
ease in the first case. Thereafter, new transformations of the data were made by increasing the
delivery dates in steps of fourteen days until the last possible delivery date where a delivery
could have been the cause of the outbreak. In total there were 2,487 transformed control
datasets varying from two to 31 transformations for a particular food product unit, that were
included in the analysis together with the original 2006 data sets.
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Statistical approach

Kaufman et al. [14] describe a likelihood ratio approach when each case i occurs in a given
postal zone m;. Time of delivery and exposure is not included in the model. To calculate the
likelihood ratio they first find the frequency (or probability) that a product # is consumed in
the postal zone m of interest for case i, i.e. postal zone m;, by calculating all sales sales(n,m;)
that have occurred in postal zone m; and dividing by the total sale of product n.

) sales(n, m,)
S = 5= sales(on,m)
The likelihood ratio of product n was then found to be proportional to the product of fre-

quencies for each case i:

Thereafter the maximum likelihood over all of products is found, so that the likelihood ratio
could be calculated as L(n) divided by max(L(#n)).

Adjustment of the likelihood ratio approach

In this study we included both a geographical distribution for each case and a time perspective
in the likelihood ratio approach. Each case had an accompanying exposure interval and each
delivered consumer package an accompanying consumption interval. For each case, i, the
probability that each product, n, was consumed in a municipality, m, f(i, n, m), was calculated
based only on deliveries with a probable consumption interval that overlapped the case expo-
sure intervals.

The deliverables included for each case were defined as sales(i, n, m), where sales(i, n, m)
was the number of packages sold of product » in municipality m that had a consumption inter-
val overlapping with the exposure interval of case i. In the denominator the overall sum of
municipalities, meM, of all products that were delivered before the end of the last exposure
interval was included, sales2(i, n, m). This was defined as all sales that have possibly occurred
before the end of the last exposure interval when case i was reported. The probabilities of con-
sumption of each product were then calculated as

sales(i, n, m)

Sl m) = e les2( my )

where M includes all 430 municipalities in Norway and an additional artificial municipality
that was assigned the deliveries for which the information on municipality was missing. For
each i and n the sum of (i, n, m) over all municipalities m will be less than or equal to 1.

Each case had accompanying municipality weights, w(i, m) as described in the section Case
data. These weights were used together with the case corresponding to municipality frequen-
cies of consumption of each product f{i, 1, m) to calculate a case-product frequency f(i, n):

fli,n) = Zw(i7 m) x f(i,n, m)

meM

The likelihood that product # was the source of the outbreak will then be proportional to
the case-product frequency for each case i that has occurred. If there have been a total of I cases
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the likelihood will be proportional to

Many of the case-product frequencies f(i,n) will be zero. To handle a scenario where a case
is wrongly included in the outbreak or where a municipality weight associated to a case is
incorrectly assigned to zero, a background probability equal to a given small number, &, is
added to all case-product frequencies to calculate an adjusted likelihood that will be propor-
tional to

Let L,gjus (I) be a vector of all proportionally adjusted likelihood L gy, (1,1). By dividing all
elements in L4, (I) by the maximum element of Ly, (I) an adjusted likelihood ratio is
obtained. To ensure that the adjusted likelihood ratio does not diverge much from the actual
likelihood ratio, we chose to use a small number comparable to the smallest non-zero frequen-
cies calculated.

The results were visualised by box plots showing the distribution of the adjusted likelihood
ratios according to the number of reported cases included in the analyses. The calculation of a
likelihood “ratio” does not affect the ranking order and is actually applied to normalize the cal-
culated scores which are useful for the visualization purposes.

The product, batch and lot that were identified as the most probable food product units
responsible for the outbreak were indicated in the box plot to visualise their ranking. Rank
numbers above 30 were not shown.

Scenarios

The basic scenario (Scenario A) included case 5 and the consumption and exposure intervals
in the analyses. In addition, the analyses were run without case 5 (Scenario B), without the con-
sumption and exposure intervals (Scenario C), and without both case 5 and the consumption
and exposure intervals (Scenario D). A sensitivity analysis of £ was performed by comparing
the results based on different values of .

Data management and analysis

The raw data were received as Excel files and were prepared for analysis by using SAS-PC Sys-
tem v 9.1.3 for Windows (SAS Institute Inc., Cary, NC, USA). The analyses were performed
using R version 3.02 for Windows [20].

Results

The product, batch and lot identified as the most probable source (product X, batch A and lot
A3C1) of the outbreak was among the ten most likely food product units after two cases had
been included in the basic scenario (Fig 3A). However, the ranking of these suspected food
product units decreased when case 5 and subsequently case 6 were included. When including
these cases (5 and 6), many products from the control data were also ranked among the most
likely product units. After including the nine first reported cases, the suspected product, lot or
batch were again among the ten most likely food product units. By the further inclusion of case
12 the suspected food product units achieved a lower likelihood ratio. This low ranking per-
sisted until case 15 was included, when both the batch and the product were among the five
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Fig 3. Boxplots of the likelihood ratio results for all 2,626 food product units in the different scenarios.
A: basic scenario, B: scenario B, excluding case 5, C: scenario C, excluding consumption and exposure
intervals and D: scenario D, excluding case 5 and consumption and exposure intervals. The x axis specifies
the included cases from case 1, case 1 and 2 etc. up to case 1 to 16 included in the analyses. The boxplot
shows the median, 25 and 75 percentiles within the box. The upper and lower whiskers indicate the area
between which the data would have been distributed given Gaussian distribution. The dots below or above
the whiskers indicate outliers or extreme values. The product (square), batch (circle) and lot (triangle) which
were identified as the most probable food product units responsible for the outbreak are indicated in red with
their ranking on the left side, rank numbers above 30 are not shown. The blue circles indicate control data
based on the food product units delivered in 2009 and 2010 and transformed to 2006 data that had a
likelihood ratio greater than the worst suspected food product unit.

doi:10.1371/journal.pone.0134344.9003
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food product units with the highest likelihood. The food product unit that obtained the highest
likelihood after 16 cases was lot A1 (Fig 2) originating from the same batch A as the suspected
lot A3C1.

In the scenario B, (excluding case 5, Fig 3B), at least one of the suspected food product units
was among the ten most likely food product units from the inclusion of case two, and remained
at this ranking level when the other reported cases were included. Furthermore, fewer food
product units from the control data came out with a higher likelihood than the most suspected
food product units. The same lot (A1) as in the basic scenario was the most likely food product
unit after the inclusion of case 14 as well as later cases.

In the scenario C (excluding consumption and exposure intervals, Fig 3C), the ranking
achieved for the first four cases did not differ noticeably from the basic scenario (Fig 3A). How-
ever, when case 5 was included, the likelihood of the suspected product, lot and batch dropped
below the ten highest ranked food product units. By the further inclusion of case 6, the highest
suspected food product unit had 700 food product units with a better likelihood. It was not
until ten cases were included that one of the most suspected food product units again was
among the ten with the highest likelihood ratio.

In the scenario D (excluding both case 5 and consumption and exposure intervals, Fig 3D),
the results were comparable to the scenario B (Fig 3B). The consumption and exposure inter-
vals for the suspected food product units and case 5, case 6 and case 12 did not overlap in any
municipalities, consequently, all case-product frequencies were zero for these cases. In total,
67% of the case-product frequencies calculated per municipality were zero. The analyses above
(Fig 3) were made with a background frequency equal to 107>, which corresponds to the lower
0.25 percentile of the non-zero case-product frequencies calculated. The smallest non-zero
case-product frequency calculated was 91077, We tested the use of a background frequency
equal to 107° (S1 Fig) which was too small to handle the inclusion of cases 5 and 6. The ranking
of the likelihood ratio for the most suspected food product unit dropped to 417 and a rank
number below 50 was not achieved until case 15 was included (rank number 47). With a higher
background frequency the suspected food product units obtained better rankings and the
inclusion of case 5, 6 and 12 did not influence the ranking substantially (S1 Fig). The results
obtained using the original likelihood ratio approach, are presented in S2 Fig for comparison.

Discussion

This study showed that the adjusted likelihood approach applied to data from a small EHEC
outbreak is promising to help identifying possible sources of food born outbreaks. However,
the approach needs to be used in combination with microbiological and epidemiological inves-
tigations. The fact that the suspected food product units obtained a high ranking, among the 20
highest, after only a few cases indicates that the approach may be useful in the early phase of an
outbreak investigation.

The approach used in this study is a modification of a likelihood ratio approach previously
developed and applied to simulated outbreak data [14]. We have developed the likelihood ratio
approach further by including time; i.e. consumption and exposure intervals, smoothing of
case consumption area and a background frequency € to account for uncertain information
that will often be found in real data.

By including time, we were able to refine the likelihood ratio approach to account for the
fact that a real outbreak will be limited in both space and time. If time is not included, the
approach will primarily identify products based on the general distribution pattern of the food
products. By including time, one may be able to identify specific batches and lots that have
been contaminated. We used a 1 to 14 day incubation period and data on known delivery and
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expiry dates to identify the food product units that could have been the source of the outbreak.
There might have been a larger variation in incubation time. Food products might also have
been consumed after the expiry dates. However, for the studied outbreak and at least when the
incorrectly allocated case (case 5) was included, our analyses showed that in order to distin-
guish between the included food product units, the inclusion of consumption and exposure
intervals were necessary. This was clearly seen when comparing the results from the basic sce-
nario with Scenario C in which the consumption and exposure intervals were excluded. The
food product unit that achieved the highest rank in Scenario C was distributed to 161 munici-
palities and, because the consumption and exposure intervals were not included, this food
product unit achieved a high rank throughout the analyses.

In this study we used municipality as the unit of concern. However, purchase of food is usu-
ally not limited to the residence municipality only. The household will purchase food in nearby
municipalities as well as other places where household members have been working or holiday-
ing etc. We used information on purchase patterns for each case collected by questionnaires to
smooth the case data geographically. If such information was lacking or scarce, we imputed
weights for the cases to neighbouring municipalities based on knowledge of the infrastructure
of the municipalities. Detailed information on purchases made by the cases may not always be
available, either because there is a delay in information-gathering or due to confidentiality
issues. Therefore the development of other approaches for geographical smoothing may be
beneficial. One approach could be based on Huff’s gravity model for trade area analysis [21] as
suggested by Kaufman et al. [14]. If the exact coordinates of the residence are known, it might
be possible to apply other criteria for accessibility of food products based on distance to retail
shops in rural vs. urban areas as applied in the study by Hashemi Beni et al. [22]. Most of the
20 food product units with the highest likelihood ratio originated from the 2006 data set except
the time points where the proportion of misclassified cases included were above or equal to
20%. These consisted of fermented sausages produced in a single processing plant and with a
shelf life of several months. The control data consisted of a range of different meat products
with a large variation in distribution pattern and usually a shorter shelf life than the fermented
sausages. The good discrimination between these products that was achieved by the likelihood
ratio approach is probably due to both the spatial and time distributions.

The inclusion of a background frequency, €, for every product ensured that the likelihood
ratio did not drop to zero because of the inclusion of erroneously allocated cases or missing or
incorrect information. In an outbreak situation, we expect that recall bias as well as misclassi-
fied and missing information will be a problem, in particular in the early phase of the outbreak.
In the 2006 outbreak, none of the suspected food products had been delivered to any munici-
palities linked to cases 6 and 12. Furthermore, one case (5) was initially included in the out-
break based on clinical signs but later found not to be part of the outbreak. In other outbreak
situations there might be more cases that are not linked to contaminated products and the per-
formance of the methodology in such situations is unknown. However, the approach applied
on our data indicated that it was able to handle misclassifications up to 19%.

By using the likelihood ratio approach without a small background frequency for every case,
the suspected product, batch and lot would obtain a likelihood ratio estimate equal to zero
when data from these cases (5, 6 or 12) were included in the analysis. Consequently, the origi-
nal approach without a background frequency € as described by Kaufman et al. [14] would not
identify these suspected food product units as being among the products that had most likely
caused the outbreak.

The higher the background frequency, the further away the adjusted likelihood ratio will be
from the true likelihood ratio. Therefore, a low background frequency should be used. The size
of the background frequency might not be easy to define, but in our analyses an € at the lower
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0.25 percentile of the non-zero case-product frequencies was sufficient to identify the suspected
product units by the adjusted likelihood ratio approach.

The suspected food product units had a high likelihood ratio, which support that contami-
nation of these products might be the cause of the outbreak. Isolates with identical PFGE and
MLVA profiles were isolated from the patients and these products. Although, all the isolates
from the products lacked the stx genes that does not exclude them from being the source of the
outbreak as loss of stx genes during culturing and passaging previously has been described
[10,11].

During an outbreak investigation we suggest that the results from the adjusted likelihood
ratio approach should be interpreted with caution. We recommend that the adjusted likelihood
ratio approach should be used primarily for selecting a large numbers of products for epidemi-
ological and laboratory investigations. Used in combination with other methods, we believe
that the adjusted likelihood ratio approach will be a useful tool to rapidly target the laboratory
analyses of the most likely sources, as well as to rule out less likely sources.

In this study, the data was aggregated on lot, batch and product level for a single product
unit. However, in a foodborne disease outbreak the problem may not be the single product but
a contaminated ingredient that has been used in several different products or a production
plant or equipment within a production plant that has contaminated several products during a
particular time period. Therefore, aggregation of data at the level of ingredient, the production
site and production machines would be needed. If such information is available, the approach
presented should also be able to handle such data.

In situations where a food borne outbreak is caused by a pathogen with a high background
frequency, such as for example Salmonella enteritidis in some countries, there would be no dis-
tinctions between the cases caused by the outbreak and the cases occurring as a result of the
endemic situation. In such situations, this approach would not be applicable.

There are some prerequisites that have to be fulfilled for the adjusted likelihood ratio
approach to apply. Firstly, the case definition needs to be clear; however the adjusted likelihood
ratio approach was able to handle 19% misclassified cases in our dataset.

In an outbreak situation, all suspected cases need to be included in the pre-analyses and
then later excluded if laboratory diagnoses show that they are unrelated to the outbreak strain.
Secondly, for each food product unit, information regarding all deliveries per geographical unit
is needed. Thirdly, the residence or place of infection for each case (geographical unit) is
needed as well as information or assumptions regarding the geographical unit in which each
case has been purchasing or consuming her/his food. In this study, the food manufacturer was
able to provide sufficient data to perform the analyses. However, the food distribution chain
might involve several steps and the tracing and tracking of a product in the delivery chain are
often complicated [23]. Therefore, to use this tool in future outbreak investigations, good trace-
ability systems need to be available and implemented in the distribution chain.

Conclusion

The adjusted likelihood ratio approach is promising and can be a useful tool to assess and
prioritise further investigations of suspected food products during a foodborne outbreak. The
adjustment of the likelihood ratio approach by Kaufmann et al. was necessary in order to iden-
tify the most suspect products in the data from the HUS outbreak in Norway 2006. However,
the approach needs to be further validated on other outbreak data and also including other
food products than meat products in order to make a more general conclusion of the applica-
bility of the developed approach. The use of the approach is dependent on availability of rele-
vant data, in particular food product unit distribution, and traceability systems for food
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products need to be improved. During an outbreak investigation we suggest that the results
from the adjusted likelihood ratio approach should be interpreted with caution and together
with epidemiological and laboratory investigations.

Supporting Information

S1 Fig. Boxplots of the likelihood ratio results for all 2,626 food product units using differ-
ent background frequency epsilon in the basic scenario (A).
(PDF)

S2 Fig. Boxplot of the likelihood ratio results for all 2,626 food product units using the
original likelihood ratio approach.
(PDF)

S1 File. cases.txt Anonymised case files; Case = a number of the case as it were reported
during the outbreak, “Municipality” = Identifier of the Municipality. “Index” = the weight
of the case and “firstdate” = the date of disease onset.

(TXT)

S2 File. casesNoGeographical Smoothing. Anonymised case files; Case = a number of the
case as it were reported during the outbreak, “Municipality” = Identifier of the Municipality.
“Index” = the weight of the case (here equal 1 for all cases as no weighting are included) and
“firstdate” = the date of disease onset.

(TXT)

$3 File. Product files. Anonymised files of the distribution of each food product unit included
in the analysis. Variables are “Municipality” = Identifier of the Municipality,”"NumPackages” =
Number of consumer packages delivered;”Date_delivered” = The date the food product unit
has been delivered;”Date_expired” = The date given where food product unit have expired.
(z1P)

$4 File. R Code Adjusted Likelihood Ratio Approach.
(TXT)
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