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Abstract
Mitochondrial complex I dysfunction is the most common respiratory chain defect in human disorders and a hotspot for
neurodegenerative diseases. Amyloid precursor protein (APP) and its non-amyloidogenic processing products, in particular
soluble APP α (sAPPα), have been shown to provide neuroprotection in models of neuronal injury; however, APP-mediated
protection from acute mitochondrial injury has not been previously reported. Here, we use the plant-derived pesticide rotenone, a
potent complex I-specific mitochondrial inhibitor, to discover neuroprotective effects of APP and sAPPα in vitro, in neuronal cell
lines over-expressing APP, and in vivo, in a retinal neuronal rotenone toxicity mouse model. Our results show that APP over-
expression is protective against rotenone toxicity in neurons via sAPPα through an autocrine/paracrine mechanism that involves
the Pi3K/Akt pro-survival pathway. APP−/− mice exhibit greater susceptibility to retinal rotenone toxicity, while intravitreal
delivery of sAPPα reduces inner retinal neuronal death in wild-type mice following rotenone challenge. We also show a
significant decrease in human retinal expression of APP with age. These findings provide insights into the therapeutic potential
of non-amyloidogenic processing of APP in complex I-related neurodegeneration.
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Introduction

Mitochondrial complex I (NADH/ubiquinone oxidoreduc-
tase) is the main entry point of electrons into the respiratory
chain from carbohydrate metabolism, via the oxidation of
NADH. Complex I is the largest of the five oxidative

phosphorylation (OXPHOS) enzymes, comprising 45 protein
subunits including 7 encoded in the mitochondrial DNA [1,
2]. Within mitochondrial disorders, complex I defects account
for a disproportionate majority of disease, which range in
clinical severity from Leber hereditary optic neuropathy with
specific retinal ganglion cell loss, to severe multisystem
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progressive and lethal encephalopathies [2–4]. Partial system-
ic complex I defects have been demonstrated in Parkinson’s
disease [5], glaucoma [6, 7], and in Leber hereditary optic
neuropathy [8]. The plant-derived pesticide rotenone is a po-
tent complex I-specific inhibitor that is widely used to model
Parkinson’s disease and optic neuropathies both in vitro and
in vivo [9–11].

The primary clinical presentations in Parkinson’s disease are
motor symptoms such as bradykinesia and resting tremor, but the
disease also routinely involves non-motor symptoms such as
visual and olfactory deficits. Recent work has evidenced retinal
thickness as an accessible biomarker given that thinning of the
retinal layer is an early event in Parkinson’s disease [12] and
continued thinning corresponds both with the progression of dis-
ease symptoms [13] and nigral dopaminergic loss [14]. It is gen-
erally accepted that the causal origin of Parkinson’s disease is
unknown in most cases. A series of molecular mechanisms, in-
cluding mitochondrial dysfunction, oxidative stress, excitotoxic
damage, and loss of protective proteins, are hypothesized as ear-
ly, contributing, interacting, and/or causal events [15].

The amyloid precursor protein (APP) is the parent protein
of a complex family of derivative peptides that exert various
neuroprotective activities [16, 17]. APP is predominantly
processed from its membrane-bound holoform via two path-
ways. The favored non-amyloidogenic pathway produces a
large N-terminal ectodomain, soluble APP α (sAPPα), which
is secreted into the extracellular medium [18], and a C-
terminal fragment, which undergoes further processing to gen-
erate a peptide called p3 [19]. Alternatively, amyloidogenic
APP processing results in the release of a shorter ectodomain
called soluble APP β into the extracellular medium, and a 99-
amino acid C-terminal fragment in the membrane [20].
Further cleavage of this C-terminal fragment generates the
amyloid β (Aβ) peptide found in cerebral plaques of neuro-
pathological diseases such as Alzheimer’s disease [21, 22].

Non-amyloidogenic APP processing has been shown to
provide neuroprotection in models of neuronal injury, includ-
ing traumatic brain injury and ischemia-reperfusion injury
[23–25]. APP-mediated protection from acute mitochondrial
injury has not been previously described. Here, we use the
plant-derived pesticide rotenone, a potent complex I-specific
inhibitor, and Parkinson’s disease mimetic, to discover neuro-
protective effects of APP and sAPPα in vitro and in vivo and
provide mechanistic insights into the role of APP in
counteracting mitochondrial neurotoxic stress.

Materials and Methods

Cell Culture and Plasmid Transfection

Human neuroblastoma SH-SY5Y, mouse neuroblast neuro2-a
(N2a), or Chinese hamster ovary (CHO) cells were grown in

RPMI 1640 medium (Cat. #11875, Thermo Fisher Scientific)
and supplemented with 10% fetal bovine serum (FBS) in a
humidified incubator at 37 °C and 5% CO2. Cells were
transfected with a pIRESpuro2 empty vector control
(Clontech Laboratories Inc., Takara-Bio Inc., Japan) or a vec-
tor containing human wild-type full-length APP695 isoform
(hereafter referred to as Bcontrol^ or BAPP^ respectively) as
described previously [26]. Cells were transferred to glucose-
free RPMI 1640 medium (Thermo Fisher Scientific, Cat.
#11879) supplemented with 7.5% FBS and 5.6 mM glucose
(euglycemic medium) 24 h prior to rotenone treatment, be-
cause hyperglycemia can selectively reduce physiological α-
secretase cleavage of APP [27].

Ethics

All procedures conformed to the requirements of the Royal
Victorian Eye & Ear Hospital Animal Research and Ethics
Committee. Wild-type and APP−/− mice on a SV129 back-
ground [28] originated from a breeding colony at the
Melbourne Brain Centre, Melbourne VIC, Australia. Mice
were housed in a temperature (22 ± 1 °C) and light (12 h light,
12 h dark) controlled environment where food and water were
available ad libitum.Male and female mice were used equally.

Human Eye Collection and Processing

Work involving human eyes was carried out in accordance of
the Declaration of Helsinki. All experimental procedures were
approved by the Royal Victorian Eye and Ear Hospital Human
Research Ethics Committee (Project 08/859H) and written
informed consent was obtained from all next of kin or partic-
ipants. Human eyes were donated for research purposes
through the Lions Eye Donation Service (Melbourne,
Australia). Information was received in relation to the donor’s
medical history including cause of death, time of death, past
illnesses and any relevant eye history if known.

Experimental Treatments and Co-culture

Rotenone (Sigma-Aldrich) was dissolved in ethanol and po-
tassium cyanide (KCN; Sigma-Aldrich) was dissolved in ul-
trapure MilliQ water. Wortmannin (Sigma-Aldrich; 20 nM;
wmn) was added to cells 1 h before rotenone treatment. Co-
culture of SH-SY5Y control and APP cells was achieved
using a ThinCert apparatus (Greiner Bio-One, USA, 1 μm
membrane).

Briefly, control SH-SY5Y cells were seeded in 24-well
culture plates (main well) and control or APP-over-
expressing SH-SY5Y cells were plated into Thincert inserts
(insert; Greiner Bio-One, USA) for 40 h prior to rotenone
exposure. Co-culturing occurred for 16–8 h prior to rotenone
treatment to allow secreted APP fragments to move freely
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between culture populations by diffusion while preventing
direct interaction of both cell types.

In Vivo Rotenone Toxicity Model

Mice were anesthetized by intraperitoneal injection of keta-
mine (60 mg/kg) and xylazine (10 mg/kg). After making a
guide track through the conjunctiva and sclera at the superior
temporal hemisphere using a 30-gauge needle, a hand-pulled
glass micropipette was inserted into the mid-vitreal cavity.
Rotenone (1 μl; 10 mM; Sigma-Aldrich) or vehicle (DMSO)
was injected into the vitreal chamber at a rate of 100 nl/s using
an Ultra Micro Pump (World Precision Instruments, Inc.
Sarasota, USA). Patency was confirmed following needle re-
moval. For sAPPα co-treatment experiments, a second intra-
vitreal injection of recombinant human sAPPα (6 ng/μl,
Sigma-Aldrich) or vehicle (phosphate-buffered saline; PBS)
was performed 30 min after injection of rotenone.

Cell Viability and Caspase 3 Assay

Cell viability and proliferation were measured by the trypan
blue exclusion assay. Cells seeded at equal densities were
scraped and collected by centrifugation (1000g, 5 min),
suspended in PBS, and a 10-μl aliquot mixed with an equal
volume of 0.4% trypan blue solution (Cat # 1525006, Thermo
Fisher Scientific) and counted using a hemocytometer. For
caspase 3 activity analysis, cells were collected following ro-
tenone treatment and lysed in lysis buffer (50 mM HEPES,
pH 7.4, 150 mM NaCl, 1 mM EDTA, 0.2 mM EGTA, 1%
Triton X-100, 1 mM phenylmethylsulfonyl fluoride, 10 μg/ml
aprotinin, 5 μM Na3VO4), passed twice through a 21 G nee-
dle, incubated on ice for 10 min, and the supernatant collected
by centrifugation (10, 000g, 10 min). A 50-μl aliquot of this
lysate was used to measure caspase-3 activity using the
EnzChek Caspase-3 Assay kit (Molecular Probes, USA) ac-
cording to manufacturer’s instructions.

Reactive Oxygen Species Generation

ROS were measured using 2,7-dichlorodihydrofluorescein
(DCFH)—to detect hydrogen peroxide—and dihydroethidine
(DHE)—to detect superoxide, with a Polarstar fluorescence
microplate reader (POLARstar OPTIMA, BMG laboratories,
Australia) by measuring fluorescence with excitation and
emission wavelengths of 480 ± 10 and 570 ± 10 nm, respec-
tively. Briefly, cells were plated at 5 × 104 in 96-well plates in
euglycemic medium for 24 h prior to treatment for up to 24 h,
media was removed, and cells incubated in the dark with
DCFH or DHE for 30 min at 37 °C. Cells were then washed
twice with PBS and suspended in PBS for fluorescence anal-
ysis. A total of 100 nM phorbol 12-myristate 12-acetate dis-
solved in DMSOwas used as a positive control for superoxide

detection, while 1 mMH2O2 was used as a positive control for
hydrogen peroxide detection.

ATP Synthesis

ATP quantification was carried out using the ATP
Determination Kit Assay (Cat. # A22066, Thermo Fisher
Scientific) according to manufacturer’s instructions, with a
Polarstar fluorescence microplate reader (POLARstar
OPTIMA, BMG laboratories, Australia).

Protein Extraction to Determine Phosphorylation
State

Harvested cells were collected by centrifugation (1000g,
3 min, 4 °C) and suspended in lysis buffer containing
50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 1%
Tergitol, 0.1% SDS in milliQ H2O, 2 mM activated sodium
orthovanadate (Na3VO4), 1 mM (PMSF), and aprotinin
10 μg/ml. Samples were sonicated on ice (3 pulses at power
setting 1.5, 0.04 V, Milsonix homogenizer, Milsonix Inc.,
USA) and snap-frozen at − 80 °C for 2 h. Lysed cells in the
supernatant were collected by centrifugation (1000g, 30 s,
4 °C).

Immunoblotting

Harvested cells, retina, or vitreous were suspended in 70–
100-μl lysis buffer, sonicated on ice (as described above),
and incubated on ice for 30 min, followed by centrifuga-
tion (18,000g, 20 min, 4 °C) to collect the supernatant
containing protein. Immunoblotting was performed as de-
scribed before [29] and protein expression was detected
using primary antibodies: anti-APP 22C11 (# MAB348,
Millipore, 1:5000), anti-sAPPα 2B3 (#11088, IBL,
1:2000), anti-Akt (#9272, Cell Signaling, 1:5000), anti-
phospho-Akt Ser473 (#9271, Cell Signaling, 1:2000),
anti-phospho-Akt Thr308 (#9275, Cell Signaling,
1:2000), anti-phospho-ERK1/2 (Cell Signaling, 1:2000),
anti-phospho-JNK (Cell Signaling, 1:1000), anti-
phospho-p38 (Cell Signaling, 1:1000), anti-actin antibody
(Sigma-Aldrich, 1:5000). Primary antibodies were detect-
ed using sheep anti-mouse or anti-rabbit horseradish
peroxidase-conjugated secondary antibody (Amersham
GE Healthcare, Cat # NA931Vor #NA934) and visualized
by electrochemiluminescence detection reagent on film
(Amersham GE Healthcare, Cat # RPN2106). Protein band
intensities were measured using ImageJ software (https://
imagej.nih.gov/ij/), and band intensity determined in the
linear range was normalized to band intensity of actin.
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Collection and Processing of Mouse Retinal Tissue

Eyes were enucleated and immersion-fixed in 4% paraformal-
dehyde for 3 h, followed by overnight cryoprotection in 15%
sucrose. Eyes were embedded in optical cutting temperature
medium and 12 μm sections were cut through the papillary-
optic nerve axis.

Mouse Retina Imaging and TUNEL Assay

Cryosections were immunolabeled with an antibody that rec-
ognizes the N-terminal of APP (22C11, 1:100, Merck
Millipore) according to published protocols [30]. All sections
were nuclear-counterstained with Hoechst (1:10,000). The
thicknesses of cellular and synaptic retinal layers were mea-
sured on digital images of Hoechst-stained cryosections as
described [31]. To quantify retinal ganglion cells, sections
cut through the optic nerve head and ora serrate were scanned
from superior to inferior edge and the numbers of Hoechst-
labeled nuclei in the ganglion cell layer were counted. Retinal
cryosections were labeled using the TUNEL assay according
to published protocols [32]. Labeled sections were scanned
from superior to inferior edge in 1-mm increments and the
number of TUNEL-positive nuclei were recorded. The fre-
quency of TUNEL-positive profiles/mm of retina was aver-
aged from at least two sections per animal.

Statistical Analysis

Results are presented as the mean ± SD or ± SEM (indicated in
the legend). Statistical analysis was performed with Prism
5.01 software (GraphPad Software Inc.) using Student’s t test,
one-way ANOVA with Bonferroni correction for multiple
comparisons or linear regression. Normal distribution of ex-
perimental measurements was determined by the Shapiro-
Wilk test. A P value < 0.05 was considered as significant.

Results

APP Protects Against Rotenone Toxicity in Neuronal
Cells

We investigated the effect of APP over-expression in the
loss of neurons upon exposure to the mitochondrial neuro-
toxin and Parkinson’s disease mimetic rotenone [33, 34].
Human neuroblastoma SH-SY5Y, mouse neuroblastoma
N2a, or non-neuronal CHO cells were transfected with an
empty vector (control) or a vector containing full-length,
wild-type APP695 (APP). APP protein levels were measured
by immunoblotting in SHSY-5Y, N2a, and CHO cells to
demonstrate higher APP expression relative to control cells
(Supplementary Fig. 1A). Transfected cell lines were

exposed to increasing concentrations of rotenone for 48 h
and cell survival was determined by the trypan blue exclu-
sion assay (Fig. 1a). APP over-expression correlated with
reduced cell loss in both SH-SY5Y and N2a cells compared
to control cells, while no changes in cell survival were de-
tected in CHO cells over-expressing APP. This protective
effect was confirmed in transfected SH-SY5Y cells exposed
to 100 nM rotenone up to 96 h, showing sustained protec-
tion in neuronal cells expressing higher levels of APP (Fig.
1b). APP protein levels were consistently higher in SH-
SY5Y cells transfected with APP upon exposure to increas-
ing concentrations of rotenone (Supplementary Fig. 1B).
This was consistent with significantly higher activation of
caspase 3 in control cells compared with APP over-
expressing cells at 16 and 24 h following rotenone challenge
(Fig. 1c).

It is well established that sAPPα, resulting from the
non-amyloidogenic cleavage of APP and released into the
extracellular medium, is neuroprotective and neurotrophic
[16]. To determine the paracrine neuroprotective potential
of APP against rotenone-induced cell loss, control SH-
SY5Y cells were co-cultured with control cells (control/
control) or with APP cells (control/APP) for 16 h prior to
rotenone exposure, in a transwell culture system that
allowed secreted APP fragments to move freely between
culture populations but prevented direct interaction of the
different cell types (Supplementary Fig. 1C). Control/
control or control/APP co-cultures were exposed to rote-
none (100 nM) for 48 h and cell survival was determined
by the trypan blue exclusion assay (Fig. 1d). sAPPα levels
were increased in conditioned media from control/APP co-
cultures as measured by immunoblotting (Supplementary
Fig. 1D). Cells continually exposed to sAPPα-enriched
media through co-culture were significantly protected
against rotenone-induced cell loss compared to control/
control cells (Fig. 1d). This was further explored by mea-
suring caspase 3 activity, which was significantly higher in
control/control co-cultures compared with control/APP co-
cultures, indicating that an activation of apoptotic path-
ways in control/control cells is absent in control/APP cells
(Fig. 1e).

Next, we investigated the specificity of APP-mediated
protection from mitochondrial toxicity, particularly
OXPHOS complex IV inhibition, which has also been asso-
ciated with age-related neurodegeneration [35]. Transfected
cells were exposed to increasing concentrations of the com-
plex IV inhibitor potassium cyanide (KCN) for 48 h and cell
survival was assessed by the trypan blue exclusion assay
(Supplementary Fig. 2). Unlike the complex I inhibition ex-
periments, APP over-expression did not protect neuronal or
non-neuronal cells from complex IV inhibition-induced tox-
icity (Supplementary Fig. 2A) or caspase 3 activation
(Supplementary Fig. 2B). Furthermore, cellular ATP levels
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decreased at similar levels between control and APP
transfected cells upon exposure to potassium cyanide
(Supplementary Fig. 2C). Together, these results indicate that
APP confers protection to neuronal cells from complex I
toxicity induced by exposure to rotenone through an auto-
crine (i.e., intracellular APP over-expression) or paracrine
(i.e., derived from secreted APP in co-culture) mechanism.
This protection appears to be neuron-selective and specific to
complex I.

APP Prevents Rotenone-Induced Changes
in Mitochondrial ROS and ATP Production

Rotenone inhibits complex I of the mitochondrial electron
transport chain and induces apoptosis via reduction of ATP
synthesis and increased ROS production [36]. Therefore, to
identify the mechanism of APP-mediated neuroprotection
from rotenone toxicity in mitochondria, ATP and ROS levels
were examined in control or APP SH-SY5Y cells incubated

Fig. 1 APP protects against rotenone toxicity in neuronal cells. a Human
neuroblastoma SH-SY5Y, mouse neuroblastoma N2a or non-neuronal
CHO cells transfected with APP (APP) or empty vector control
(control) were exposed to increasing concentrations of rotenone for
48 h and cell survival was determined by the trypan blue exclusion assay.
SH-SY5Yand N2a cells transfected with APP had a significantly higher
survival compared to control. b Cell survival in transfected SH-SY5Y
cells exposed to 100 nM rotenone was assessed up to 96 h to show
sustained protection in SH-SY5Y cells expressing APP. Representative
immunoblot showing increased APP levels in SH-SY5Y cells exposed to
rotenone at each timepoint is included below the graph. Actin was used as

a loading control. c Caspase 3 activity is significantly higher in control
SH-SY5Y cells 16 and 24 h post-exposure to 100 nM rotenone compared
to SH-SY5Y cells expressing APP. d Co-culture of control SH-SY5Y
with SH-SY5Y cells expressing APP cells increases resistance to rote-
none toxicity. Control SH-SY5Y cells were co-cultured with either SH-
SY5YAPP cells (control/APP) or control (control/control) for 16 h before
incubation with vehicle or rotenone (100 nM) for 48 h and cell survival
was determined by the trypan blue exclusion assay. eCaspase 3 activity is
significantly higher in control/control cells compared with control/APP
cells 16 and 24 h post-exposure to 100 nM rotenone. Data show mean ±
SD, n ≥ 4, Student’s t test, * P < 0.05, ** P < 0.01.
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with 100 nM rotenone for up to 24 h (Fig. 2). Over-expression
of APP suppressed superoxide levels significantly between 1
and 16 h (Fig. 2a) and peroxide levels at 16 and 24 h following
rotenone challenge (Fig. 2b). Basal ATP levels were un-
changed by the over-expression of APP relative to control
cells up to 16 h; however, at 24 h post-rotenone exposure,
ATP levels were preserved at significantly higher levels in
cells over-expressing APP compared with control (Fig. 2c).
These results reflect a delayed effect of APP on mitochondrial
metabolism that coincide with caspase 3 activation and loss of
plasma membrane integrity in control cells (Fig. 1).

Pi3K/Akt Activation Is Crucial to APP-Mediated
Neuronal Protection from Rotenone Toxicity

Exposure of neuronal cultures to sAPPα has been shown to
activate the Pi3K/Akt pro-survival pathway and thereby pre-
vent apoptosis following trophic factor deprivation [37, 38],
Aβ toxicity [39], or proteasome inhibition [40]. To further in-
vestigate the neuroprotective mechanism in our model of
rotenone-induced mitochondrial toxicity, Akt phosphorylation
response was measured by immunoblotting in control or APP
SH-SY5Y cells (Fig. 3a), and in control/control or control/APP
co-cultures (Fig. 3b) upon exposure to rotenone for up to 24 h.
APP over-expression alone or exposure to sAPPα-enriched
media progressively induced significant and sustained Akt ac-
tivation, reaching up to a 3-fold increase relative to controls by
24 h (Fig. 3a, b). Next, we assessed the functional relevance of
Akt activation in the survival associated with APP over-
expression or exposure to sAPPα-enriched media, by blocking
Akt activation using the Pi3K inhibitor wortmannin (wmn; Fig.
3c, d). We observed a consistent and significant reversal in cell
survival after 24-h exposure to rotenone in both APP over-
expressing cells (Fig. 3c) and control/APP co-cultures upon
treatment (Fig. 3d) in the presence of wortmannin, demonstrat-
ing that Akt activation is crucial for neuronal protection in our
experimental setting.

Others have shown that rotenone-induced apoptosis re-
quires activation of MAPK signaling pathways such as JNK

and p38 [38, 41]. Therefore, we investigated whether protec-
tion from rotenone toxicity in cells over-expressing APP could
also result from suppression of pro-apoptotic targets upstream
of Akt. Over-expression of APP did not significantly alter the
rotenone-induced acute activation of p38 (Supplementary Fig.
3A), JNK (Supplementary Fig. 3B), or c-Jun (Supplementary
Fig. 3C). Furthermore, over-expression of APP did not alter
rotenone-induced activation of the pro-survival ERK signal-
ing pathway (Supplementary Fig. 3D). Together, these results
suggest that the mechanism of APP-mediated neuroprotection
against rotenone is through the Pi3K/Akt pro-survival path-
way and independent of MAPK or ERK pathways.

APP Protects Against Rotenone-Toxicity in the Mouse
Retina

We next sought to determine if the neuroprotective effect of
APP or sAPPα in vitro extended to an in vivo setting. APP
immunoreactivity in the C57BL/6J mouse retina was most
prominent in somas of the ganglion cell layer (GCL) on the
inner retinal surface (Fig. 4a, in red), concurring with previous
reports [42]. Intravitreal delivery of rotenone is an established
model of retinal toxicity in the mouse eye that selectively kills
inner retinal neurons [11]. Using this model, we assessed
mouse retinas 24 h after rotenone injection by the TUNEL
technique, which identifies DNA damage characteristic of ap-
optosis, to estimate cell death. We found a significant increase
in the frequency of TUNEL-positive nuclei in the ganglion
and inner nuclear layers of rotenone-treated eyes compared
to those injected with vehicle (Fig. 4b, c), confirming the
toxicity model and its specificity to the inner retina. To test
if sAPPα was able to rescue retinal neurons against rotenone
toxicity, we injected exogenous sAPPα into the mouse eye
30 min post-rotenone injury. Administration of sAPPα signif-
icantly reduced the number of TUNEL-positive profiles in the
mid and inner layers of the retina (Fig. 4b, c). There was no
detectable difference in the number of TUNEL-positive cells
between sAPPα-treated retinas and uninjured (vehicle-
injected) retinas.

Fig. 2 APP alters rotenone-induced changes in mitochondrial ROS and
ATP production. a, b Levels of cellular superoxide (a; DHE fluorescence)
and hydrogen peroxide (b; DCFH fluorescence) were assessed in SH-
SY5Y control and APP cells treated with 100 nM rotenone for up to

24 h. cOver-expression of APP in suppression of rotenone-induced levels
of superoxide and hydrogen peroxide in APP over-expressing SH-SY5Y
cells has delayed effects on ATP cellular levels. Data show mean ± SD,
n ≥ 3, Student’s t test, *P< 0.05, **P < 0.01
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If APP is critical for retinal cell survival after toxic chal-
lenge, we hypothesized that mice deficient in APP would
show a greater susceptibility to rotenone-induced toxicity. To
test this hypothesis, we conducted experiments with mice car-
rying a homozygous deletion of the APP gene (APP−/− mice).
These mice have no detectable levels of APP mRNA or pro-
tein but are fertile and do not show overt abnormalities up to
12 weeks of age [28]. Initial histological analysis of baseline
retinal cross-sections revealed no overt structural abnormali-
ties in APP−/− mice (Supplementary Fig. 4). Since we
established that rotenone treatment-induced cell loss was lo-
calized to the inner nuclear and ganglion cell layers of the
retina, analysis on the response of APP−/− mice to rotenone
toxicity was focused specifically on these locations. On retinal
cross-sections collected 24 h after rotenone treatment, we
quantified soma in the ganglion cell layer and assessed the
integrity of the inner nuclear layer by measuring its thickness.
Compared to wild-type, APP−/− mice showed a significantly
greater loss of retinal ganglion cell layer (GCL) in response to
rotenone injection (Fig. 4d). Furthermore, the inner nuclear
layer (INL) of APP−/−mice was significantly thinner than that
seen in wild-type mice, indicating a greater loss of inner reti-
nal cell bodies in response to rotenone (Fig. 4d). There was no
change in the thickness of the outer nuclear layer (ONL), or
plexiform layers (OPL/IPL) of the retina in either wild-type or

APP−/− mice with rotenone, indicating no substantial loss of
photoreceptors or synaptic connections (Fig. 4d). Collectively,
these findings support our in vitro findings and suggest a
neuroprotective role for sAPPα in vivo.

Age-Related Changes to APP Levels in the Human Eye

There is consistent and substantial evidence for a neuropro-
tective function of APP and sAPPα in vivo [16], which is
further supported by our current data. However, due to the
difficulty in obtaining clinical samples, most of the in vivo
work to date has used rodent models and there is little data
available on APP and sAPPα in human eye tissue. A previous
study using immunoreactivity analysis in a small number of
human eyes showed that APP is predominantly located in the
inner retina, specifically the ganglion cell and retinal nerve
fiber layers [43]. We conducted an analysis of APP and
sAPPα protein levels in retinal tissue and vitreous fluid from
a large cohort of human eyes collected over a 3-year period
through the Lions Eye Donation Service, Melbourne,
Australia (Table 1). Retinal tissue was collected from donors
that ranged in age from 5 to 91 years of age (n = 83), while
vitreous fluid was obtained from donors ranging from 22 to
91 years of age (n = 41). Immunoblotting was performed
using antibodies that detect full-length APP (#A8717,

Fig. 3 Akt activation is crucial to
APP-mediated neuronal protec-
tion from rotenone toxicity. a, b
In response to rotenone (100 nM)
exposure, Akt was activated in
SH-SY5Y cells over-expressing
APP (a) and in SH-SY5Y control/
APP co-cultures (b). c Cell sur-
vival was assessed in SH-SY5Y
control or APP cells treated with
rotenone (75 nM; 48 h) in the ab-
sence or presence of the Akt in-
hibitor wortmannin (w, wmn,
20 nM). d Cell survival was de-
termined in SH-SY5Y control/
control or control/APP co-
cultures exposed to rotenone
(75 nM; 48 h) in the absence or
presence of wortmannin (w, wmn,
20 nM). Representative blots and
densitometric analyses show the
ratio of activated
(phosphorylated, p-AKT) protein
levels relative to
unphosphorylated protein levels.
Data show mean ± SEM, n ≥ 3,
Student’s t test (a, b) or one-way
ANOVA (c, d). *P< 0.05, **P
< 0.01, ***P < 0.001
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Sigma) or sAPPα (anti-sAPPα 2B3, IBL). We detected the
presence of both full-length APP and sAPPα in human retinal
samples (using actin as a loading control) and confirmed only
sAPPα in the vitreous samples (Fig. 5a). An absence of full
length APP and actin (Fig. 5a) indicated the purity of the
vitreous samples and the lack of contamination by retina or

other tissue during dissection. By quantifying retinal APP and
retinal sAPPα levels, a linear regression analysis was used to
address the relationship between retinal expression and age in
the human eyes. While there was a significant decrease in
retinal expression of APP with age (Fig. 5b), no change was
seen in the levels of retinal sAPPα (Fig. 5c).

Fig. 4 APP protects against
rotenone-toxicity in the mouse
retina. a Expression of APP in the
mouse retina was assessed by
immunohistochemistry of cross-
sections using an antibody that
detects all APP isoforms and APP
fragments (22C11).
Representative images show lo-
calization of APP (red) in the ret-
inal ganglion cell layer. Scale
bar = 20 μm. b Cell death in the
mouse retina was quantified by
the frequency of TUNEL-positive
nuclei in the inner retina 24 h after
rotenone toxicity. Data are pre-
sented as mean ± SEM; n = 8;
*p < 0.05 by Student’s t test. c
Representative micrographs of
mouse retinal cross-sections show
TUNEL-positive cells (red). Scale
bar = 20 μm. d Survival of retinal
neurons 24 h after rotenone tox-
icity in wild-type (WT) and APP
knockout (APP−/−) mice was
quantified by measuring the
thickness of nuclear and synaptic
layers and by counting the num-
ber of soma in the ganglion cell
layer on nuclear-stained retinal
cross-sections. Data are presented
as mean ± SEM; n = 8; *p < 0.05
by Student’s t test. ONL: outer
nuclear layer; OPL: outer plexi-
form layer; INL: inner nuclear
layer; IPL: inner plexiform layer;
GCL: ganglion cell layer

Table 1 Characteristics of donors
for aging retina and vitreous
analysis

Sample type Subset (years) n Sex (female n; %) Age (average, years)

Retina total 83 38 (45.8) 59.2 ± 18.9; range 5–91

< 40 16 7 (43.8) 27.9 ± 10.6

40–70 37 18 (48.6) 58.8 ± 8.2

> 70 30 13 (43.3) 76.4 ± 4.9

Vitreous Total 41 18 (43.9) 62.4 ± 16.5; range 22–91

< 40 6 2 (33.3) 32 ± 5.3

40–70 18 8 (44.4) 59.2 ± 7.4

> 70 17 8 (47.1) 76.6 ± 6.2
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Discussion

Here, we investigated the neuroprotective effects of APP
and sAPPα in vitro and in vivo, using models of neurode-
generation induced by rotenone exposure, and report a loss
in retinal APP with age in humans. APP confers protection
to neuronal cells from rotenone through both autocrine and
paracrine mechanisms mediated via the Pi3K/Akt pro-
survival pathway. The addition of sAPPα to primary neu-
ronal cultures under trophic factor deprivation has been
shown to reinstate the Pi3K/Akt and ERK pathways and
provide protection from cell death [37, 38]. By contrast,
the activation of Akt in APP over-expressing cells and
cells exposed to sAPPα-enriched media found here was
insult-driven. This correlated with the relative preservation
of ATP levels as well as the repression of cellular peroxide
levels and caspase 3 activity in APP over-expressing cells

compared to control cells. Over-expression of APP did not
affect rotenone-induced p38 or JNK pathway activation
despite sAPPα-mediated JNK suppression being linked
to its neuroprotective mechanism against epoxomicin
[40]. It did, however, immediately and continually sup-
press rotenone-induced superoxide levels, which may be
a result of the reported doubling of manganese superoxide
dismutase levels in APP over-expressing neuroblastoma
cells [44].

One reason over-expression of APP protected against
rotenone-induced mitochondrial complex I dysfunction
and not cyanide-induced mitochondrial complex IV dys-
function may be linked to Akt targets. The cyanide model
used here was caspase 3-independent and resulted in a
rapid loss of cellular ATP. By promoting the interaction
of hexokinase with mitochondria and inhibiting Bax trans-
location to mitochondria [45], activated Akt effectively
prevents mitochondrial cytochrome c release and subse-
quent caspase 3 activation. This pro-survival pathway
would therefore be ineffective against the rapid cyanide-
induced cell death observed here.

Using an in vivo model of acute rotenone toxicity in the
mouse retina, we showed that intravitreal delivery of recom-
binant human sAPPα, which lacks the posttranslational mod-
ifications present in endogenously processed sAPPα, reduces
retinal neuronal cell death in wild-type animals. The same
toxicity model in APP−/− mice resulted in a greater loss of
inner retinal neurons compared to wild-type mice, suggesting
that endogenous APP processing provides some protection
from the complex I inhibition. Our finding of abundant levels
of sAPPα in human vitreous implicates this neurotrophin in
retinal homeostasis. We and others [42] show that retinal gan-
glion cells have the highest expression of APP in the wild-type
mouse retina, which is the most likely source of sAPPα in the
vitreous. Examination of retinal APP protein levels in a large
cohort of human eyes illustrate a significant decrease with age,
raising the question of whether a loss in APP contributes to
age-related neurodegeneration.

The accumulation of Aβ is a traditional hallmark of
Alzheimer’s disease but other forms of neurodegeneration,
including a subset of patients with Parkinson’s disease with
dementia, have a similar neuropathological observation [46].
However, as the generation of Aβ or sAPPα arise from alter-
native proteolytic pathways of APP it is reasonable to propose
that an increase in Aβ production will result in a decrease in
sAPPα levels [47]. Increased Aβ production thereby results in
both a gain of Aβ toxicity and a potential loss of sAPPα
neurotrophic/neuroprotective function. Lower sAPPα levels
have been found in cerebro-spinal fluid of Alzheimer’s dis-
ease patients carrying the Swedish mutations in APP [48] and
in post mortem brain [49], but pre-mortem studies in cerebro-
spinal fluid or blood in patients with sporadic Alzheimer’s
disease have not provided consistent results [50]. Few studies

Fig. 5 APP levels decrease in the aging human eye. a Representative
image of APP expression in the human eye, assessed by
immunoblotting using antibodies against full-length APP (anti-APP
22C11; Millipore) and sAPPα (anti-sAPPα 2B3; IBL). Both species of
APP were detected in the retina while only sAPPα was detected in the
vitreous. b, c Linear regression analysis of retinal APP (b) and retinal
sAPPα (c) levels and age in the human eye
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have investigated APP levels in Parkinson’s disease brain.
However, Ayton et al. showed lower APP levels in post
mortem Parkinson’s disease substantia nigra, and mice over-
expressing APP are protected from MPTP-induced nigral cell
loss [51]. This is consistent with our findings as both rotenone
and the neurotoxin MPP+ (derived from MPTP) are potent
mitochondrial complex I inhibitors.

Conclusions

In summary, we show that APP over-expression or exposure
to sAPPα affords protection from mitochondrial complex I
inhibition by rotenone. This protection is driven by Pi3K/
Akt activation. Our finding that sAPPα can protect from acute
rotenone toxicity provides therapeutic insights into mitochon-
drial neurodegeneration. Pharmacological mimetics of this
protection mechanism could be promising therapeutic candi-
dates in diseases resulting from complex I impairment includ-
ing mitochondrial optic neuropathies and Parkinson’s disease.
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