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Abstract

Generalized estimating equation (GEE) algorithm under a heterogeneous residual variance model is an extension of the
iteratively reweighted least squares (IRLS) method for continuous traits to discrete traits. In contrast to mixture model-based
expectation–maximization (EM) algorithm, the GEE algorithm can well detect quantitative trait locus (QTL), especially large
effect QTLs located in large marker intervals in the manner of high computing speed. Based on a single QTL model,
however, the GEE algorithm has very limited statistical power to detect multiple QTLs because of ignoring other linked
QTLs. In this study, the fast least absolute shrinkage and selection operator (LASSO) is derived for generalized linear model
(GLM) with all possible link functions. Under a heterogeneous residual variance model, the LASSO for GLM is used to
iteratively estimate the non-zero genetic effects of those loci over entire genome. The iteratively reweighted LASSO is
therefore extended to mapping QTL for discrete traits, such as ordinal, binary, and Poisson traits. The simulated and real
data analyses are conducted to demonstrate the efficiency of the proposed method to simultaneously identify multiple
QTLs for binary and Poisson traits as examples.
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Introduction

Corresponding to continuous and discrete random variables in

statistics, quantitative traits are classified into continuous and

discrete traits in quantitative genetics. In contrast to discrete traits,

continuous traits especially normally distributed ones are analyzed

by taking advantage of the extensively developed inference

methods available for linear models. Actually, mapping methods

for continuous quantitative traits are developed prior to discrete

traits. The earliest QTL mapping for continuous traits can be

traced back to the interval mapping developed by Lander and

Botstein [1], while the first group of people to map ordinal traits

using the EM algorithm is credited to Hackett and Weller [2] and

Xu and Atchley [3].

Binary and categorical discrete traits are commonly observed

that typically follow binomial and multinomial distributions. A

binary trait including only two categories is a special case of

categorical or ordinal trait. Also, binomial trait and multinomial

trait can be regarded as the derivatives of binary and categorical or

ordinal traits, defined by the proportions of the number of events

happened among the total number of trials. Traits measured as

counts are often called Poisson traits because they are usually

modeled by a Poisson distribution. The generalized linear model

(GLM) therefore becomes a natural choice for analyzing the

discrete traits with the above mentioned distributions [4,5]. Some

applications of GLM to mapping QTLs have been conducted for

binary traits [3,6,7], ordinal traits [2,8] and Poisson traits [9,10].

The IRLS for the normally distributed traits was extended to

analyze binary traits [11–13], which greatly improves the

computational efficiency with little loss in power. Especially, the

EM algorithm within the framework of GLM have been

developed to simplify QTL mapping for binary traits and ordinal

traits [14,15]. In addition, the GEE approach for GLM has been

adopted to comprehensively analyze multiple mixed traits of

continuous and discrete trait components [16].

Based on the interval mapping with GLM models, a set of

mapping methods [7,17–19] have been developed to simulta-

neously map multiple QTLs for discrete traits. As an alternative,

Bayesian mapping method with reversible-jump MCMC sampling

[20] was proposed to infer QTLs for binary traits [7].

Subsequently, Yi et al. [18] applied a stochastic search variable

selection method for Bayesian mapping of ordinal traits which

remarkably improved the sampling efficiency for model param-

eters. By fitting a continuous prior distribution on genetic effects,

most recently, hierarchical generalized linear models and compu-

tationally efficient algorithms have been further developed for

genome-wide analysis of QTL for various types of phenotypes in

experimental crosses [19]. In Bayesian mapping, only the method

with reversible-jump MCMC sampling belongs to fully Bayesian.

However, the reversible-jump MCMC sampling is usually subject

to poor mixing. Some Bayesian methods use imputed QTL

genotypes based on the conditional expectations of the genotype

given on the flanking marker information, but ignores the

uncertainties of the imputation process. Unfortunately, no efficient
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and convincing method for statistical inference of QTLs is

provided.

As an extension of the IRLS method for continuous traits to

discrete traits, GEE algorithm under a heterogeneous residual

variance model can well characterize QTLs, especially large QTLs

located in large marker intervals, in the manner of high computing

speed [21]. Such a method has been developed for the interval

mapping of discrete traits. Thus, it has a limited statistical power to

identify multiple QTLs, without considering other linked QTLs.

The objectives of this study is to derive a penalized generalized

linear model with LASSO penalty, and then, to iteratively estimate

the non-zero genetic effects of those loci over the entire genome,

under a heterogeneous residual variance model. The iteratively

reweighted LASSO algorithm [22] is extended to QTL mapping

for discrete traits such as ordinal, binary, and Poisson traits.

Methods

Generalized linear genetic model
In a QTL mapping analysis, a genetically designed population is

required to construct linkage relationship between putative QTL

and markers. In such a population, n individuals are observed for

phenotypic values and are genotyped for reasonably dense co-

dominant markers. A genetic linkage map can be constructed

based on the observed markers or can be obtained from prior

studies. Based on the linkage information, QTLs are identified by

inferring the significance of genetic effects for loci on or between

markers.

If the trait of interest is normally distributed, the effects of these

loci on phenotype are generally represented by the following linear

model:

yi~b0z
Xk

j~1

xijbjzei ð1Þ

where yi for i~1,2, � � � ,n is the phenotypic value of the normal

trait; b0 is the population mean; k is the number of putative loci;

bj is the genetic effect at the jth locus; xij is the indicator variable

determined by the genotypes of the jth locus. Note that only of the

additive genetic effect is considered here for the simplification of

description, which is suitable for backcross, double haploid and

recombinant inbred lines.

In model (1), the residual error ei is assumed to follow a normal

distribution with N(0,s2). Hence, the expectation of a normal

phenotype has a linear predictor:

E(yi)~gi~b0z
Xk

j~1

xijbj ð2Þ

In many situations, however, a trait in question are measured in

discrete form, including binary, binomial, categorical, multinomial

and Poisson traits. Their distributions, summarized in Table 1,

belong to an exponential distribution family with different link

functions. The relationship between the mean of a discrete

phenotype (m) and the linear predictor of genetic effects of k loci (g)

is formulated by means of a link function, denoted by

gi~g(mi)~b0z
Xk

j~1

xijbj

or mi~g{1(gi)~g{1(b0z
Xk

j~1

xijbj)

ð3Þ

for i~1,2, � � � ,n.

This is the GLM for multiple QTL mapping with discrete traits.

In the model, g is the link function. Moreover, the variance of

discrete phenotype V (yi) can be derived from the distribution of

each discrete trait (Also shown in Table 1), which is useful for

estimating model parameters.

Genetic effect estimation
Theoretically speaking, the reweighted least square method by

Wedderburn [5] can be used to estimate the parameters in model

(3). But implementation of this method is not straightforward, due

to the fact that the number of parameters estimated may be far

greater than sample size and the values of indicator variables are

missing at loci between markers. According to the least squares

method of Haley and Knott [23], the missing values of indicator

variables can be simply replaced by its expectation of conditional

probability given on flanking marker genotypes. This replacement,

however, could result in over dispersion (Xu 1998). From the

linear predictor in model (3), the over-dispersion is calculated as

Table 1. The commonly used distributions in the GLM for discrete traits.

Distribution Link name Link function Mean function V(y) w

Normal Identity m g s2 s2

Poisson Log ln mð Þ eg m 1

Identity m g

Sqrt
ffiffiffi
m
p

g2

Binomial Logit
ln

m

1{m

� �
eg

1zeg

nm 1{mð Þ 1

Cloglog ln { ln 1{mð Þ½ � 1{exp {exp gð Þ½ �
Probit W{1 mð Þ W gð Þ

Log ln mð Þ eg

Multinomial As above As above As above nm 1{mð Þ 1

doi:10.1371/journal.pone.0106985.t001
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s2
i ~

Xk

j~1

b2
j Var(xij)z2

Xk{1

j~1

Xk

j0~jz1

bjbj0Cov(xij ,xij0 )zw ð4Þ

where Var(xij) and Cov(xij ,xij0 ) depend on genetically designed

population, as derived in Liu et al. [22]; w eg is the parameter of

dispersion in an exponential family. To adjust for the heteroge-

neity of over-dispersion [21], the linear predictor is standardized

by the over-dispersion parameter, which lead to

gi
’~

1

si

b0z
Xk

j~1

xijbj

 !
ð5Þ

Instead of gi, the standardized linear predictor gi
’ is substituted

into model (3). As in the reweighted least square method for a

generalized linear model, it is defined that

Di~
Lg{1(gi

’)

Lgi
’ ð6Þ

ji~gi
’zD{1

i (yi{mi) ð7Þ

wi~
D2

i

V{1(yi)
ð8Þ

By Taylor expansion, the log-likelihood about model parame-

ters is quadratically approximated by

Xn

i~1

wi(ji{vib0{
Xk

j~1

x’ijbj)
2 ð9Þ

with vi~
1
si

and x’ij~ 1
si

xij .

With more model parameters than sample size, the unique

estimates of genetic effects can not be obtained by minimizing the

log-likelihood above. Actually, there are few non-zero and

significant genetic effects in model (3), because the number of

QTLs for a trait is generally not large. In this case, the LASSO

penalized method with a coordinate descent step can efficiently

shrink most of genetic effects to zeros by minimizing the following

function [24,25]:

min
Xn

i~1

wi(ji{vib0{
Xk

j~1

x’ijbj)
2zl

Xk

j~1

Dbj D

" #
ð10Þ

where l is a tuning parameter which will be chosen by cross

validation.

In solving model parameters with LASSO, iterations are

required, as response variable ji, independent variables vi and

x’ij as well as weighted value wi are all a function of the estimated

parameters. Without heterogeneous over-dispersion, the software

R/glmnet can be applied to efficiently search for sparse solutions

in the oversaturated GLM model [25]. Taking the glmnet as the

inner loop, the iterative procedure is implemented in the following

steps:
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(1) Initialize si~1 and all genetic effects as zeros

(2) Shrink genetic effects with the unweighted glmnet

(3) Update si using non-zero genetic effects

(4) Shrink genetic effects with the iteratively weighted glmnet

(5) Repeat step 2 and 4 until certain convergence criteria are

satisfied.

Statistical inference for QTLs
The LASSO for oversaturated GLM can provide estimates of

non-zero genetic effects, but cannot do significance test for the

estimates. After shrinkage estimation, the number of non-zero

effects is generally less than the sample size. Substituting for the

glmnet in iterative procedure, therefore, the reweighted least

squares method for common GLM can be employed to estimate

non-zero genetic effects:

b̂b0

..

.

b̂bk

2
664

3
775~

Pn
i~1

wiv
2
i � � �

Pn
i~1
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..

.
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..

.

Pn
i~1
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3
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{1 Pn
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..
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The variance-covariance matrix of the model parameters is

estimated by

V

b̂b0

..

.
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wiv
2
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The t test statistic is used to infer the significance of the non-zero

effects, which is calculated as

ti~
Db̂bi Dffiffiffiffiffiffiffiffiffiffiffi
V (b̂bi)

q for i~1,2, � � � ,k ð13Þ

It needs to be specially noticed that genetic effects re-estimated

by reweighted least square method may be biased upward due to

high variable selection of LASSO above. Meanwhile, population

structure and marker density influence distribution of the t test

statistic still. Permutation tests [26] is therefore introduced to

adjust the critical value of t test statistic. The loci corresponding to

significant genetic Meanwhile, population structure and mark

effects are determined as the QTLs for trait of interest.

Figure 1. The profiles of -log(p) test statistics of additive genetic effects obtained with IRglmnet method (upper panel) and IRGEE
method (lower panel) for alopecia areata. In each plot, the genome-wide critical value is marked by a horizontal reference line. Chromosomes
are separated by the vertical dotted lines and marker positions are indicated by the ticks on the horizontal axis.
doi:10.1371/journal.pone.0106985.g001
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Simulations
The purpose of simulation is to demonstrate the efficiency of the

method proposed here (IRglmnet for short), by comparing it to the

GEE (IRGEE for short) algorithm under a heterogeneous residual

variance model and unweighted glmnet (UWglmnet for short). Six

chromosomes, each of length 100 cM with 11 evenly placed co-

dominant markers are simulated in a backcross population with a

sample size of 200 and 400. Total 10 QTLs are simulated on the 6

chromosomes, whose positions and genetic effects are listed in

Table 2 and Table 3. Assuming population mean to be zero, the

expectation gi is calculated based on the simulated genotypes of

the QTLs and the expectation mi of discrete traits based on the link

function. Taking binary and Poisson traits as examples, pheno-

typic values are randomly generated from binomial and Poisson

distributions with their known expectations.

Alopecia areata in mouse
To locate QTLs linked with alopecia areata, an F2 population

was generated from crossing the strain of C3H/HeJ and C57BL/

6J mice [27]. The 138 alopecia areata and 214 clinically normal

mice were genotyped at 12 months of age using 211 microsatellite

markers. Linkage maps and marker positions were reported on the

website www.informatics.jax.org.

Tiller numbers in rice
This is a Poisson dataset for mapping QTL of tiller numbers in

rice [28]. A doubled-haploid (DH) population of 123 lines was

derived from the cross between two inbred lines, semidwarf IR64

and tall Azucena [29]. Based on this population, a genetic linkage

map of 2005 cM long was constructed using 175 genetic markers.

For the 123 DH lines, each containing five plants, tiller numbers

were observed every 10 days until all lines had headed. Phenotypic

value of each line was obtained by averaging over five plants.

Results

Simulation study
The simulated datasets are analyzed by using IRglmnet,

UWglmnet and IRGEE. For convenience to compare the three

mapping methods, all test statistics are transformed to -log(p),

where p is the probability of greater than the realized statistic

values. The critical values of the test statistic are determined

through simulating 1000 samples under the null model with zero

genetic effects. They are slightly distinguishable among the three

mapping methods and two sample sizes (Results not shown). The

simulations are replicated 500 times for estimating QTL

parameters and assessing the statistical power of QTL detection.

Statistical power of QTL detection is counted by each locus as the

percentage of the number of those simulations that statistic value

exceeds critical value at the locus.

The statistical performances of different scenarios are presented

in Table 2 for position estimate comparison, in Table 3 for QTL

parameter estimate comparison and in Table 4 for power

comparison, As can be seen, the IRglmnet is mostly identical to

the UWglmnet and the two glmnet methods are advantageous to

IRGEE in terms of power to detect QTL. The IRglmnet methods

can accurately estimate QTL genetic effects, while UWglmnet

somewhat underestimates and IRGEE can not estimate well QTL

effects. Meanwhile, both glmnets are able to detect QTL positions

with higher precision than IRGEE. Under the same genetic design

and sample size, the two traits analyzed are evidently distinct in

Figure 2. The profiles of -log(p) test statistics of dominance genetic effects obtained with IRglmnet method (upper panel) and
IRGEE method (lower panel) for alopecia areata. In each plot, the genome-wide critical value is marked by a horizontal reference line.
Chromosomes are separated by the vertical dotted lines and marker positions are indicated by the ticks on the horizontal axis.
doi:10.1371/journal.pone.0106985.g002
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QTL parameter estimation and power of QTL detection at the

QTLs of small genetic effects. As compared to normally

distributed traits in Liu et al. [22], the statistical powers to detect

QTL for the two analyzed traits are higher at all the simulated

QTLs except for the QTLs of small genetic effects, even with large

sample size. This implies that in principle, it is generally difficult to

detect QTLs for discrete traits. In addition, the statistical

performance of each mapping method increases as sample size

and QTL genetic effect increase, as observed in usual QTL

mapping.

The advantage of our proposed method lies in the computing

efficiency as well. Although the IRglmnet method with cross

validation takes more computing time than the UWglmnet, the

two glmnet methods run considerably fast, as compared to the

IRGEE. On an Intel core 4 PC with a 3.8 GHz processor, the

UWglmnet and IRglmnet for binary data consume 10.8 seconds

and 24.5 seconds on average, respectively, whereas the IRGEE

takes 1.2 minutes under a sample size of 200. For Poisson data, the

UWglmnet, IRglmnet and IRGEE run 14.3 seconds, 33.6 seconds

and 1.8 minutes, respectively. The difference in computing time-

consuming gets larger as the sample size increases.

Mapping QTL for alopecia areata
In an F2 population, there are three genotypes at each locus,

denoted by QQ, Qq and qq, so that QTL genetic effect can be

partitioned into additive and dominance effects. The linear

predictor for alopecia areata traits is described as

gi~mz
Xk

j~1

(zijajzwijdj)

where, m is the population mean, aj is the additive effect at the jth
locus, zij is the indicator variable corresponding to the additive

effect, defined as +1 for QQ, 0 for Qq and 21 for qq. dj is the

dominance effect at the jth locus, wij is the indicator variable

corresponding to the dominance effect, defined as 0 for

homozygote and 1 for heterozygote.

With probit link function, the dataset is analyzed by using

IRglmnet, UWglmnet and IRGEE methods. The genome-wide

critical threshold values for declaring QTL significance are

obtained by using 1000 permutation tests. The critical values are

distinguishable between the two glmnets methods and IRGEE

method, which is marked by horizontal reference line in Figure 1

and Figure 2. The comparative plots in the profiles of –log(p)

statistics between IRglmnet and IRGEE methods are depicted in

Figure 1 and Figure 2 by the mode of inheritance. The over-

dispersion parameter for each individual is much closed to 1 in

running IRglmnet method, so that the results obtained with the

UWglmnet are exactly the same as those obtained with the

IRglmnet. The QTLs are generally determined according to the

peaks that exceed corresponding critical values. As can be seen

from the two Figures, the IRglmnet finds not only those QTLs

detected with IRGEE but also more QTLs than those detected

with IRGEE. Surprisingly, most of QTLs are located on markers

in the genetic map with moderate density.

Table 5 tabulates parameter estimates of QTLs detected with

three mapping methods. A total of 10 QTLs are identified for

alopecia areata, of which, 6 are inherited in the additive mode and

4 in the dominance mode. Interestingly, the QTLs on chromo-

some 1 and chromosome 8 are completely different in the mode of

inheritance between the two glmnet methods and IRGEE method.

The proportions of phenotypic variation explained by the

detectable QTLs varied from 2% to 49%. The largest heritability
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(49%) is of the QTL on chromosome 17, which is more than five

times of the second highest heritability (9%). The estimates for

genetic effects from the IRglmnet are twice more than those from

the UWglmnet, but their estimated heritabilies are roughly the

same, except for the largest heritability. Meanwhile, the three

mapping methods are able to consistently detect major locus on

mouse chromosome 17 and minor locus on chromosome 9, as

reported in Sundberg et al. [27].

Mapping QTL for tiller numbers
Taking the tiller numbers at the third stage (30 days after

transplanting) as an example, the QTLs for the traits are located

by using the three competing mapping methods. Figure 3 (upper

panel) illustrates that there are two peaks that pass through the

horizontal line of critical value 2.043 at 5% genome-wide

significant level. This suggests that the two QTLs are indentified

by the IRglmnet and the UWglmnet. One of the detected QTLs is

located between markers MK23 and MK24 on chromosome 2,

another between markers MK48 and MK49 on chromosome 3.

They explain 1.9% and 2.1% of phenotypic variance, respectively.

There is almost no difference in the estimated heritability between

the UWglmnet and the IRglmnet, but the estimates for genetic

effect obtained with UWglmnet are less than that with IRglmnet.

In contrast, the IRGEE finds only one QTL of those identified by

both glmnet methods, as shown in Figure 3 (lower panel).

Discussion

Two extensions are realized to map QTL for discrete traits: one

is that of the GEE algorithm under a heterogeneous residual

variance model by Xu and Hu [21] for a single QTL model to

multiple QTL model, and another is that of IRLASSO for the

continuous normal traits [22] to discrete ones. The glmnet with

coordinate descent step is used for fast estimation of non-zero

effects, followed by few non-zero genetic effects estimated and

statistically inferred with a regular GLM. Like regular interval

mapping, the method proposed here can, not only estimate QTL

effects, but also assess the significance of QTLs. Although our

mapping method is developed for improving linkage analysis with

low marker density, it is also appropriate for missing genotypes

that always happen in QTL mapping.

R/glmnet can efficiently fit binary, categorical and Poisson data

with logistic and Poisson regression models [22]. However, it can

not be used to directly analyze binomial and multinomial data and

only logit and log link functions are used in solving for the

oversaturated GLM. In this study, a general LASSO procedure for

the GLM is derived based on all possible link function for discrete

traits, which can be incorporated into the R/glmnet with little

modification. From a statistical viewpoint, the choice for link

function can be somewhat arbitrary, but it is necessary to

understand the biological meaning of discrete traits. For instance,

the biological mechanism of binary and categorical traits can be

well interpreted by the threshold model with the probit link

function.

Figure 3. The profiles of -log(p) test statistics obtained with IRglmnet method (upper panel) and IRGEE method (lower panel) for
tiller numbers. In each plot, the genome-wide critical value is marked by a horizontal reference line. Chromosomes are separated by the vertical
dotted lines and marker positions are indicated by the ticks on the horizontal axis.
doi:10.1371/journal.pone.0106985.g003
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Our proposed method can be simplified to a notable extent in

the practice of QTL mapping. As demonstrated in simulations, the

UWglmnet is mostly consistent with IRglmnet method in terms of

power to detect QTL, although it underestimates the genetic

effects of QTLs. By removing the iteratively weighted step for

IRglmnet, non-zero effects can be solved by using UWglmnet for

simple computation. The iteratively weighted step is only used in

GLM analysis for reestimating few non-zero genetic effects. In R/

glmnet, additionally, cross validation (CV) is always introduced to

improve shrinking efficiency. The fewer non-zero genetic effects

are retained after the CV.glmnet, but more computing time is

needed. Actually, the CV step can be ignored in the QTL

mapping, as the CV.glmnet just drops the redundant non-zero

genetic effects of those obtained with the glmnet without CV. Prior

to the GLM analysis, the redundant non-zero genetic effects solved

by using the glmnet without CV can be simply removed by

restricting that there is only one QTL within a marker interval.

Without the iteratively weighted step and cross-validation for

glmnet, our proposed mapping method can save more computing

time than the GEE algorithm under a heterogeneous residual

variance model by Xu and Hu [21]. Our proposed method has

been coded in the program on the IRLASSO [22], which can

handle normally distributed, binary, binomial, ordinal, multino-

mial and Poisson traits. The program is freely available upon

request from the authors.
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