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Simple Summary: The follicle development (FD) of a goat is precisely regulated by various non-
coding RNAs (ncRNAs), especially by the regulatory mechanism of competing endogenous RNAs
(ceRNAs). This study aimed to determine the expression patterns of messenger RNA (mRNA),
long noncoding RNA, microRNA, and circular RNA during the FD of Dazhu black goats by whole-
transcriptomic sequencing and analyze the regulatory mechanism of the ncRNA and ceRNA reg-
ulatory network. The results may lay a foundation for further research on FD and improving the
reproductive performance of goats.

Abstract: The follicle development (FD) is an important factor determining litter size in animals.
Recent studies have found that noncoding RNAs (ncRNAs) play an important role in FD. In particular,
the role of the regulatory mechanism of competing endogenous RNAs (ceRNAs) that drive FD has
attracted increasing attention. Therefore, this study explored the genetic basis of goat FD by obtaining
the complete follicular transcriptome of Dazu black goats at different developmental stages. Results
revealed that 128 messenger RNAs (mRNAs), 4 long noncoding RNAs (lncRNAs), 49 microRNAs
(miRNAs), and 290 circular RNAs (circRNAs) were significantly differentially expressed (DE) between
large and small follicles. Moreover, DEmRNAs were enriched in many signaling pathways related to
FD, as well as GO terms related to molecular binding and enzyme activity. Based on the analysis of the
ceRNA network (CRN), 34 nodes (1 DElncRNAs, 10 DEcircRNAs, 14 DEmiRNAs, and 9 DEmRNAs)
and 35 interactions (17 DEcircRNAs–DEmRNAs, 2 DElncRNAs–DEmiRNAs, and 16 DEmRNA–
DEmiRNAs) implied that the CRN could be involved in the FD of goats. In conclusion, we described
gene regulation by DERNAs and lncRNA/circRNA–miRNA–mRNA CRNs in the FD of goats. This
study provided insights into the genetic basis of FD in precise transcriptional regulation.

Keywords: goat; noncoding RNA; competing endogenous RNAs; follicle development

1. Introduction

Goats (Capra hircus) have been economically important domesticated animals since
the beginning of the agricultural civilization of mankind. Although female fertility is the
most important economic performance indicator of goats, its genetic basis of molecular
mechanisms remains unclear. Accordingly, follicle development (FD) is an important
process that requires further research. Several studies have attempted to explain the genetic
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mechanism of FD in vertebrates [1,2]. However, the transcriptional regulation of ovarian
follicles is highly complex and specific [3–5]. Although the transcriptional regulation of FD
in mammals has been reported, its precise regulatory and developmental mechanisms has
remain poorly understood.

Numerous noncoding RNAs have been confirmed to participate in known biological
development processes by controlling protein-coding and noncoding genes [6–8]. In partic-
ular, the advent of next-generation, high-throughput technology has led to the identification
of specific functional noncoding RNAs (ncRNAs) with roles in biological development
and/or physiological responses [9–11]. Several studies have suggested that ncRNAs
including microRNA (miRNAs), long noncoding RNA (lncRNAs), and circular RNA (circR-
NAs) play crucial roles in various biological processes in domestic animals [12–14]. More-
over, some studies have provided evidence supporting that lncRNA/circRNA–miRNA–
messenger RNA (mRNA) interactions are important mechanisms underlying mammalian
physiological development and diseases [15–17].

A series of studies on follicle and reproductive cell development has provided evi-
dence of the interaction between mRNAs and ncRNAs. For example, miR-92b-3p negatively
regulates TSC1 in the mTOR/Rps6 signaling of primordial follicles in neonatal mouse
ovaries [15], whereas miR-378 alters gene expression in cumulus cells and indirectly in-
fluences oocyte maturation competence in mice [18]. Moreover, lncRNA-H19 limits the
number of follicles that mature, estradiol production, and ovulation concerning AMH in
mice [19,20]. In the ovarian granulose cells (GC) of mice with polycystic ovary syndrome
(PCOS), the lncRNA sequence read archive (SRA) inhibits proinflammatory cytokine pro-
duction and NF-κB nuclear translocation induced by DHEA. This event subsequently
alters insulin release and reduces ovarian damage and angiogenic factor production [10].
Competing endogenous RNAs (ceRNAs) are well known to bind competitively to miRNAs
through their miRNA response elements to regulate the expression levels of miRNA target
genes [21]. Some pieces of evidence supporting the possible participation of ceRNAs in
many biological roles in vertebrates have been provided [22,23]. In particular, a series of
ceRNA pairs has been implicated in FD. For example, circINHA promotes GC proliferation
and inhibits GC apoptosis via CTGF by acting as a ceRNA that binds to miR-10a-5p [24].
PWNR2 acts as a ceRNA to reduce the availability of miR-92b-3p for TMEM120B target
binding during the maturation of PCOS oocytes, thereby playing an important role in the
nuclear maturation of oocytes in PCOS [25]. Additionally, miR-486-5p has been inferred to
play a key role in FD in PCOS by targeting PRELID2, whereas miR-4651 may be involved
in inflammation by regulating its target gene [26]. All these results have indicated that the
targeting of the regulatory effects of associated lncRNAs, circRNAs, miRNAs, and mRNAs
may have a potential role in FD.

In the present study, we compared for the first time the expression levels of lncRNAs,
mRNAs, miRNAs, and circRNAs in the large follicles (LFs) and small follicles (SFs) of Dazu
black goats. Second, we constructed a preliminarily verified novel regulatory network
mediated by lncRNA/circRNA–miRNA–mRNA ceRNA interactions to identify the key
factors involved in FD.

2. Materials and Methods
2.1. Ethics Statement and Sample Collection

The experimental conditions of this study were approved by the Committee on the
Ethics of Animal Experiments of Southwest University (No. [2007] 3) and the Animal
Protection Law of China. The ovaries of four Dazu black goats approximately 1.5–2 years
of age were collected. The follicles were stripped in physiological saline at 37 ◦C. The first
six largest follicles of the bilateral ovaries of each animal were separated and sorted by
diameter. The follicles from all animals were clustered into groups 1 to 6 based on size
(GF_1, GF_2, GF_3, GF_4, GF_5, and GF_6). The three groups with the largest follicle
size were considered as the LF cluster (diameter > 4 mm, GF_C (GF_1, GF_2 and GF_3),
control group), and the other three groups with the smallest follicle sizes were designated



Animals 2021, 11, 3536 3 of 17

as the SF cluster (diameter < 4 mm, GF_T (GF_4, GF_5, and GF_6), experimental group) in
accordance with a previous study on Dazu black goats (China National Commission of
Animal Genetic Resources, 2011) [27].

2.2. Isolation of Total RNA and Transcriptome Sequencing

Total RNA (for mRNAs, lncRNA, and circRNAs) was extracted from each follicle-
size group by using TRIzol® Reagent following the manufacturer’s protocol (Invitrogen,
Waltham, MA, USA). Genomic DNA was removed using DNase I (TaKara, Japan). RNA
quality was determined with ND-2000 (NanoDrop Technologies, Wilmington, DE, USA).
Equal amounts of RNA from each follicle-size group were selected for library preparation.
Ribosomal RNA was removed using Epicentre Ribo-zero Ribosomal RNA (rRNA) Removal
Kits (Epicentre, Madison, WI, USA), and the rRNA-free residue was precipitated with
ethanol. High-strand-specificity libraries were generated with NEBNext Ultra Directional
RNA Library Prep Kit for Illumina (NEB, Ipswich, MA, USA). DNA 1000 Assay Kit
(Agilent Technologies, Santa Clara, CA, USA) or High-Sensitivity DNA assay Kit (Agilent
Technologies, Santa Clara, CA, USA) was used for library quality inspection. Finally, ABI
StepOnePlus Real-Time PCR System (Life Technologies, Carlsbad, CA, USA) was used for
quantitative and pooling analyses, and transcriptome sequencing was conducted using
Hiseq2500 with PE150.

Total RNA (miRNA) was extracted with polyethylene glycol 8000, and RNA molecules
within a size range of 18–30 nt were enriched through polyacrylamide gel electrophoresis.
Then, 3′ adapters were added, and 36–44 nt RNAs were enriched. The RNAs were also
ligated with 5′ adapters. The ligation products were reverse transcribed by PCR amplifi-
cation, and PCR products 140–160 bp in size were enriched to generate a cDNA library.
Finally, sequencing was performed using an Illumina HiSeq 2500 platform (2 × 125 bp
read length, Guangzhou, China).

2.3. Quality Analysis, Mapping, Transcript Assembly, and Coding RNA Identification

Clean data were obtained by removing low-quality reads and adapter sequences
by utilizing SeqPrep (https://github.com/jstjohn/SeqPrep accessed on 24 October 2019)
and Sickle (https://github.com/najoshi/sickle accessed on 27 October 2019) with the
default parameters. The Q20, Q30, and GC contents of clean data were calculated, and
all subsequent analyses were based on high-quality data. The clean reads of each group
were aligned to goat genome (ARS1, GCA_001704415.1) by using Bowtie v2.0.6 [28] and
TopHat v2.0.9 [29] software, respectively. Transcript assembly and abundance estimation
were performed with TopHat [29] and Cufflinks [30]. BLASTX was used to search the NR
and KEGG databases (E-value < 10−5).

All reconstructed transcripts were compared with the reference genome to identify
novel gene transcripts and classified with Cuff compare. Genes with the class code “uijxceo
(transcript unknown or in the intergenic region)” were defined as novel genes. Then,
the following parameters were used to determine a reliable novel gene: transcript length
greater than 200 bp and number of exons greater than 2. Subsequently, the novel gene
was compared with genes in the NR and KEGG databases to obtain protein function
annotations. Gene-expression level was normalized by the fragments per kilobase of
transcript per million mapped reads (FPKM) method.

2.4. LncRNA Identification

Four types of software, namely, Coding-Noncoding-Index v2 [31], CPC v0.9-r2
(https://cpc.cbi.pku.edu.cn/ accessed on 14 November 2019) [32], PhyloCSF [33], and
Pfam [34], were used to assess the protein-coding potential of the novel transcripts with
default parameters. The intersections of non-protein-coding potential results were selected
as lncRNAs. The transcripts that passed through all these stages were considered to be
lncRNAs. LncRNA expression levels were reflected as FPKM.

https://github.com/jstjohn/SeqPrep
https://github.com/najoshi/sickle
https://cpc.cbi.pku.edu.cn/
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2.5. MiRNA Identification and Target-Gene Prediction

The GeneBank database (release 209.0) and Rfam database (11.0) were used to annotate
data and maximize the removal of rRNAs, small cytoplasmic RNAs (scRNAs), small
nucleolar RNAs (snoRNAs), small nuclear RNAs (snRNAs), and transfer RNAs (tRNAs)
from small RNAs (sRNAs). The genomic origin of the tag sequence was identified by
comparing the tag sequence with the reference genome through Bowtie (v1.1.2) with the
parameter settings -v 0 –best –strata –a, where v means the maximum allowable number of
mismatches. The repetitive sequence region was identified using Repeat Masker version
open-4.0.6 (parameter settings: -engine wublast -s -no_is -cutoff 255 -frag 20 000). Then, the
sRNA tag sequence of the repeat associate was identified based on the result of genome
alignment and the position of the repeated sequence on the genome. All clean tags were
aligned with the reference genome. Tags that were mapped to repeat sequences were
also removed.

The tags were compared with miRNA precursors and mature bodies by utilizing the
miRBase database (release 21) (https://www.MiRbase.org/ accessed on 3 December 2019)
to obtain known miRNAs. Then, all unannotated tags were aligned with the reference
genome, and the novel miRNA candidates were identified using default parameters in
accordance with their genomic positions and hairpin structures predicted with Mireap_v0.2.
MiRNA sequences. Family information was obtained from TargetScan website (https:
//www.targetscan.org/ accessed on 12 December 2019). The miRNA (existing, known,
and novel miRNAs) expression levels in each group were calculated and normalized
to transcripts per million (TPM) with the following formula: TPM = Actual miRNA
counts/(total counts of clean tags × 106).

We predicted the target relationship between DEmiRNAs and DEmRNAs with de-
fault parameters by using RnaHybrid (v2.1.2) + svm_light (v6.01), MIRANDA (v3.3a),
and TargetScan (v7.0). The intersections of the results had high credibility for selection
as the predicted target genes of miRNA. Expression correlation between mRNA and
miRNA was evaluated using the Spearman rank correlation coefficient (SCC). Pairs with
SCC < −0.7 were selected as negatively coexpressed mRNA–miRNA pairs wherein mRNA
was DEmiRNA-TGs.

2.6. CircRNA Identification and Source-Gene Prediction

After aligning the clean reads to the goat reference genome, the junctions of the
unmapped reads were identified using a back-splice algorithm and combining all samples’
comparison results. The prediction results for circRNAs were visualized using Findcirc
software [34] with the following criteria: (a) Breakpoint = 1, and circRNAs with one clear
breakpoint were retained; (b) Anchor_overlap ≤ 2, and the two anchor reads of each read
aligned to the genome position overlap could not exceed 2 bp; (c) Edit ≤ 2, and only 2
bp mismatches were allowed; (d) n_uniq > 2, and unique reads must be greater than 2;
(e) best_qual_A > 35 or best_qual_B > 35, and the highest mapping result of the single
anchor read of each read must be higher than that of the second-ranked result with a score
of at least 35; (f) n uniq > int(samples/2), and the unique reads supporting the circRNAs
must be greater than half of the total number of samples; (g) The length of the circRNAs
was less than 100 kb. The back-spliced reads per million (RPM) mapped reads of back-
spliced junction reads was used to quantify the expression abundance of circRNAs with
the following formula: RPM = 106 C/N, where C is the only back-spliced junction read
that is mapped to a circRNA, and N is the total number of back-spliced junction reads.
The RPM method can eliminate the influence of different sequencing-data volumes on the
calculation of circRNA expression. Therefore, the calculated expression can be directly
used to determine differential expression between groups. Furthermore, DEcircRNA-SGs
were obtained using Findcirc software [34].

https://www.MiRbase.org/
https://www.targetscan.org/
https://www.targetscan.org/
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2.7. Differentially Expressed (DE) RNA Identification and Enrichment Analysis

DE RNAs between different follicle size groups were identified using the edgeR
package (https://www.bioconductor.org/packages/release/bioc/html/edgeR.html ac-
cessed on 4 January 2020) with the following criteria: DElncRNAs and DEmRNAs with
|log2FC| > 1 and false discovery rate < 0.05; and DEcircRNAs and DEmiRNAs with
|log2FC| > 1 and p < 0.05. Furthermore, GO functional enrichment and KEGG pathway
analysis were performed using Goatools (https://github.com/tanghaibao/Goatools ac-
cessed on 11 January 2020) and KOBAS (https://kobas.cbi.pku.edu.cn/genelist/ accessed
on 14 January 2020) [35]. DEmRNAs, DEmiRNA-TGs, and DEcircRNA-SGs were consid-
ered to be significantly enriched in GO terms and metabolic pathways when their corrected
p-value was less than 0.05.

2.8. CeRNA Regulatory Network (CRN) Construction

The CRN was constructed as follows: (a) The expression correlation between DEmRNAs–
DEmiRNAs, DElncRNAs–DEmiRNAs, or DEcircRNAs–DEmiRNAs was evaluated using
the SCC. Pairs with SCC < −0.7 were selected as negatively coexpressed circRNA–miRNA
pairs, lncRNA–miRNA pairs, or mRNA–miRNA pairs, wherein mRNA, circRNA, and
lncRNA were miRNA target genes, and all RNAs were DE. (2) The expression correlation
between circRNA/lncRNA–mRNA was evaluated using the Pearson correlation coefficient
(PCC). Pairs with PCC > 0.9 were selected as coexpressed circRNA/lncRNA–mRNA pairs,
wherein mRNA and lncRNA/circRNA were targeted and negatively coexpressed with a
common miRNA. (3) As a result, only gene pairs with P values less than 0.05 were selected.
The lncRNA/circRNA–miRNA–mRNA network was constructed and visualized using
Cytoscape software (v3.6.0) [36].

2.9. Reverse-Transcription Quantitative PCR (RT-qPCR) Verification

The samples used in the qPCR analyses were the same as those used in the RNA-
seq study. The cDNA synthesis of mRNA, lncRNA, and circRNA was performed with
PrimeScript™ RT reagent kit with gDNA Eraser (TaKaRa, Japan). The reverse transcription
of miRNA was performed using Mir-X™ miRNA First-Strand Synthesis (TaKaRa, Japan),
and the primers of all RNAs are shown in Table S1. QPCR of all RNA was performed
with 10 µL of TB Green Premix Ex Taq II (Tli RNaseH Plus,) (TaKaRa, Japan), 7.0 µL of
H2O, 0.5 µL of each primer (10 pmol/mL), and 2.0 µL of cDNA (< 100 ng). According
to the manufacturer’s instructions: 95 ◦C for 10 min for 1 cycle, followed by 40 cycles of
95 ◦C for 15 s and 60 ◦C for 45 s. The reaction was performed on an Applied Biosystems
StepOnePlusTM Real-Time PCR System (Life Technologies, Carlsbad, CA, USA). Melting
curves were constructed to verify that only a single PCR product was amplified. Within
runs, the samples were assayed in triplicate, with standard deviations of the threshold
cycle values not exceeding 0.5; each QPCR run was repeated at least three times. Negative
(without template) reactions were performed within each assay. We used the 2−∆∆Ct

method for relative quantitation between samples, and the cycle-threshold cycle values
were normalized to housekeeping genes (GAPDH and U6). Significant differences were
determined by ANOVA.

3. Results

According to the previous study’s results on the determination of follicular develop-
ment in Dazu black goat by B-ultrasound technology from our lab, the diameter of Graafian
follicle was defined as greater than 4 mm [27]. Therefore, the diameter length of follicles
larger than 4 mm and smaller than 4 mm was divided into GF_T and GF_C, respectively.
The follicle groups GF_1 to GF_6 were defined by decreasing their diameter.

A total of six lncRNA libraries and six miRNA libraries were sequenced on the Illumina
HiSeqTM 2500 platform and subjected to preliminary filtering, obtaining about a total
of 97,020,363,900 bp clean data of lncRNA sequence and 84,485,902 clean reads of small
sequence. The data were uploaded to the SRA database, with project accession numbers

https://www.bioconductor.org/packages/release/bioc/html/edgeR.html
https://github.com/tanghaibao/Goatools
https://kobas.cbi.pku.edu.cn/genelist/
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PRJNA722567 and PRJNA715900. The valid ratio of each library is shown in Tables 1 and 2.
Details are shown in Tables S2–S5.

Table 1. Summary statistics of lncRNA and mRNA sequencing data.

Sample Clean Data (bp) HQ Clean Data (bp) Q30 GC

GF_1 15375727800 14965534035 (97.33%) 14372884127 (96.04%) 6637373901 (44.35%)
GF_2 17141768700 14965534035 (97.12%) 15943146337 (95.77%) 7477704890 (44.92%)
GF_3 12268004700 14965534035 (96.99%) 11454639659 (96.26%) 5280700810 (44.38%)
GF_4 17644711200 14965534035 (97.12%) 16443803331 (95.87%) 7735202025 (45.10%)
GF_5 17372614800 14965534035 (97.27%) 16214206723 (95.95%) 7518644939 (44.49%)
GF_6 17217536700 14965534035 (97.17%) 16041939269 (95.89%) 7570524208 (45.25%)

Table 2. Summary statistics of miRNA sequencing data.

Sample Clean_Reads HQ Clean_Reads 3′Adapter_Null 5′Adapter

GF_1 11,227,206 (100%) 11,075,835 (98.65%) 57,261 (0.5170%) 4470 (0.0404%)
GF_2 10,973,564 (100%) 10,829,968 (98.69%) 88,118 (0.8136%) 6082 (0.0562%)
GF_3 10,919,757 (100%) 10,775,502 (98.68%) 62,409 (0.5792%) 7034 (0.0653%)
GF_4 13,403,182 (100%) 13,219,081 (98.63%) 76,083 (0.5756%) 10,947 (0.0828%)
GF_5 11,697,146 (100%) 11,540,707 (98.66%) 67,517 (0.5850%) 8372 (0.0725%)
GF_6 14,195,632 (100%) 14,004,736 (98.66%) 70,896 (0.5062%) 6492 (0.0464%)

3.1. DEmRNAs, DElncRNAs, and Functional Annotation

A total of 25 760 mRNAs were obtained in this study, and 128 significant DEmRNAs
were identified between the GF_C and GF_T groups, including 63 upregulated and 65
downregulated GF_T compared with GF_C. Additionally, four significant DElncRNAs were
identified from 4095 scanned lncRNAs. A heatmap of hierarchical clustering of DEmRNAs
or DElncRNAs was further generated to visualize the overall pattern of gene expression
(Figure 1A,B). All DEmRNAs and lncRNAs are shown in Supplementary Tables S6 and S7.
KEGG results indicated that 41 of the 128 genes were annotated in 102 KEGG pathways.
Most of the KEGG pathways involved signal transduction of environmental information
processing (e.g., the Wnt signaling pathway, MAPK signaling pathway, TGF-β signaling
pathway, Hippo signaling pathway, and PI3K-Akt signaling pathway). The top 20 sig-
naling pathways are shown in Figure 1C and Table S8. GO annotation analysis results of
128 mRNAs revealed that 1079 GO terms were enriched. They were related mostly to cell
composition and molecular binding, e.g., protein binding, nucleus, cytosol, cytoplasm, Rho
GTPase binding, ATP binding, and calmodulin binding (Figure 1D and Table S9).
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Figure 1. Functional analysis of DEmRNAs and DElncRNAs between the LFs and SFs of Dazu black goat: (A), volcano plot
of 128 DEmRNAs; red represents up-regulated expression and orange represents down-regulated expression; (B), clustering
heat map of 4 DElncRNAs; red represents up-regulated expression and green represents down-regulated expression; (C), top
20 pathways of KEGG enrichment analysis; and (D), top 20 terms of GO enrichment analysis.

3.2. DEmiRNAs and Functional Annotation of DEmiRNA-TGs

A total of 49 significant DEmiRNAs from a total 1110 miRNA were identified between
the GF_C and GF_T groups; 25 were upregulated and 24 were downregulated (Figure 2A
and Table S10). Meanwhile, a total of 60 negatively correlated targeting relationship
pairs were predicted using DEmiRNAs and DEmRNAs, including 28 DEmiRNAs and
32 DEmRNAs. The DEmiRNA-TGs were primarily enriched in the GO terms of apical
junction assembly, nucleus, histone H3-K4 methylation, apoptotic process, RNA binding,
and protein binding (Figure 2B and Table S11). The enriched KEGG pathways included
Cushing syndrome, the Wnt signaling pathway, the MAPK signaling pathway, and the
PI3K-Akt signaling pathway (Figure 2C and Table S12). Moreover, miR-383 and miR-
135b-5p were found to be the key miRNAs with a functional analysis of DEmiRNAs, and
their target genes and the main signal pathways of target-gene enrichment are shown
in Figure 2D.
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Figure 2. Functional analysis DEmiRNAs between LFs and SFs of Dazu black goats: (A), clustering heat map of 49 DEmiR-
NAs; red represents up-regulated expression and green represents down-regulated expression; (B), top 20 terms of GO
enrichment analysis; (C), top 20 pathways of KEGG enrichment analysis; and (D), key miRNA regulation network in
DEmiRNAs between LFs and SFs of Dazu black goats; red represents DEmiRNAs, blue represents DEmRNAs, and yellow
represents the major pathways; the size represents the number of DEmiRNA-TGs, i.e., a larger size means greater number
of DEmiRNA-TGs.

3.3. DEcircRNAs and Functional Annotation of DEcircRNA-SGs

A total of 290 significant DEcircRNAs in 13,583 circRNAs (Table S13), including 155
upregulated and 135 downregulated, were identified from GF_T compared with GF_C
(Figure 3A and Table S14). Furthermore, we identified 290 DEcircRNAs, which originated
from 259 source genes. GO analysis revealed that a total of 1986 GO terms were annotated,
including 191 terms that were significantly enriched (e.g., protein binding, GTPase activator
activity, cytosol, and ATP binding; Figure 3B and Table S15). Moreover, 84 DEcircRNA-SGs
were enriched in 192 pathways. In particular, most pathways from the top 20 enriched
pathways originated from the signal-transduction class, including the TNF signaling
pathway, TGF-β signaling pathway, FoxO signaling pathway, ErbB signaling pathway, and
phosphatidylinositol signaling system (Figure 3C and Table S16).
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Figure 3. Functional analysis of DEcircRNAs between LFs and SFs of Dazu black goats: (A), volcano plot of 290 DEcircRNAs;
red represents up-regulated expression and orange represents down-regulated expression; (B), top 20 pathways of KEGG
enrichment analysis; and (C), top 20 terms of GO enrichment analysis.

3.4. Identification of CRN and Functional Annotation

As shown in the CRN analysis results, a total of 34 nodes (1 DElncRNAs, 10 DEcircR-
NAs, 14 DEmiRNAs, and 9 DEmRNAs) and 35 interaction relationships (17 DEcircRNA-
DEmiRNA, 2 DElncRNA-DEmiRNA, and 16 DEmRNA-DEmiRNA) were identified (Figure 4
and Table S17). Nine coding genes (TCONS_00000537 (PAK2), TCONS_00013694 (TMTC2),
TCONS_00027577 (FAXC), TCONS_00043904 (KMT2A), TCONS_00054440 (NUFIP2), XM_
018059280.1 (QSER1), XM_018060043.1 (DSTYK), XM_018061337.1 (PITPNM2), and XM_
018063778.1 (FBF1)) were verified in the final CRN. Moreover, the result of GO annotation
analysis of mRNA in CRN revealed that FBF1 was enriched in 108 GO terms, including
68 GO terms that were significantly different (apical junction assembly, regulation of his-
tone H3-K9 acetylation, epithelial cell migration, phosphatidylinositol transfer activity, and
unmethylated CpG binding). The KEGG result implied that KMT2A was enriched in the
lysine degradation signal pathway. Cushing syndrome, transcriptional misregulation in
cancer, and TCONS_00000537 (PAK 2) were annotated in three pathways (e.g., salmonella
infection, yersinia infection, and PI3K-Akt signaling pathway, respectively). Furthermore,
novel_circ_005369 chi-miR-10a-5p, and XM_018061337.1 (PITPNM2) had the highest degree
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of connectivity (Tables S18 and S19). In the CRN, nodes with high connectivity often had
important biological significance, and these genes were considered as hub genes.

Figure 4. LncRNA/circRNA–miRNA–mRNA ceRNA network. Rectangles indicate lncRNA or circRNA, triangles represent
miRNAs, and circles represent mRNAs. Red indicates up-regulation, and green indicates down-regulation.

3.5. Validation of DE RNAs by RT-qPCR

We randomly selected a total of 16 RNAs (mRNA, lncRNA, miRNA, and circRNA) to
confirm the accuracy of the RNA-seq results in this study, which were significantly and
DE in the RNA-seq results for RT-qPCR verification. Results showed that three mRNAs,
one lncRNA, four miRNAs, and eight circRNAs were significantly and DE between the
GF_T and GF_C groups by RNA-seq (B,D,F). However, only the relative expression levels
(REL) of four miRNAs were significantly and DE by QPCR (Figure 5C; p < 0.05). The REL
of other RNAs (mRNA, lncRNA, and circRNA) showed a consistent trend compared with
the RNA-seq results (Figure 5A,E). Therefore, the sequencing and analysis results of the
transcriptome were reliable.
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Figure 5. DEmRNAs, DElncRNAs, DEmiRNAs, and DEcircRNAs verified by RT-qPCR in LFs and SFs RNA-seq results:
A, REL of mRNA and lncRNA by RT-qPCR; B, expression levels of mRNA and lncRNA (FPKM) by RNA-seq; C, REL of
miRNA by RT-qPCR; D, expression levels of miRNA (TPM) by RNA-seq; E, REL of circRNA by RT-qPCR; and F, expression
levels of circRNA (RPM) by RNA-seq; *: p < 0.05; **: p < 0.01.
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4. Discussion

Considerable attention has been paid to the pathways involved in the regulation of
ovarian function, such as corpus luteum formation and steroid production [37–39]. In this
study, numerous DEmRNAs were enriched in Wnt [40], MAPK [41], TGF-β [42], PI3K-
Akt [43], Hippo [44], and glutathione metabolic [45] signaling pathways, which have been
verified to be associated with FD. Such pathways could improve the treatment of infertility
with reduced ovarian reserve in the future [43,46–48]. Meanwhile, these pathways could
inhibit GC autophagy, and exogenous toxic substances could hinder the growth of ovarian
GCs [49,50].

In particular, the PI3K-Akt signaling pathways are involved in the maintenance of
ovarian function, FD, premature ovarian failure, and ovarian activation, which can activate
dormant follicles in vitro for a short period of time and generate numerous mature germ
cells [51–53]. In the present study, we found that LAMA5, as a DEmRNA, was enriched
in the PI3K-Akt pathway and played a key role in the development of endometrial and
epithelial tissue in pregnant women [49,54]. Meanwhile, the SPP1 gene can regulate
the proliferation of cumulus cells around oocytes through the PI3K-Akt pathway [48].
Although PI3K-Akt had no confirmed relations with FD and the reproduction of goats,
many studies have found that the PI3K-Akt pathway was closely related to FD in pig and
some bovine animals [55,56].

Moreover, some studies have shown that the Hippo signaling pathway also plays
an important role in regulating oocyte polarity, oocyte cavity structure, and ovarian-
function stability [57–60]. Herein, DEmRNA ACP was enriched in the Wnt and Hippo
signaling pathways, indicating that the ACP gene may be involved in FD through multiple
signaling pathways. Notably, DEmRNA SMURF2 (TCONS_00055607) was enriched in the
TGF-β signaling pathway, which is extensively recognized to participate in FD [61–63],
particularly through synergistic involvement with bone morphogenesis protein and growth
factors [64–66]. Therefore, SMURF2 and ACP genes may be involved in the molecular
regulation of FD in goats.

Numerous studies have shown that a series of miRNAs plays an important role in GCs,
FD, and atresia disorders in the ovaries [67,68]. For example, miR-128 was confirmed to be
involved in follicle selection by lipid regulation in ovule development [69]. Meanwhile,
a series of studies has demonstrated that miR-449a is closely related to ovarian function
and FD in humans [70] and cattle [71]. The expression of miR-10a-5p was also the highest
in all DEmiRNAs of this study. Furthermore, miR-10a-5p could regulate the apoptosis
of follicular GCs in pigs [24]. In the current work, miR-128, miR-383, miR-10a-5p, and
miR-449a-5p were significant DEmiRNA between groups, suggesting that they may also
be involved in the FD of goats.

Interestingly, a previous study has shown that miR-383 is the differential expression be-
tween DFs and SFs of Dazu black goats, and the expression shows a downward trend with
an increased follicle diameter. It may play an inhibitory role in FD [70]. Meanwhile, miR-
383 presents a DE pattern in GCs of bovine atretic follicles and dominant follicles [71,72],
and inhibits the translation of RBMS1 by affecting the mRNA stability of RBMS1, thereby
enhancing the release of estradiol in ovarian GCs and mediating steroid production [73,74].
Here, we mapped the regulatory network of miR-383 (Figure 2A) and found that the miR-
383 may regulate FD through the Wnt, PI3K-Akt, and Hippo signaling pathways [48,75].
Another significant DEmiRNA (miR-135b-5p) between groups also caught our attention.
A previous report has indicated that miR-135b-5p can inhibit HIF1AN expression and
improve the proliferation ability of ovarian cancer cells [76]. Furthermore, the potential
target gene (APC) of miR-135b-5p is closely related to the meiosis of mouse oocytes [77].

The present study also found numerous DEcircRNAs, suggesting that circRNAs may
be closely related to FD in goats. Specifically, novel_circ_005179 was expressed only in the
GF_C group, whereas novel_circ_011344 was expressed only in GF_T, indicating that these
circRNAs may play an important role in the FD of goats. Notably, novel_circ_005179 had
the largest expression divergence between groups, and its source gene was AKAP2, which
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was related to signaling pathways involved in mediating the cessation and recovery of
meiosis [78]. Additionally, the novel_circ_012471 was greatly expressed in the LF group,
and its source gene (RBPMS2) was confirmed to be related to oocyte development in
zebrafish [79].

To date, numerous studies have found that the regulatory model of ceRNA is involved
in the reproductive process of human and animals. For example, circLDLR in exosomes
serves as a vital mediator to regulate estradiol secretion by sponging miR-1294 to repress the
CYP19A1 gene in humans [80]. LncRNA-MALAT1 regulates the GCs of mouse apoptosis
and 17β-estradiol synthesis by regulating the miR-205/CREB1 axis [81]. CircINHA could
resist GCs apoptosis by upregulating CTGF as a ceRNA of miR-10a-5p in pig ovarian
follicles [24]. All above-mentioned studies indicate that the regulatory mechanism of
ceRNA plays an important role in the development of mammalian follicles.

Notably, the results of the current study showed that XR_001918824.1 and novel_circ_
009670 could regulate the expression of NUFIP2 and FBF1 genes by regulating miR-10a-5p.
Meanwhile, the lncRNA-XR_001918824.1 and circRNA-Novel_circ_009670 in this network
were expressed only in SFs. Specifically, the expression level of miR-10a-5p was the highest
in DEmiRNAs, and it was one of the miRNAs with the highest connectivity in the CRN. The
ability of its target gene (FBF1) to regulate the meiosis of mouse oocytes was confirmed [82].
Thus, miR-10a-5p may regulate FD development in goats through the CNR. Finally, the
nine coding RNAs (PAK2, TMTC2, FAXC, KMT2A, NUFIP2, QSER1, DSTYK, PitPNM2, and
FBF1) obtained by CRN analysis in this study were found to be closely associated with
animal germline. For example, a series of studies has shown that DSTYK is involved in
the conduction of the mTORC1/TFEB and ERK1/2 signaling pathways [83,84], and both
pathways are closely related to the development of ovarian follicles and ovulation [85,86].
Furthermore, the PAK2 and KMT2A genes are related to the FD of vertebrates and the
proliferation and differentiation of ovarian GCs [87,88]. The PAK2 gene also plays a role
in the proliferation of chicken ovarian GCs through the RAFS/ERK MAPK pathway [88].
Therefore, these results suggest that these genes may participate in the FD of goats through
CRN regulation.

5. Conclusions

We obtained numerous key genes and signaling pathways related to the FD of goats.
A series of ceRNAs networks was found to indicate that they may be involved in FD.
Therefore, this study provided a new understanding of the genetic basis of goat FD. Further
in-depth investigations are necessary to validate the ceRNA-regulated mechanisms of
ncRNAs and coding RNAs.
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