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A B S T R A C T   

Accurate prediction of the prognosis of nasopharyngeal carcinoma (NPC) is important for treat-
ment. Lymph nodes metastasis is an important predictor for distant failure and regional recur-
rence in patients with NPC. Traditionally, subjective radiological evaluation increases concerns 
regarding the accuracy and consistency of predictions. Radiomics is an objective and quantitative 
evaluation algorithm for medical images. This retrospective analysis was conducted based on the 
data of 729 patients newly diagnosed with NPC without distant metastases to evaluate the per-
formance of radiomics pretreatment using magnetic resonance imaging (MRI)-determined met-
astatic lymph nodes models to predict NPC prognosis with three delineation methods. Radiomics 
features were extracted from all lymph nodes (ALN), largest lymph node (LLN), and largest slice 
of the largest lymph node (LSLN) to generate three radiomics signatures. The radiomics signa-
tures, clinical model, and radiomics-clinic merged models were developed in training cohort for 
predicting overall survival (OS). The results showed that LSLN signature with clinical factors 
predicted OS with high accuracy and robustness using pretreatment MR-determined metastatic 
lymph nodes (C-index [95 % confidence interval]: 0.762[0.760–0.763]), providing a new tool for 
treatment planning in NPC.   

1. Introduction 

Nasopharyngeal carcinoma (NPC) has a high probability of early lymphatic spread and distant metastasis [1,2], and more than 70 
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% of the patients are initially diagnosed with locally advanced disease. Despite the increasing knowledge of tumor biology [3], 
evolving comprehensive treatments, and popularity of magnetic resonance imaging (MRI), the prognosis of patients with NPC remains 
poor [4,5]. Metastasis and recurrence can be reduced by properly evaluating the survival outcomes of patients before commencing 
treatment. Hence, the American Joint Committee on Cancer (AJCC) tumor-node-metastasis (TNM) staging system [6] and the National 
Comprehensive Cancer Network (NCCN) issued international guidelines [7] have adopted limited semantic radiological features for 
personalized prediction and clinical decision-making, especially in the current N-category. Although a more detailed MRI evaluation of 
lymph nodes [1,8–12] (such as central nodal necrosis and extracapsular spread) extends the traditional N-category, the manifestations 
of these radiological features overlap [13,14], and their use in accurate prediction remains limited. Subjective radiological evaluation 
increases concerns regarding the accuracy of predictions and can weaken the role of radiology in personalized prediction of the 
prognosis of NPC. 

Radiomics is an objective and quantitative evaluation algorithm that characterizes tumor heterogeneity by automatically 
extracting high-dimensional features from medical images [15]. Previous studies have shown good performance of multi-parametric 
MRI-based radiomics analysis in tumor phenotyping [16], prognostic prediction [17,18], and treatment response evaluation [19,20] of 
NPC. However, these studies mainly focused on the radiomics features of the primary tumor, and the extraction of radiomics features 
from metastatic lymph nodes for individualized prediction has rarely been mentioned in patients with NPC. Some authors [21,22] 
delineated the largest lymph node, whereas others [23,24] segmented all the lymph nodes. Different delineation methods affect the 
efficiency of radiomics analysis [25]; therefore, identifying an optimal lymph node-based manual delineation method for prediction, 
especially for patients with NPC with frequent lymph node metastasis, is necessary. 

This study aimed to develop three radiomics signatures from metastatic lymph nodes that could be identified using pretreatment 
MRI: model A, constructed from the features of all lymph nodes (ALN); model B, constructed from the features of the largest lymph 
node (LLN); and model C, constructed from the features of the largest slice of the largest lymph node (LSLN). We subsequently 
evaluated the discrimination ability of the models using two validation cohorts and compared them with a clinical model that 
incorporated traditional TNM staging, and other clinical risk factors. Ultimately, we selected the radiomics signature with the best 
performance and combined it with traditional TNM staging and clinical risk factors to generate a nomogram for prognostic prediction 
in patients with NPC. 

Table 1 
Clinical characteristics of patients in the primary and validation cohorts.  

Characteristics Primary cohortb Training Internal validation Temporal validation P valuec 

N = 564 N = 376 N = 188 N = 165 

Sex Male 406 (72 %) 269 (71.5 %) 137 (72.9 %) 115 (69.7 %) 0.804 
Female 158 (28 %) 107 (28.5 %) 51 (27.1 %) 50 (30.3 %) 

Age (years) <60 503 (89.2 %) 337 (89.6 %) 166 (88.3 %) 147 (89.1 %) 0.891 
≥60 61 (10.8 %) 39 (10.4 %) 22 (11.7 %) 18 (10.9 %) 

EBV_DNA_CN(103 copies/ml) (0,1] 190 (33.7 %) 131 (34.8 %) 59 (31.4 %) 50 (30.3 %) 0.733 
(1,10] 153 (27.1 %) 98 (26.1 %) 55 (29.3 %) 43 (26.1 %) 
(10, +∞) 221 (39.2 %) 147 (39.1 %) 74 (39.4 %) 72 (43.6 %) 

T stage T1 121 (21.5 %) 88 (23.4 %) 33 (17.6 %) 34 (20.6 %) 0.081 
T2 75 (13.3 %) 46 (12.2 %) 29 (15.4 %) 17 (10.3 %) 
T3 211 (37.4 %) 135 (35.9 %) 76 (40.4 %) 80 (48.5 %) 
T4 157 (27.8 %) 107 (28.5 %) 50 (26.6 %) 34 (20.6 %) 

N stagea N1 400 (70.9 %) 270 (71.8 %) 130 (69.1 %) 121 (73.3 %) 0.800 
N2 109 (19.3 %) 69 (18.4 %) 40 (21.3 %) 32 (19.4 %) 
N3 55 (9.8 %) 37 (9.8 %) 18 (9.6 %) 12 (7.3 %) 

Histologic type WHO type 1/2 31 (5.5 %) 20 (5.3 %) 11 (5.9 %) 4 (2.4 %) 0.257 
WHO type 3 533 (94.5 %) 356 (94.7 %) 177 (94.1 %) 161 (97.6 %) 

ALB (g/L) <45 239 (42.4 %) 158 (42 %) 81 (43.1 %) 92 (55.8 %) 0.010 
≥45 325 (57.6 %) 218 (58 %) 107 (56.9 %) 73 (44.2 %) 

CRP (mg/L) <8.2 501 (88.8 %) 330 (87.8 %) 171 (91 %) 146 (88.5 %) 0.524 
≥8.2 63 (11.2 %) 46 (12.2 %) 17 (9 %) 19 (11.5 %) 

LDH (U/L) <245 523 (92.7 %) 345 (91.8 %) 178 (94.7 %) 142 (86.1 %) 0.015 
≥245 41 (7.3 %) 31 (8.2 %) 10 (5.3 %) 23 (13.9 %) 

Induction chemotherapy No 232 (41.1 %) 167 (44.4 %) 65 (34.6 %) 61 (37 %) 0.052 
Yes 332 (58.9 %) 209 (55.6 %) 123 (65.4 %) 104 (63 %) 

Chemotherapy No 35 (6.2 %) 24 (6.4 %) 11 (5.9 %) 4 (2.4 %) 0.042 
Yes 529 (93.8 %) 352 (93.6 %) 177 (94.1 %) 161 (97.6 %) 

Note a: N0 stage was excluded in this study; b: Primary cohort was included in the training and internal validation cohort. EBV, Epstein Barr Virus, 
ALB, albumin; CRP, C reactive protein; LDH, lactate dehydrogenase, c: p-values were performed by Chi-squared test or Fisher exact test between three 
groups. 
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2. Results 

2.1. Demographic characteristics of the study patients 

Table 1 summarizes the clinical characteristics of the three cohorts. The median follow-up time for the primary and temporal 
validation cohorts was 74.67 (range, 3.27–104.07 months) and 49.22 (range, 2.90–91.00 months) months, respectively. No significant 
differences were observed in the clinical characteristics between the primary and temporal validation cohorts, except for chemo-
therapy administration (P = 0.042) and the pretreatment albumin and lactate dehydrogenase levels (P < 0.01). 

2.2. Clinical feature selection and model construction 

Univariate analysis showed that the clinical features, including age, pre-treatment EBV DNA and albumin levels, T category, and N 
category, were significantly associated with the OS in patients with NPC. Further, the T category, N category, pre-treatment EBV DNA 
level, and albumin level were identified as the independent predictors of OS in the multivariate analysis and included in the con-
struction of the clinical model (Table 2). The clinical model yielded a C-index of 0.710 (95 % CI = 0.708–0.712), 0.631 (95 % CI =
0.627–0.634), and 0.737 (95 % CI = 0.733–0.741) in the training, internal validation, and temporal validation cohorts, respectively 
(Table 3). 

2.3. Feature extraction and radiomic signature construction 

For each patient, 4410 features were extracted for ALN, LLN, and LSLN, consisting of 1470, 1470, and 1470 features from T1WI, 
T2WI, and CE-T1WI, respectively. Among the 4410 features, 3173, 3284, and 2747 had high reproducibility (Fig. S1). After sequential 
analysis using Pearson correlation, univariate regression, and least absolute shrinkage and selection operator (LASSO) selection with 
backward stepwise (Fig. S2), eight, nine, and 19 reliable features were included in the construction of the final radiomic signature 
models for ALN (Model A), LLN (Model B), and LSLN (Model C), respectively (Table S1). Table S2 lists the selected features for each 
model. 

In the training cohort, Model C showed superior prediction performance with a C-index of 0.762 (95 % CI: 0.760–0.763) compared 
to 0.737 (95 % CI: 0.736–0.739) for Model A and 0.705 (95 % CI: 0.703–0.706) for Model B. Model C also demonstrated superior 
prediction performance in the internal validation cohort with a C-index of 0.734 (95 % CI: 0.731–0.736) compared to 0.643 (95 % CI: 
0.640–0.646) for Model A and 0.669 (95 % CI: 0.667–0.672) for Model B. The superiority of the LSLN radiomics signature over the ALN 
or LLN radiomics signatures was confirmed in the temporal validation cohort with a C-index of 0.699 (95 % CI: 0.695–0.702) 
compared to 0.606 (95 % CI: 0.603–0.610) and 0.655 (95 % CI: 0.652–0.658), respectively (all p < 0.05) (Table 3). Variable 

Table 2 
Results of the univariate and multivariate analysis of the clinical factors.  

Characteristics Univariate Multivariate 

HR (95 % CI) P value HR (95 % CI) P value 

Sex Male Reference    
Female 0.73 (0.43,1.23) 0.234 

Age (years) <60 Reference  Reference  
≥60 2.09 (1.19,3.68) 0.010 1.96 (1.22,3.14) 0.005 

EBV_DNA_CN (103 copies/ml) (0,1] Reference  Reference  
(1,10] 2.88 (1.48,5.64) 0.002 1.74 (1,3.06) 0.052 
(10, +∞) 2.98 (1.59,5.57) 0.001 1.6 (0.94,2.73) 0.085 

T stage T1 Reference  Reference  
T2 1.78 (0.74,4.3) 0.200 1.44 (0.67,3.12) 0.352 
T3 1.44 (0.7,2.95) 0.320 1.43 (0.76,2.7) 0.271 
T4 3.2 (1.62,6.3) 0.001 2.6 (1.39,4.86) 0.003 

N stage N1 Reference  Reference  
N2 2 (1.16,3.43) 0.012 1.55 (0.97,2.47) 0.066 
N3 3.44 (1.93,6.11) 0.000 2.68 (1.59,4.54) 0.000 

Histologic type WHO type 1/2 Reference    
WHO type 3 0.59 (0.22–1.59) 0.299   

ALB (g/L) <45 Reference  Reference  
≥45 0.52 (0.33,0.81) 0.004 0.62 (0.42,0.9) 0.013 

CRP (mg/L) <8.2 Reference    
≥8.2 1.52 (0.84,2.76) 0.167   

LDH (U/L) <245 Reference    
≥245 1.07 (0.49,2.33) 0.861   

Induction chemotherapy No Reference    
Yes 1.31 (0.83,2.06) 0.251   

Chemotherapy No Reference    
Yes 1.4 (0.51,3.83) 0.513   

HR, Hazards ratio; CI, confidence interval; EBV, Epstein Barr Virus, ALB, albumin; CRP, C reactive protein; LDH, lactate dehydrogenase 
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Table 3 
Comparison of the Overall Survival between the different models using bootstrap.  

Models Training Internal validation Temporal validation 

C–index [95%CI] P value P value P value C–index [95%CI] P value P value P value C–index [95%CI] P value P value P value 

Base model Clinical model 0.710 [0.708–0.712] Reference   0.631 [0.627–0.634] Reference   0.737 [0.733–0.741] Reference   
Model C LSLN 0.762 [0.760–0.763] <0.001 Reference  0.734 [0.731–0.736] <0.001 Reference  0.699 [0.695–0.702] <0.001 Reference  
Model B LLN 0.705 [0.703–0.706] <0.001 <0.001 Reference 0.669 [0.667–0.672] <0.001 <0.001 Reference 0.655 [0.652–0.658] <0.001 <0.001 Reference 
Model A ALN 0.737 [0.736–0.739] <0.001 <0.001 <0.001 0.643 [0.640–0.646] <0.001 <0.001 <0.001 0.606 [0.603–0.610] <0.001 <0.001 <0.001 
Model mC LSLN + clinics 0.809 [0.807–0.810] <0.001 Reference  0.734 [0.731–0.736] <0.001 Reference  0.764 [0.761–0.768] <0.001 Reference  
Model mB LLN + clinics 0.751 [0.749–0.752] <0.001 <0.001 Reference 0.731 [0.729–0.733] <0.001 <0.001 Reference 0.756 [0.753–0.759] <0.001 <0.001 Reference 
Model mA ALN + clinics 0.775 [0.773–0.777] <0.001 <0.001 <0.001 0.685 [0.682–0.688] <0.001 0.121 <0.001 0.653 [0.650–0.657] <0.001 0.004 0.001 

ALN, all lymph nodes; LLN, largest lymph node; LSLN, largest slice of the largest lymph node; CI, confidence interval. 
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importance analysis revealed that Model C had a higher total importance score, and that fewer features in Model C had negative effects 
on the internal and temporal validation cohorts, indicating that the features of Model C are important and more stable than those of the 
other models (Fig. S3). The decision curves analysis (DCA) curves also indicated better predictive performance of Model C than those of 
the other models (Fig. S4). 

2.4. Incremental prediction value of the radiomics signatures to the clinical model 

Three merged prognostic models, namely Models mA, mB, and mC, were developed by combining the radiomics signature with 
significant clinical features from the multivariate analysis. All three merged models performed better than the radiomics models alone 
(Table S3). Model mC outperformed Model mA and Model mB, with a C-index of 0.809 vs. 0.775 vs. 0.751, 0.734 vs. 0.685 vs. 0.731, 
and 0.764 vs. 0.653 vs. 0.756 in the training, internal validation, and temporal validation cohort, respectively (Table 3). The per-
formance of Model mC was better than that of the models constructed using clinical features only, with a C-index of 0.809 vs. 0.710, 
0.734 vs. 0.631, and 0.764 vs. 0.737 in the training, internal validation, and temporal validation cohort, respectively (All p < 0.05). On 
adding the radiomics signature to the clinical features, the LSLN signature exhibited better incremental predictive value than those of 
the ALN and LLN signatures. Similar results were observed for progression-free survival (PFS) (Table S4). 

2.5. Prognostic performance of the nomogram 

Model mC provided the best prognostic prediction for OS. We combined the radiomics signature of Model C with clinical risk factors 
to generate a nomogram to predict 3- and 5-year OS (Fig. 2a). The nomogram achieved areas under the curve (AUCs) of 0.862, 0.861, 
and 0.774 for the 3-year OS probability prediction in the training, internal validation, and temporal validation cohorts, respectively. 
Moreover, it achieved AUCs of 0.830, 0.863, and 0.769 for 5-year OS probability prediction in the training, internal validation, and 
temporal validation cohorts, respectively (Fig. 2b). The calibration curves of the 3- and 5-year OS probability prediction, obtained 
through a 1000-iteration bootstrap resampling experiment, showed high consistency between the predicted and observed outcomes in 
all the datasets (Fig. 2c). The time-dependent ROC curve indicated good predictive performance at each time point (Fig. S5). 

Fig. 1. Study Flowchart (A) Flowchart of the study population and (B) study workflow 
Abbreviations: LASSO, least absolute shrinkage and selection operator. 
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3. Discussion 

In this study, the LSLN radiomics signature, constructed with two-dimensional features, performed well in the prognostic pre-
diction for NPC, with a C-index of 0.762. When combined with traditional TNM staging and other clinical risk factors (age and albumin 

Fig. 2. Nomogram, ROC, and Calibration curves of final the model (A) Nomogram for 3- and 5-year OS for Model mC. (B) ROC curves for predicting 
3- and 5-year OS. (C) Calibration curves for predicting 3- and 5-year OS 
Abbreviations: OS: overall survival. Model mC: merged Model C. ROC: receiver operator characteristics. 
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levels), the LSLN radiomics signature yielded a C-index that reached up to 0.809 and had superior performance compared to that of the 
conventional clinical prediction model. In a medical center with large-scale NPC visits, an internal and temporal validation cohort of 
the LSLN radiomics signature and its combination with clinical factors in a nomogram demonstrated the robustness of this time-saving 
delineation method for prognostic prediction despite the data cohorts being acquired from a single center and varying MRI protocols. 

Tang et al. [26] demonstrated that the C-index of the current N staging for predicting OS was 0.69. Limited semantic radiological 
features described in the N-category hinder the application of TNM staging for accurate prognostic prediction. Some radiologic fea-
tures reported by multiple studies [1,8,9,11], such as the metastasis of bilateral retropharyngeal lymph nodes, nodal grouping, nodal 
matting, and the number of metastatic lymph nodes, were identified as independent prognosticators and had incremental predictive 
value for the current N-stage, with the C-index ranging between 0.644 and 0.747. Other radiologic features [10,12], such as 
extracapsular invasion and nodal necrosis, have comparable prognostic values. Due to the differences in the study design, it is difficult 
to compare our results with those of radiologist-led studies and determine whether radiomics analysis of the lymph nodes or detailed 
MRI evaluation can predict prognosis more accurately. However, metastatic lymph nodes exhibit overlapping manifestations at 
different stages of development [13,14]. Even experienced radiologists cannot select one or several specific image features to describe 
the biological behavior of tumor lymphatic metastasis. Moreover, the predictive efficiency of the conventional clinical model was 
inferior to that of any of the radiomics models (ALN, LLN, and LSLN signatures) in the training and validation cohorts (both p < 0.05), 
which indicates that lymph-node-based radiomics analysis may be a preferred choice in NPC image evaluation for personalized 
prediction. 

Some studies reported on models constructed using radiomics features from the lymph nodes and briefly introduced the method for 
lymph node delineation in patients with NPC [21–24,27–32]. Xu et al. [27] employed intra- and peritumoral MRI radiomics directly 
extracted from the largest metastatic lymph node to predict treatment response in patients with NPC. Lam et al. [28] revealed that 
CT-based radiomics based on all metastatic lymph nodes was capable of predicting radiotherapy-related events in patients with NPC. 
Xu et al. [24] and Wang et al. [22] established MRI-based models for predicting treatment response with one delineating LLN and the 
other delineating ALN. Kang et al. [23] and Yang et al. [21] selected LLN and ALN as the target lymph nodes for their survival pre-
diction models in locally advanced NPC, respectively. The effect of delineation differences on the predictive accuracy in radiomics 
analysis remains unclear. Therefore, we proposed three approaches to constructing radiomics models to determine the best model. We 
used LASSO to avoid overfitting and validation sets to verify the efficacy of the models. We observed that compared to the radiomics 
signatures of ALN (0.737 vs. 0.643 vs. 0.606) and LLN (0.705 vs. 0.669 vs. 0.655), the C-index of the LSLN signature provided a more 
consistent predictive performance in the training and validation cohorts (0.762 vs. 0.734 vs. 699), indicating that the delineation 
method based on LSLN may help construct a radiomics model with good robustness and generalizability. 

Our analysis revealed that Model A (which incorporated features from all lymph nodes) exhibited inferior performance compared 
to Model B and Model C, both of which relied solely on the largest lymph node. This finding was consistent across internal and temporal 
validation cohorts, contradicting our initial hypotheses. We speculate that all delineated lymph nodes were identified by pretreatment 
MRI and inevitably included some reactive lymph nodes, which could have affected the validity of the model. In contrast, LLN showed 
more robust evidence of metastasis. Concerning the criteria used to select metastatic lymph nodes for model construction, the bias in 
MRI evaluation for LLN was smaller than that for ALN. 

Furthermore, comparison of the two- and three-dimensional texture features in prediction performance has been explored in 
various cancers [33–39]. Some authors considered that whole tumor texture analysis could produce more reproducible features and 
reveal tumor spatial heterogeneity [36–39]; However, given the time-saving and comparable prognostic ability of two-dimensional 
features, many authors recommend a two-dimensional approach for MRI-based texture analysis [33–35]. Huang et al. [40] con-
ducted a two-dimensional radiomics study and achieved satisfactory performance in predicting lymph node metastasis in patients with 
colorectal cancer. The volume and area of the ROIs were also analyzed to provide a comprehensive understanding of the radiomics 
signature’s performance, as shown in Table S5, the total volume, maximum volume and maximum area had wider 95 % confidence 
interval range, given the diverse variations in NPC lymph nodes, it is understandable that such differences exist. Additionally, the DICE 
Similarity Coefficient (a value corresponding to a pixel match between the two segmented regions of interests (ROIs) widely used for 
describing the stability of segmentation in medical image processing) had a higher mean value in Model C than that in Model A (p =
0.001, Table S6), implying that radiologists could draw more accurately on a two-dimensional plane and obtain more stable ROIs and 
radiomics features compared with that of a three-dimensional plane. The better prognostic performance and the lower labor con-
sumption of single slice radiomics analysis provide new insight into radiomics studies, future individualized prediction, and clinical 
decision-making. 

Our study had certain limitations. First, the radiomics signatures, and the nomogram in combination with clinical factors, were all 
trained and validated in patients with NPC who present lymph node metastasis on MRI. This prognostic tool is specific for patients with 
NPC with lymphatic metastasis and requires cautious implementation. Second, owing to the retrospective nature of the study, we could 
not strictly control all the variables in the clinical sources and MRI protocols, such as different chemotherapy regimens (p = 0.42), 
albumin level before treatment, and MRI acquisition parameters (e.g., static magnetic field). In particular, the scanner variation could 
have affected the selected features and resulted in bias since no specific approaches were applied to handle the parameter variations 
from this single institution. However, the LSLN radiomics signature had a favorable performance in the internal and temporal vali-
dation cohorts, suggesting the potential for real-world application. In addition, PET images were not included in our study despite their 
ability to provide functional information and promising results in various studies [41,42]. When compared to PET images, MR imaging 
offers advantages such as superior soft tissue resolution and the ability to distinguish retropharyngeal lymph nodes from the primary 
tumor’s parapharyngeal extension [2,4]. Furthermore, MR imaging can cost-effectively perform the conventional staging workup for 
patients with NPC without the need for ionizing radiation [43,44]. Nonetheless, the superiority of PET images in staging NPC has been 
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confirmed by the recently published NCCN guidelines [7]. Prospective studies are necessary to further develop the field of radiomics, 
specifically focusing on LSLN analysis utilizing PET images. Third, the training efforts of a highly accurate lymph node-based radiomics 
model take a long time. However, precise and fully automated segmentation [45,46] has been reported for metastatic lymph nodes, 
which is the future direction for lymph-node-based radiomics analysis. 

In summary, we developed an LSLN radiomics signature with multi-parametric MRI to predict OS with favorable prognostic 
performance and generalizability. The merged nomogram, combined with clinical risk factors, demonstrated better performance than 
that of the conventional clinical model in the personalized prediction of OS, highlighting its potential utility for treatment planning in 
patients with NPC. Validation with data from prospective, multicenter studies is warranted to better implement this prognostic model 
in the future. 

4. Methods 

4.1. Study design and participants 

This retrospective study was approved by the Clinical Research Ethics Committee of the G2023-118-01. Requirement for informed 
consent was waived due to the retrospective nature. 

Between January 2010 and November 2012, 564 consecutive patients with newly diagnosed, non-treated, and non-metastatic NPC 
were enrolled and randomly divided into the training (n = 376) and internal validation (n = 188) cohorts in a 2:1 ratio. In addition, 
165 patients satisfying the same criteria after November 2012 were allocated to the temporal validation cohort (Fig. 1a). Details of the 
pretreatment examinations (MRI of the nasopharynx and neck, physical examinations of the head and neck region, fiber optic 
nasopharyngoscopy, chest radiography, and abdominal sonography) and clinical information (demographic characteristics, 8th AJCC 
TNM stage categorization, levels of the Epstein Barr virus (EBV) DNA, albumin, lactate dehydrogenase, high-sensitivity C-reactive 
protein, chemotherapy, and induction chemotherapy information) were obtained from the medical records. Table 1 presents the 
baseline epidemiological and clinical characteristics. All the patients were treated according to the guidelines of the Sun Yat-sen 
University Cancer Center (Appendix). The data described in the study has been deposited at the Sun Yat-Sen University Cancer 
Center for future reference (www.researchdata.org.cn) and are available upon reasonable request. 

4.2. Follow-up and endpoints 

The complete follow-up data were available for 97.8 % of the patients at 3 years and 96.4 % of patients at 5 years. Patients were 
followed up at least once every 3 months during the first 3 years and then once every 6 months after treatment. The clinical endpoint in 
this study was overall survival, measured from initial treatment to either death from any cause or censoring at the last follow-up date. 

4.3. Image acquisition 

All MRI examinations were performed using a 1.5 T system (Signa CV/i; General Electric Healthcare, Chalfont St. Giles, United 
Kingdom) or 3.0 T system (Siemens Magnetom Tim Trio, Erlangen, Germany). The region ranging from the suprasellar cistern to the 
inferior margin of the sternal end of the clavicle was scanned using a head-and-neck combined coil. T2-weighted images (T2WI) in the 
axial plane and T1-weighted images (T1WI) and contrast-enhanced T1WI (CE-TIWI) in the axial, coronal, and sagittal planes, 
respectively, were acquired in all the patients. All patients underwent MRI with a 1.5-T or 3.0-T MRI system before treatment. Detailed 
MRI sequences are shown in the Appendix. 

4.4. Standard of care pretreatment assessment 

A team comprising three fellowship-trained head and neck radiologists (L.L.Z, C.C.Y, M.H.L) with 10–26 years of clinical expe-
rience determined whether each lymph node was metastatic from the pretreatment MRI before the segmentation of the ROIs. We used 
the diagnostic criteria for retropharyngeal and neck lymph node metastases described by Lam et al. [47] and van den Brekel et al. [48], 
i.e., a minimal axial diameter of lateral retropharyngeal lymph nodes ≥5 mm; or cervical lymph nodes of ≥10 mm (Level II ≥ 11 mm); 
or lymph nodes with signs of central necrosis, clustering, or capsule invasion. 

4.5. Lesion segmentation and radiomic feature extraction 

After two months of image reading by all the radiologists, a board-certified radiologist with four years of experience (H.W.J) 
manually drew the ROI of each MRI-determined metastatic lymph node on T1WI, T2WI, and CE-TIWI using itk-snap software (http:// 
www.itksnap.org). Patients in category N0 were excluded. A senior radiologist (L.L.Z) with over 20 years of experience checked all the 
contours. In case of any discrepancies during image reading or ROI segmentation, a group discussion was held to reach a consensus. 
The LLN and LSLN segments were automatically extracted using Python. Radiomic features of ALN, LLN, and LSLN were extracted and 
calculated using PyRadiomics (version 3.0.1, http://www.radiomics.io/pyradiomics.html). 
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4.6. Feature selection and signature construction 

A series of preprocessing and parameter settings, including normalization, resampling, mask validation, and image discretization, 
were used to customize the extraction (Details in Appendix). Thereafter, to assess the inter-reader variability of radiomic features and 
reproducibility of image analysis, data from 20 randomly selected patients with 58 lymph nodes were segmented twice in one month 
by the same radiologist from the training cohort and interclass correlation coefficients (ICC) were calculated. Features with ICC >0.75, 
indicating high reproducibility [49], were retained for subsequent analysis. Pearson correlation analysis was performed to eliminate 
strongly collinear variables with the cutoff value set at 0.7. Features significantly associated with OS by univariate Cox regression 
analysis were sequentially chosen for LASSO algorithm selection. Lastly, backward stepwise analysis was performed to reduce these 
non-zero coefficient features for the final Cox regression model construction. The radiomics signatures of ALN, LLN, and LSLN were 
constructed via a linear combination of selected features weighted by their respective coefficients. Fig. 1b shows the process of 
radiomics feature selection and model construction. 

4.7. Statistical analysis 

All statistical analyses were performed using R software (version 4.0.2, http://www.r-project.org, the R Foundation). Statistical 
significance threshold was set at α = 0.05. Comparisons between data cohorts were summarized using the chi-square test or fisher exact 
test for categorical variables and Mann–Whitney U test for continuous variables. Correlations between the radiomics features were 
assessed using Pearson correlation analysis. Cox regression analysis was used to construct the clinical model; radiomic models A, B, and 
C; and radiomics_clinic merged models. The Harrell’s concordance index (C-index) and the 95 % confidence interval (CI) were applied 
to evaluate the models’ discrimination ability. Bootstrap repeat sampling with 1000 iterations and paired t-test were used to calculate 
p-values; calibration was evaluated using calibration curve and DCA. Variable importance analysis was performed by calculating the 
difference between the original C-index and the new C-index after dropping a specific feature, the resulting value was then scaled to a 
range of 0–1 by dividing it with the difference between the maximum and minimum values of the new C-index (Formula and more 
details in Appendix). 
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