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Abstract

Background: Neospora caninum, a Toxoplasma gondii-like obligate intracellular parasite, causes abortion in cattle
and neurological signs in canines. To understand neosporosis better, studies on host cell migration and host
immune responses during the early phase of infection are important. Although the C-C chemokine receptor 5
(CCR5) plays a crucial role in immune cell migration, the role played by it in protective immunity against N. caninum
is poorly understood.

Methods: CCR5 ™/~ mice were used to investigate their sensitivity levels to N. caninum infection and their ability to
activate immune cells against this parasite.

Results: Increased mortality and neurological impairment were observed in the N. caninum-infected CCR5 ™~ mice.
In comparison with wild-type mice, CCR5~~ mice experienced poor migration of dendritic cells and natural killer T
cells to the site of infection. Dendritic cells in an in vitro culture from CCR5™~ mice could not be activated upon
infection with N. caninum. Furthermore, higher levels of IFN-y and CCL5 expression, which are associated with brain
tissue damage, were observed in the brain tissue of CCR5™~ mice during the acute phase of the infection, while
there was no significant difference in the parasite load between the wild-type and CCR5™~ animals. Additionally, a
primary microglia culture from CCR5™~ mice showed lower levels of IL-6 and IL-12 production against N. caninum
parasites.

Conclusions: Our findings show that migration and activation of immune cells via CCR5 is required for controlling

N. caninum parasites during the early phase of the infection.
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Background

Neospora caninum is an obligate intracellular apicomplexan
parasite. This parasite is a cause of neosporosis, which leads
to abortion, neonatal mortality and congenital infection
in cattle, and neuromuscular signs in canines [1]. Calves
infected vertically also have neurologic signs including
hind limbs that are flexed and hyperextended, and loss
of conscious proprioception [2]. The ability of a host to
survive an infection with N. caninum is IFN-y-dependent
[3]. IFN-y is a known major mediator of resistance against
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Toxoplasma gondii, a parasite closely related to N. cani-
num [4]. IL-12 stimulates production of IFN-y from nat-
ural killer (NK) cells, CD4" cells and CD8" cells [5]. In
one study, N. caninum infection induced IL-12 synthesis
by dendritic cells and macrophages, suggesting that IFN-
y-secretion by T lymphocytes in combination with IL-12
production occurred following interactions between T
cells and antigen-presenting cells [6].

Chemokines are a large family of chemotactic proteins,
which regulate leukocyte activation and recruitment to
sites of inflammation via interaction with a family of che-
mokine receptors [7]. Cystein—cystein chemokine receptor
5 (CCR5) and its ligands, such as macrophage inflamma-
tory protein-1 alpha (MIP-1a) and beta (MIP-1f), play a
role in IFN-y generation during the early phase of
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infection with Leishmania donovani [8]. CCR5-deficiency
in mice decreases susceptibility to experimental cerebral
malaria infection [9], suggesting that interactions between
host CCR5 and malaria parasites are important for
parasite control of the infection. During T. gondii in-
fection, T. gondii cyclophilin 18 (TgCyp18) was found
to induce IL-12 production through binding to CCR5
in a CCR5-dependent manner [10,11]. In the case of N.
caninum, excreted and secreted antigens triggered
monocytic cell migration to the site of infection in a
CCR5-dependent manner [12]. Moreover, N. caninum
cyclophilin caused CCR5-dependent migration of murine
and bovine cells [13]. Thus, CCR5 regulates the type of
immune cell migration and cytokine production required
for host control of parasites in 7. gondii and N. caninum
infections. However, the role played by CCR5 in protective
immunity against N. caninum has not been clarified as
yet. In this study, we investigated the sensitivity levels and
degree of neurological impairment of CCR5”~ mice in-
fected (intraperitoneally) with N. caninum to obtain better
understanding of the role of CCR5-dependent host
immunity.

Methods

Ethics statement

This study was performed in strict accordance with the
recommendations in the Guide for the Care and Use of
Laboratory Animals of the Ministry of Education, Culture,
Sports, Science and Technology, Japan. The protocol was
approved by the Committee on the Ethics of Animal
Experiments of the Obihiro University of Agriculture
and Veterinary Medicine (Permit number 25-59, 24-15,
23-61). All surgery for sampling of cardiac puncture
blood, tissues, bones and ascites was performed under iso-
flurane anesthesia, and all efforts were made to minimize
animal suffering.

Mice

C57BL/6 ] mice, 5-8 weeks of age, were obtained from
Clea Japan (Tokyo, Japan). CCR5 knockout (CCR5)
mice (B6.129P2-Cer5™"#/], Stock No. 005427) were pur-
chased from the Jackson Laboratory (Bar Harbor, Maine,
USA). The mice were housed under specific pathogen-free
conditions in the animal facility of the National Research
Center for Protozoan Diseases at the Obihiro University
of Agriculture and Veterinary Medicine, Obihiro, Japan.

Parasites and in vivo infections

N. caninum (Nc-1 isolate) tachyzoites and its recombi-
nants expressing the GFP were maintained in monkey
kidney adherent epithelial cells (Vero cells) cultured in
Eagle’s minimum essential medium (EMEM, Sigma, St
Louis, USA) supplemented with 8% heat-inactivated fetal
bovine serum (FBS). To purify tachyzoites, parasites and
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host cell debris were washed with PBS, after which the
final pellet was resuspended in PBS and passed through a
27-gause needle and a 5.0-pm-pore-size filter (Millipore,
Bedford, MA, USA). Male mice were experimentally in-
fected by the i.p. route with 1 x 10° tachyzoites per mouse.
All mice were monitored for survival and scored on a daily
basis for the neurological signs characteristic of neosporo-
sis, including torticollis and circling motion. Clinical
score-assessed neurological signs such as torticollis and
circling motion scored 1 point each. Dead mice showing
neurological signs were assigned a maximal score of 2.
The scores were assessed using a modified set of criteria
adapted by Reichel and Ellis [14].

Quantitation of parasite burden

For DNA preparation, brain, lung, liver, and spleen were
collected, frozen at —80°C, and resuspended in ten weight
equivalent volumes of extraction buffer (0.1 M Tris—HCI
pH 9.0, 1% SDS, 0.1 M NaCl, and 1 mM EDTA) and
100 pg/ml of Proteinase K at 50°C. DNA was purified by
phenol—chloroform extraction and ethanol precipitation.
For each tissue, the DNA concentration was adjusted to
50 ng per pl and 1 pl was used as template DNA. Para-
site DNA was quantified as described previously [15].
Oligonucleotide primers were designed to amplify a 76-
bp DNA fragment of the N. caninum Nc5 sequence
(GenBank accession no. X84238). The N. caninum Nc5
forward primer spans nucleotides 248 to 257 (5-ACT
GGA GGC ACG CTG AAC AC-3’) and the N. caninum
Nc 5 reverse primer spans nucleotides 303 to 323 (5-AAC
AAT GCT TCG CAA GAG GAA-3’). PCRs (25-pl total
volume) contained 1x SYBR Green PCR Buffer, 2 mM
MgCl,, a 200 uM concentration each of dATP, dCTP, and
dGTP, 400 uM dUTP, 0.625 U of AmpliTaq Gold DNA
polymerase, and 0.25 U of AmpErase UNG (urasil-N-gly-
cosilase) (all of which are included in the Power SYBR
Green PCR Master Mix, PE Applied Biosystems, Foster
City, CA, USA); additionally, 20 pmol of each primer
(Amersham Pharmacia Biotech, Inc., Piscataway, NJ) and
1 ul of template DNA were added. Amplification was per-
formed by a standard protocol recommended by the
manufacturer (2 min at 50°C, 10 min at 95°C, 40 cycles at
95°C for 15 s, and 60°C for 1 min). Amplification, data
acquisition, and data analysis were performed by the
ABI 7700 Prism Sequence Detector (Applied Biosystems,
Foster City, CA, USA), and the cycle threshold (Ct) values
calculated were exported to Microsoft Excel for analysis.
A standard curve was established from N. caninum DNA
extracted from 1 x 10° parasites using 1 ul samples of ser-
ial dilutions ranging from 10,000 to 0.01 parasites. Parasite
numbers were calculated by interpolation of the standard
curve, with the Ct values plotted against a known concen-
tration of parasites. To confirm the specificity of the
PCRs, DNA from the brain of an uninfected mouse and
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from purified N. caninum tachyzoites were used as the
negative and positive controls, respectively. The limit of
detection was 0.1 parasites in 50 ng of tissue DNA.

Real-time RT-PCR analysis

Total RNA was prepared from brain and liver samples
from the CCR5™"~ (N'=10) and C57BL/6 mice (N = 10)
using TriReagent™ (Sigma, USA) according to the manu-
facturer’s instructions. First-strand cDNA synthesis used
an oligo (dt) primer and RT-superscript II (Invitrogen,
Carlsbad, CA, USA) reverse transcriptase. PCR was per-
formed as described above, using Power SYBR Green PCR
Master Mix and an ABI 7700 Prism Sequence Detector
instrument. The relative mRNA amounts were calculated
using the comparative Ct method (User Bulletin no. 2,
Perkin-Elmer). The primer sequences (sense and antisense
sequences) designed by Primer Express Software (Applied
Biosystems, Foster City, CA, USA) were as follows: p-
actin sense primer 5-GCT CTG GCT CCT AGC ACC
AT-3; B-actin antisense primer 5-GCC ACC GAT CCA
CAC AGA GT-3] glyceraldehyde-3-phosphate dehydro-
genase (GAPDH) sense primer 5-TGT GTC CGT CGT
GGA TCT GA -3, GAPDH antisense primer 5- CCT
GCT TCA CCA CCT TGT TGA T-3; mouse IFN-y sense
primer 5-GCC ATC AGC AAC AAC ATA AGC GTC-3;
mouse IFN-y antisense primer 5-CCA CTC GGA TGA
GCT CAT TGA ATG-3; human CCL5 sense primer 5-
GCT TGC AAA CAC CTG ATG TCC-3; human CCL5
antisense primer 5-CCC TTC TCG GAG AGC TTT
TGT-3, TNF-a sense primer 5-GGC AGG TCT ACT
TTG GAG TCA TTG C-3) TNF-a antisense primer 5-
ACA TTC GAG GCT CCA GTG AA-3. Gene-specific
expression was normalized against B-actin and GAPDH
housekeeping gene expression. The optimal reference
gene was selected based on the Cotton EST database
(http://www.leonxie.com).

Pathological analysis

After fixation, the coronally cut liver, spleen, lung and
brain tissue samples were embedded in paraffin wax,
sectioned to 4 um, and then stained with hematoxylin
and eosin. To estimate the severity of the histopatho-
logical lesions in the brain, they were scored using the
following scheme: 0, no lesion; 1, minimal lesions limited
to localized perivascular cuffs or slight mononuclear cell
infiltration in the meninges; 2, mild lesions, including
perivascular cuffs, meningitis and local glial cell infiltra-
tion; 3, moderate lesions, including perivascular cuff, men-
ingitis, glial cell infiltration, focal necrosis and rarefaction
of the neuropil with occasional macrophage infiltration; 4,
severe lesions, including perivascular cuffs, meningitis,
glial cell infiltration, rarefaction of the neuropil and exten-
sive necrosis. The scores for each lesion were added for
each section, and the total pathological score for each
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section was used in the data analysis. We scored one sec-
tion that including some pieces of brain tissue cut coron-
ally in each mouse.

Preparation of peritoneal cells

Peritoneal exudate cells from the mice were harvested
by lavage with 5 ml of ice-cold PBS. The cells were
filtered through a 40-um cell strainer to remove cell
aggregates and small pieces of debris. The cells were
centrifuged at 1,000 x g for 5 min, suspended in PBS and
used for flow cytometric analysis.

Flow cytometric analysis and antibodies

Cells were prepared for fluorescence activated cell sort-
ing analysis as described below. Following removal of
the culture medium, the cells were washed with PBS and
resuspended in cold PBS containing 0.5% bovine serum
albumin. The cells were treated with FcBlock™ to avoid
the non-specific adherence of mAbs to Fc receptors, and
then incubated with their respective monoclonal anti-
bodies (Additional file 1: Table S1) for 15 min at 4°C. The
stained cells (monocyte/macrophage; CD11b* CDllc,
dendritic cell; CD11b~ CD11c", neutrophil; Gr-1* MHC
class II7, natural killer (NK) cell; CD3~ NK1.1*, NKT cells;
CD3* NK1.1%, T cell; CD3*) were washed with cold PBS,
fixed with 0.5% paraformaldehyde in PBS, and examined
with an EPICS XL flow cytometer (Beckman Coulter, Hia-
leah, USA). N. caninum-infected cells were GFP* by flow
cytometry. The absolute number of each cell marker was
calculated as follows: the absolute cell number = the
total host cell number x (the percentage of marker”
cells/100) x (the percentage of gated cell by the flow
cytometry/100).

Preparation of peritoneal macrophages for in vitro studies
CCR57'~ and C57BL/6 mice were injected i.p. with 1 ml
of 4.05% thioglycolate. Four days after these injections,
peritoneal exudate cells were harvested from the mice
by lavage with 5 ml of ice-cold PBS and depleted of red
blood cells with 0.83% NH4Cl and 0.01 M Tri-HCI,
pH 7.2. Cells were centrifuged at 1,000 x g for 10 min
and suspended in DMEM (Sigma) supplemented with
10% FBS. The macrophage suspension was then added
to a 12-well plate at 1 x 10° cells/well. After 24 h incuba-
tion, the macrophages (1 x 10° cells) were infected with
2 x 10° N. caninum tachyzoites and incubated for 24 h
for in vitro analysis. Cells were found to be 97% macro-
phages, as judged by positive staining for CD11b.

Preparation of bone marrow-derived dendritic cells (BMDCs)
BMDCs were prepared by a reported method [16] with
some modifications. After removing all muscle tissues
from the mouse femurs and tibias, the bones were placed
into a fresh dish with RPMI 1640 medium (Sigma). Both
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ends of each bone were cut with scissors and the
bone marrow cells were flushed out with a syringe
and a 25-gause needle using RPMI 1640 medium. Fol-
lowing lysis and red blood cell removal, the cells were
resuspended in RPMI 1640 supplemented with 10%
FBS and 10 ng/ml of murine recombinant granulocyte-
macrophage colony-stimulating factor (GM-CSF) (R&D
Systems, Minneapolis, MN, USA) and cultured in a 24-
well plate at 5 x 10° cells/well at 37°C. The cells were
cultured for 7 days and the supernatants were gently
removed and replaced with fresh media every 48 h. On
day 8 of culturing, mature and loosely attached BMDCs
(5% 10° cells) were infected with 2 x 10° tachyzoites and
incubated for 24 h for in vitro analysis.

Preparation of microglia cultures

Murine microglia were cultured from the brain cortices
of neonatal mice (age, E17-18), following the procedure
previously described [17], with some modifications. Pups
were decapitated and their brains were removed, the
cortices were dissected, and the meninges were re-
moved. Tissues were mechanically dissociated into a
single-cell suspension in DMEM containing 0.25%
trypsin and 0.01% DNase at 37°C for 10 min. After
washing, the cells were resuspended in DMEM/F-12
(Gibco, Carlsbad, CA, USA) supplemented with peni-
cillin—-streptomycin (0.5 mg/ml), 10% FBS, and 10 ng/
ml of GM-CSF, and then plated into 75-cm? flasks at
4 x 10° cells. The cultures were incubated at 37°C. Cell
culture medium was changed thereafter every three
days. After 10 to 11 days, microglial cells were de-
tached from the astrocyte monolayer by pipetting. The
supernatants were collected and centrifuged, and the
cells were reseeded on a 24-well plate at 2 x 10° cells/
well. Microglial cells were allowed to grow for an add-
itional 16 h before the experiments were started. The
microglial cells (2 x 10° cells) were infected with 2 x
10° tachyzoites and incubated for 24 h for in vitro ana-
lysis. Cells were found to be 95% microglia as judged
by positive staining for CD11b.

Cytokine enzyme-linked immunosorbent assay (ELISA)
IL-6 and IL-12 p40 levels in the culture supernatant of
peritoneal macrophages, BMDCs and microglia and in
the sera and ascites of mice were measured by an
OptEIA™ Mouse IL-6 or IL-12 (p40) ELISA Set (BD Bio-
science, San Jose, CA, USA), respectively, according to
the manufacturer’s instructions.

Statistical analysis

The various assay conditions used herein were evaluated
with a Student’s t-test or ANOVA test followed by Tukey’s
multiple comparisons procedure. The statistical signifi-
cance of differences in mouse survival was analyzed with a
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Kaplan—Meier nonparametric model and the curves were
compared using the log-rank test.

Results

Survival rates and clinical scores of CCR5-deficient mice
infected with N. caninum

CCR57~ mice showed significantly higher mortality rates
than C57BL/6 mice (Figure 1A). More than 60% of the
C57BL/6 mice survived whereas all CCR5”/~ mice suc-
cumbed to the infection. CCR5”~ mice also showed
higher weight loss compared with C57BL/6 mice after the
infection. Moreover, higher clinical scores assessing the se-
verity of the neurological signs (e.g., torticollis and circling
motion), which occurred at an earlier stage of the infec-
tion, were observed in the CCR5”" mice than in the
C57BL/6 mice (Figure 1B).

Parasite tissue burden

Next, the number of parasites in brain, lung, liver and
spleen tissues of mice at 5 day post-infection were mea-
sured by quantitative real-time PCR (Figure 2). As a result,
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Figure 1 Survival rate and clinical score of mice following lethal
challenge with N. caninum. (A) Survival rates of N. caninum-infected
CCR5™~ and C57BL/6 mice (wild-type, WT). Data were analyzed by a
log-rank test. *** P < 0.001. (B) Clinical scores represent the mean total
values for all mice used in this study. Data were obtained from two
independent experiments performed together (CCR5™~ mice, N=5 +6;
C57BL/6 mice, N=6+7).
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Figure 2 Parasite burden in tissues. The values are the number of parasites in 50 ng of tissue DNA. The number of parasites per individual
(symbols) and mean levels (horizontal lines) are indicated (N=9). Data were obtained from two independent experiments performed together.
No significant difference was observed between the two groups by a student’s t-test.

no significant difference was found between tissue sam-
ples of the same organs from the two groups.

Migration of peritoneal cells to the site of infection

The number of CD11b" cells (monocytes and macro-
phages) that had migrated was not significantly differ-
ent between the two groups (Figure 3A). In contrast,
CD11c" dendritic cells in the CCR5'~ mice showed less
migration than CD11c" dendritic cells in the C57BL/6
mice at 5 days post-infection (Figure 3B). Similar migra-
tion dynamics for neutrophils, NK cells, and T cells were
observed between the two groups, at 0, 5 and 10 days
post-infection (Figures 3C, D, F). However, the NKT
cells showed impaired migration in the CCR5™~ mice at
10 days post-infection (Figure 3E). The flow cytometry
results using N. caninum tachyzoites-expressing GFP
showed that there was no significant difference in the
infection rates and absolute numbers of the infected
CD11b" cells, CD11c" cells, or CD3" cells obtained
from the peritoneal cells (Table 1).

Activation of macrophages and dendritic cells during N.
caninum infection

No difference in CD80 activation was observed, whereas
there was significantly impaired CD86 activation in
CCR5”'~ macrophages compared with the wild-type
macrophages (Figure 4A). Additionally, in both cases,

activation of CD80 and CD86 (costimulatory molecules)
was significantly diminished in CCR5™'~ BMDCs upon N.
caninum infection (Figure 4B). Although N. caninum in-
fection triggered the production of IL-6 and IL-12p40 in
the macrophages and BMDCs, there was no significant
difference between wild-type and CCR5™'~ cells (data not
shown).

Measurement of inflammatory markers in liver and brain
At 5 days post-infection, IFN-y, IL-6, IL-12p40 and nitric
oxide (NO) levels were not significantly different in the
serum and the ascites fluid between the wild-type and
CCR5”'~ mice (data not shown). At 5 days post-infection,
IFN-y and CCL5 mRNA levels in the brains of the in-
fected CCR5™'~ mice were significantly higher than those
of the infected wild-type animals (Figure 5A); however,
there was no significant difference in the IFN-y and TNF-
a expression levels in the liver (Figure 5B).

Pathological analysis of infected mice

We performed a pathological analysis of liver, spleen, kid-
ney, heart, lung and brain at 5 days post-infection. In liver,
mononuclear cell infiltration was observed in both groups
of mice (five mice per group) while some CCR5™'~ mice
showed focal necrosis (data not shown). However, there
were no significant findings in the other organs. Next,
pathological change of brain at 8 days post-infection was
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Figure 3 Migration of peritoneal cells to the site of infection. Peritoneal cells (PEC) were obtained from CCR5™/~ mice and C57BL/6 mice
(wild-type, WT) at 0, 5 and 10 days post-infection (dpi) with 1x 10° N. caninum tachyzoites (0 dpi, N=3; 5 dpi, N=9 from two independent
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Data were analyzed by a student’s t-test and compared with values taken on the same day post-infection. *P < 0.05.

Table 1 Infection rates and number of CD11b*, CD11c*, or CD3*cells infected withN. caninum-expressing GFP

Infection rates (%)

Infected cell number (x10%)

CD11b" cells WT
CCR5™~

CD11c* cells WT
CCR5™

CD3" cells WT
CCR5 ™~

203+0.70, P=0255
308193
381+£101,P=0534
423+123
030+0.18, P=0.131
0.80+0.66

9.68+3.05 P=073
9.09+265
379+£127,P=019
285+1.07
055+022, P=045
0.67+031

Peritoneal cells were obtained from CCR5™~ and C57BL/6 mice (WT) at 5 days after infection with 1x 10° N. caninum tachyzoites expressing GFP (N = 6). Cells
were then subjected to flow cytometry to determine the infection rate and absolute number of monocytes/macrophages (CD11b*), dendritic cells (CD11¢*) and T
cells (CD3*) based on GFP™ cells. Data were analyzed by a student’s t-test. GFP: green fluorescent protein.
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examined. Two of nine C57BL/6 mice and four of nine
CCR5™~ mice died before their brains were collected.
While only slight to mild lesions, including perivascular
cuffs, were observed in the brains of two C57BL/6 mice
(Figure 6A), slight to moderate lesions including glial cell
infiltration and meningitis were observed in the brains of
the CCR5”~ mice (Figure 6B). Although some mice in the
CCR5™'~ group had a high pathological score (Figure 6C)
and a high parasite load in their brain data not shown,
no statistically significant difference was observed be-
tween the CCR5~'~ and C57BL/6 groups.

Microglia activation during N. caninum infection

As shown in Figure 7A, CD86 expression was signifi-
cantly lower in CCR5~'~ microglia with or without infec-
tion while no significant difference in activation of MHC
class II was observed (data not shown). Moreover, IL-6
and IL-12p40 production levels in CCR5~~ microglia

were significantly lower than those in wild-type cells
during N. caninum infection (Figure 7B). In contrast,
there was no significant difference in IL-6 production
between wild-type and CCR5™'~ primary astrocytes (data
not shown).

Discussion

In the present study, we showed that CCR5~~ mice expe-
rienced increased mortality during N. caninum infection
compared with C57BL/6 mice. It has been shown that
CCR5 is crucially involved in the pathway underlying
resistance to T. gondii because of its ability to induce
IL-12 production by dendritic cells [10,18]. Additionally,
CCR5~'~ mice have been shown to display enhanced para-
site burden and mortality during 7. gondii infection [19].
These results suggest that CCR5 plays a physiological role
in immunology and inflammation during parasite infec-
tion. Alternatively, antigen-presenting cells may transport
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Figure 5 Inflammatory marker expression in mouse brain and liver. Brain and liver obtained from infected CCR5™~ mice and C57BL/6 mice
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intracellular pathogens such as N. caninum and T. gondii
away from the sites of primary infection and help them to
propagate inside the host [12,20]. However, in the present
study, no difference in the parasite load in the organs of
CCR57" and wild-type mice was seen at 5 and 8 days
post-infection with N. caninum. This result suggests that
parasite burden does not contribute to death in CCR5™~
mice during N. caninum infection.

It is well-known that rapid recruitment of monocytes/
macrophages to the sites of infection has potential to en-
hance the innate immune responses of the host against
pathogens. Our recent results showed that macrophage-
depleted mice exhibited increased sensitivity to N. cani-
num infection [21]. However, migration of monocytes/
macrophages to the site of infection was not significantly
different between CCR5~'~ and wild-type mice. Add-
itionally, CCR5~~ macrophage activation upon infection
with N. caninum was similar to that of the wild-type
cells, with the exception of CD86 expression levels.
Therefore, other factors may play a role in the increased
mortality of CCR5”~ mice during infection with N.
caninum.

Significant differences were observed in the migration
of dendritic cells and NKT cells at 5 and 10 days post-
infection, respectively, indicating that these cells migrated

to the sites of infection in a CCR5-dependent manner.
Our group previously showed that depletion of NKT cells,
but not NK cells, increased the parasite burden in mouse
brains and inhibited the activation of CD4" cells, suggest-
ing that NKT cells play a crucial role in protection against
the early stage of N. caninum infection [22]. Thus, NKT
cells may contribute to CCR5-dependent protective
immunity. The main role of dendritic cells is antigen
presentation; therefore, impairment of dendritic cell
migration and activation suppresses the induction of
antigen presentation in the lymph nodes, leading to
down-regulation of adaptive immunity [6]. CD80 and
CD86 expression levels in the CCR5™/~ dendritic cells
were significantly lower than those in the wild-type
cells. This suggests that CCR5-mediated activation of
dendritic cells and NKT cells in response to N. caninum
may be partially involved in protective immunity despite
the similar parasite burden and infection rates in the tis-
sue or cells between the CCR5~'~ and wild-type mice.
Interestingly, brain (but not liver) from the N. caninum-
infected CCR5~/~ mice showed more severe tissue damage
and increased inflammation than the same tissue from the
infected wild-type animals, despite no significant differ-
ence in the parasite load between the groups. Glial cells
such as astrocytes and microglia play an important role in
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brain homeostasis. Astrocytes support neuronal function
by secreting neuropoietic factors such as IL-6 [23]. How-
ever, no significant production of IL-6 between wild-type
and CCR5™/~ primary astrocytes was seen upon infection
with N. caninum. Microglia cells are responsible for initial
immune defenses in the central nervous system (CNS). In
response to tissue injury or pathogen infection, microglia
proliferate and secrete pro- and anti-inflammatory cyto-
kines, prostaglandins and free radicals [24]. Microglia
appear to be the major effector cells that inhibit T. gondii
tachyzoite proliferation in the brain via TNF-a, IL-6 or
NO [25,26]. Microglia, which act like macrophages or
dendritic cells in the brain, produce the cytokines neces-
sary for recruitment and activation of T cells to control T.
gondii infection [27]. In the present study, in comparison
with the wild type microglia, CCR5™"~ cells showed lower
expression levels of CD86 and impaired production of
IL-6 and IL-12 p40 against in vitro infection with N.
caninum, suggesting that CCR5~'~ microglia were un-
able to trigger neuroprotection or the level of protect-
ive immunity required to clear parasites from the
brain. Moreover, CCR5 and its ligands are expressed in
microglia and neurons, respectively, in response to
nerve injury, suggesting that CCR5-mediated neuron-glia
signaling protects neurons by suppressing microglia toxicity

[28]. Although the ability of IFN-y to reduce parasite
numbers is well-known [27], overproduction of it causes
tissue damage [19]. CCL5, one of the ligands for CCR5, is
expressed in response to inflammation following T cell re-
cruitment [29]. In the present study, IFN-y and CCL5
mRNA expression in brain tissue was significantly ele-
vated in the CCR5”~ mice compared with that of the
wild-type mice; however, no significant difference was ob-
served in IFN-y and TNF-a mRNA levels in liver tissue
between these groups of mice, indicating that there was
more severe damage to the brains of infected CCR5™
mice. Thus, brain damage caused by microglia dysfunction
might result in the earlier onset of neurological signs in
CCR5™" mice after infection with N. caninum.
Neurological signs are a typical feature of neosporosis.
In most CNS diseases, CCR5 deletion is deleterious to
the host; infectious agents for which this has been
shown include Cryptococcus neoformans [30], herpes
simplex virus [31,32], and West Nile Virus [33]. In con-
trast, CCR5-deficiency in mice diminished susceptibility
to infection with Plasmodium berghei (ANKA strain) by
reducing CD8" T cell accumulation and T-helper 1 cyto-
kine production in the brain [9]. If, in some cases, CCR5
represents a susceptibility factor for the spread of patho-
gens in the brain, in others it confers resistance against
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Figure 7 Expression of cell surface markers and cytokine
production in microglia. (A) Each value represents the mean
fluorescence intensity (MFI) of the marker + the standard deviation
of four replicate samples. “~" indicates no stimuli and “+" indicates
infection with N. caninum tachyzoites (Nc1). (B) IL-6 and IL-12p40 in
the culture supernatant were analyzed by cytokine ELISA. Each value
represents the mean + standard deviation of four replicate samples.
Data were analyzed by one-way ANOVA tests followed by Tukey's
multiple comparison. **P < 0.01, ***P < 0.001. Reproducibility of the
data was confirmed by two independent experiments.

the development of severe disease. To better understand
the physiological role of CCR5, the function of its ligand
should be considered. Interestingly, 7. gondii possesses a
unique molecule for stimulating immune responses and
cell migration in the host. TgCypl8 appears to induce
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IL-12 production by interacting directly with CCR5
[11,18,34]. Moreover, overproduction of TgCyp18 regulates
host cell migration and enhances parasite dissemination in
a CCR5-independent manner [35]. N. caninum also has a
cyclophilin gene. However, N. caninum-derived cyclophilin
(NcCyp) appears to contribute to host cell migration in a
CCR5-dependent way [13]. Therefore, the complex reac-
tions underlying the development of neosporosis and the
involvement of CCR5 and NcCyp in immune and nervous
system reactions should be investigated further. It is likely
that such studies will make important contributions to the
understanding of host-parasite interactions.

Although ruminants are clinically affected by N. caninum
infection, cattle generally show few clinical symptoms fol-
lowing the infection. Specific antibody and cell-mediated
immune responses have been observed in both naturally
infected cattle and those experimentally infected with
N. caninum. It is important also to consider the differ-
ences in immune responses between pregnant and
non-pregnant cattle, since pregnancy can modulate the
immune responses against N. caninum [36]. In early
pregnancy, strong Thl immune responses against the
parasite antigen at the maternal-foetal interface may
induce abortion. Thus, a Thl immune response is thought
to be detrimental to pregnancy [37,38]. Thl immune re-
sponses at the maternal-foetal interface including CD4"
cell infiltration and IFN—y expression have been associ-
ated with tissue destruction in early or mid- gestation
[39,40]. Therefore, migration of inflammatory cells at the
maternal-foetal interface may trigger the N. caninum-in-
duced abortion. Our previous study showed that recom-
binant NcCyp caused the CCR5-dependent migration of
bovine peripheral blood mononuclear cells [13]. This re-
sult suggests that CCR5-dependent immunity may be in-
volved in bovine abortion following N. caninum infection.

Conclusions

Our findings indicate that migration and activation of
immune cells via CCR5 is required for controlling N.
caninum parasites during the early phase of the infection.
Our data suggest that dendritic cells and microglia play a
role in CCR5-mediated protectve immunity against N.
caninum. Hence, it is important to consider the contribu-
tion that the parasite-derived molecule such as NcCyp
plays in CCR5-dependent host immunity.
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