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We demonstrate that viscoelastic mechanics of striated muscle, measured as elastic and viscous moduli, emerge directly from the
myosin crossbridge attachment time, tatt, also called time-on. The distribution of tatt was modeled using a gamma distribution
with shape parameter, p, and scale parameter, β. At 5 mM MgATP, β was similar between mouse α-MyHC (16.0 ± 3.7 ms) and
β-MyHC (17.9 ± 2.0 ms), and p was higher (P < 0.05) for β-MyHC (5.6 ± 0.4 no units) compared to α-MyHC (3.2 ± 0.9). At
1 mM MgATP, p approached a value of 10 in both isoforms, but β rose only in the β-MyHC (34.8± 5.8 ms). The estimated mean
tatt (i.e., pβ product) was longer in the β-MyHC compared to α-MyHC, and became prolonged in both isoforms as MgATP was
reduced as expected. The application of our viscoelastic model to these isoforms and varying MgATP conditions suggest that tatt

is better modeled as a gamma distribution due to its representing multiple temporal events occurring within tatt compared to a
single exponential distribution which assumes only one temporal event within tatt.

1. Introduction

Advances in optical techniques have allowed detailed analysis
of the isolated single myosin crossbridge. Upon formation of
a myosin crossbridge, isomerization of the myosin molecule
provides a unitary force proportional to the length of the
lever arm and the extent of the lever arm swing, also called
the power stroke [1–4]. The time duration of crossbridge
attachment, sometimes called time-on, is also measured by
optical trapping. The distribution of attachment times has
been found to depend upon the myosin isoform, nucleotide
availability, point mutations, and several other factors [5–
12]. This time duration of crossbridge attachment plays a
significant role in determining muscle performance observed
as force and velocity of contraction at the single fiber level.

There remains, however, a considerable challenge to un-
derstand and describe how the unitary force and the tempo-
rary attachment times of myosin molecules are manifested
at the level of muscle tissue, which possesses a three-
dimensional lattice structure and can be studied intact
or submerged in physiological solutions after removal of

the plasma membrane. Viscoelastic mechanics of muscle
tissue represents one such macroscopic consequence of
these molecular phenomena. We describe in this paper a
quantitative justification and methodology for estimating the
distribution of myosin crossbridge attachment times based
on viscoelastic mechanics measured in striated muscle fibers.

Length perturbation analysis of muscle provides a means
to quantify viscoelastic mechanics and entails applying a
small length change at one end of a muscle and recording
the force response on the other end. The length pertur-
bation and force response are then subjected to Fourier
transformation, and the dynamic mechanical properties of
the muscle are characterized by the complex ratio of the
transformed force response normalized to cross-sectional
area (or σ(ω) = Fourier transformed tensile stress) divided
by the transformed length perturbation normalized to initial
length (or ε(ω) = Fourier transformed strain). This complex
ratio is also called the mechanical transfer function or
complex modulus of the muscle, Y(ω) = σ(ω)/ε(ω). The
real and imaginary parts are, respectively, termed the elastic
modulus and viscous modulus of the muscle [13, 14].

mailto:bmpalmer@uvm.edu


2 Journal of Biomedicine and Biotechnology

The frequency characteristic dips (low values) and shoul-
ders (high values) observed in the elastic and viscous moduli
of activated muscle are sensitive to species of origin, myosin
isoform, and varying concentrations of MgATP and therefore
reflect the macroscopic consequence of myosin crossbridge
kinetics [4, 11, 15–18]. The dips in the moduli, most notably
the negatively valued viscous modulus, occur near the fre-
quencies at which the muscle operates in vivo [14]. The
shoulders of the moduli, however, are more prominent in
magnitude. According to our previous modeling endeavor
[19], the shoulders appearing at these higher frequencies
of the moduli reflect the mechanical consequences of
intermittent myosin crossbridge formation. In that work,
we proposed that a two-state model of the acto-myosin
crossbridge governed by first-order kinetics gives rise to a
viscoelastic work-absorbing property, termed the C-process
by Kawai and colleagues [13, 16, 20], which is characterized
by an exponential rate constant equivalent to the myosin
crossbridge off rate termed g by Huxley [21]. The mean
myosin attachment time, based on a single exponential
distribution of attachment times, could be estimated as the
reciprocal of this exponential rate constant, 2πc, after fitting
(1) to a measured complex modulus [14, 19]:

Y(ω) = A(iω)k − B
(

iω

2πb + iω

)
+ C

(
iω

2πc + iω

)
. (1)

While the single exponential representation of C-process
and its interpretation have been valuable for examining a
variety of muscle types under a number of conditions [7, 11,
13, 14, 19, 20, 22], the assumptions of first-order kinetics and
a single exponential distribution of myosin attachment times
are limiting. It is known, for example, that multiple time
periods associated with multiple biochemical states make up
the myosin crossbridge cycle. These multiple states constitute
the entire myosin crossbridge attachment time. Such an
addition of multiple smaller time periods would result in a
multiple exponential distribution or a gamma distribution
of the crossbridge attachment times rather than a single
exponential distribution assumed by first-order kinetics.

In the present study, we examine the mechanical con-
sequences of the distribution of myosin attachment times
represented by a gamma distribution, which allows the de-
scription of more discrete and longer lived time-on and yet
also allows for the possibility of a single exponential function.
The consideration of the gamma distribution effectively
poses the hypothesis that multiple temporal events which
occur within the time of attachment can be discerned in the
viscoelastic response of striated muscle at the macroscopic
level. We provide an analytical solution to the mechanical
consequences that emerge as the shoulders of the elastic
and viscous moduli. We also demonstrate the validity of
the analytical solution with computer simulations. Finally,
we demonstrate the application of the gamma distribution
representation of the C-process in a comparison of mouse
cardiac myosin heavy chain isoforms, α-MyHC and β-
MyHC, subjected to varying concentrations of MgATP.

2. Mathematical Modeling

Our goal in this section is to derive a mathematical expres-
sion that describes the viscoelastic component of a force
response to a length perturbation that has been applied to
an ensemble of myosin molecules intermittently attaching
and detaching from actin within a half sarcomere of striated
muscle. The force response and length perturbation will
form the bases for a mechanical transfer function, which
is equivalent to a viscoelastic complex modulus measured
in frequency space. We use a two-state model of myosin
attachment and detachment as our starting point in model-
ing the mechanical consequences of intermittently attached
actomyosin crossbridges. It is important to point out that
in the following development we do not assume first-order
kinetics as governing myosin attachment and detachment; in
doing so we will be able to provide a more generalized model
of the viscoelastic mechanics due to the myosin crossbridges.

The time periods of attachment, tatt, and detachment,
tdet, are considered here to be random variables whose values
are governed by stochastic processes independent of force,
stress, strain, length, velocity, and each other. The total time
period for a myosin crossbridge cycle is also a random
variable, tcycle = tatt + tdet. All myosin heads are assumed
independent of each other. During detachment, force due
to an individual myosin head is zero. During attachment,
force is given as the product of the unitary force due to the
power stroke, the length displacement of an elastic element
in series with the crossbridge, and the stiffness of that elastic
element (Figure 1). We assume that length perturbations are
sufficiently small to elicit a linear force response of the elastic
element in series with the crossbridge.

The elastic element represents the most compliant struc-
tures between the M- and Z-lines of the sarcomere in series
with the attached crossbridge. Previous work by others has
identified the most compliant structures as the head and
neck regions of the myosin S1 segment including the lever
arm bound with the essential and regulatory light chains and
that portion of myosin S2 segment not incorporated into the
thick filament backbone [4, 23, 24]. We also assume that
when the myosin is in a postpower stroke state the most
compliant elements are taut, that is, not slack as might occur
if the myosin bound to actin at a point too close to the M-line
to stretch the S2 segment [4, 23, 24].

2.1. Viscoelastic Mechanical Response of Half Sarcomere. Here
we provide a theoretical description of the force response of a
half sarcomere to an externally applied length perturbation.
We assume here that the total force that might be recorded
from a half sarcomere, Ftotal(t), is given as the sum of the
forces produced by each attached myosin crossbridge due
to its unitary force, Funi, and its dynamic response due to
the length perturbation, f (t) (Figure 1). The total force
produced by a summation of attached crossbridges will be
denoted as

Ftotal(t) =
M∑
i=1

Funi(i) + f(i)(t), (2)



Journal of Biomedicine and Biotechnology 3

5.5 nm

kstiff duni

tdet

tatt

Funi = kstiffduni

(a)

kstiff

Lhs(t)− Lhs(tini)

f (t) = kstiff(Lhs(t)− Lhs(tini))

tini t

τ

(b)

Figure 1: Force due to myosin crossbridges. (a) A unitary force, Funi, is generated over a finite time of attachment, tatt (also called time-on),
when the myosin power stroke swings the lever arm a net unitary displacement, duni. The time of detachment, tdet, refers to the time period
between a crossbridge detaching from actin and before reattaching. (b) An additional crossbridge-dependent force is transmitted through the
half sarcomere when an elastic element in series with the crossbridge and with stiffness kstiff undergoes a length change due to an externally
applied perturbation of the half sarcomere, Lhs. The force recorded at any time t, f (t), due to the perturbation reflects the displacement of
the elastic element since the initial time of crossbridge attachment, tini.

where M = the number of attached crossbridges in the half
sarcomere at time t. When an external length perturbation is
applied, the dynamic response of the ith attached crossbridge
is given as the stiffness-displacement product, which is a
linear approximation suitable for very small length pertur-
bations:

f(i)(t) = kstiff(i)
(
Lhs(t)− Lhs

(
tini(i)

))
, (3)

where kstiff = the stiffness coefficient of the crossbridge
elastic element, Lhs(t) = displacement imposed upon of the
half sarcomere by an externally driven perturbation, and
tini = the instant of initial crossbridge attachment. Under
isometric conditions, the total force is simply equal to the
total number of attached crossbridges, M, multiplied by the
mean unitary force, Funi. The dynamic force recorded over
the half sarcomere, Fhs(t), can then be defined as the total
force minus the isometric force and written as follows:

Fhs(t) = Ftotal(t)−MFuni =
M∑
i=1

kstiff(i)
(
Lhs(t)− Lhs

(
tini(i)

))
.

(4)

We now use the Inverse Fourier Transform definitions for
Fhs(t) and Lhs(t), namely,

Fhs(t) = 1√
2π

∫∞
−∞

F̃hs(ω)eiωtdω,

Lhs(t) = 1√
2π

∫∞
−∞

L̃hs(ω)eiωtdω,

(5)

where F̃hs(ω) and L̃hs(ω) are the Fourier Transform repre-
sentations of Fhs(t) and Lhs(t), respectively; then (4) can be
written as follows:

1√
2π

∫∞
−∞

F̃hs(ω)eiωtdω

= 1√
2π

∫∞
−∞

M∑
i=1

kstiff(i)L̃hs(ω)
(
eiωt − eiωtini(i)

)
dω.

(6)

We now define the variable, τ = t – tini, as the time
period between time, t, and the instant of the most recent
attachment of a crossbridge, tini. For the ith crossbridge, tini(i)

= t – τ(i). The term (eiωt − eiωtlni(i) ) in (6) then becomes (1 −
e−iωτ(i) )eiωt and we can remove the Inverse Fourier Integrals
of (6):

F̃hs(ω) =
M∑
i=1

kstiff(i)L̃hs(ω)
(

1− e−iωτ(i)

)
. (7)

The summation over a large number of attached cross-
bridges can be replaced as the product of M and the expected
value of the summed terms. To do so would require our
providing the probability density functions (PDFs) for those
random variables represented as bearing the i-subscript in
(7). We assume here that the random variables kstiff and τ are
independent of each other. Thus, the result for the expected
value of kstiff would be independent of its probability density
function and equal to the mean value for kstiff. Equation (7)
can be written as

F̃hs(ω) =MkstiffL̃hs(ω)
∫∞

0
PDFτ(t)

(
1− e−iωt

)
dt, (8)

where kstiff = mean stiffness of the elastic element and
PDFτ(t) = the probability density function for the random
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variable τ as a function of time, t. Equation (8) represents
the force response in frequency space due to an externally
applied length perturbation on striated muscle with no strain
dependence on myosin crossbridge kinetics.

The number of crossbridges attached at any time, M, can
be replaced by the total number of myosin heads available
to form crossbridges, N, multiplied by the probability that
any one myosin head has formed a crossbridge, that is, the
duty ratio tatt/tcycle. The mechanical transfer function, which
represents a measured viscoelastic complex modulus, can
then be written as follows:

F̃hs(ω)

L̃hs(ω)
= N

(
tatt

tcycle

)
kstiff

∫∞
0

PDFτ(t)
(

1− e−iωt
)
dt, (9)

where tatt = mean time duration of crossbridge attachment
and tcycle = mean time of a complete crossbridge cycle. Equa-
tion (9) represents a generalized mathematical description of
the visco-elastic response of intermittently attaching myosin
crossbridges. The form of (9) suggests that the force response
is dictated by PDFτ(t), so long as the other random variables
are sufficiently represented by their respective means. A phys-
ical interpretation of PDFτ(t) and its relation to the probabil-
ity density function for tatt, PDFtatt (t), are presented below.

2.2. Survival Function. As defined above, the random vari-
able τ represents the time period between any given time
t and the instant any bound crossbridge was formed (Fig-
ure 1(b)). In other words, τ represents the time period any
bound crossbridge has survived up to time t. The probability
(Pr) that a crossbridge has survived for a time period τ, we
will call it Sτ(t), is defined as the probability that τ is less than
the time of crossbridge attachment, tatt [25]. The probability
density function of crossbridge attachment time PDFtatt (t)
and the survival function Sτ(t) are related as follows:

Sτ(t) = Pr(t < tatt) =
∫∞
t

PDFtatt (t)dt, (10a)

−dSτ(t)
dt

= PDFtatt (t). (10b)

The PDFτ(t) needed in (8) is simply a normalization of Sτ(t)
and is defined as the survival function of (10a) divided by its
integral:

PDFτ(t) = Sτ(t)∫∞
0 Sτ(t)dt

. (11)

With (9) we have provided a mathematical representa-
tion of the energy-absorbing viscoelastic complex modulus
that arises from intermittently attached myosin crossbridges,
and we have not assumed a specific scheme for the biochemi-
cal steps that govern the distributions of the random variable
tatt. Thus, any measure of the viscoelastic complex modulus,
given by the left hand side of (9), can be used to calculate an
estimate of PDFτ(t) and by extension through (10b) also be
used to calculate an estimate of PDFtatt (t).

2.3. Gamma Distribution Representation of PDFtatt (t). In our
previous work we chose PDFtatt (t) to be represented by a
single exponential distribution [19], which by extension of
(10a), (10b), and (11) also defined PDFτ(t) as the same
single exponential distribution. That choice reflected an as-
sumption of first-order kinetics governing the lifetime of the
myosin crossbridge in the attached state. The result was
a mathematical representation of the mechanical conse-
quences of length perturbation that was equivalent to the
historically represented C-process shown in (1).

Here we do not assume first-order kinetics. Instead, we
consider PDFtatt (t) to be represented by a gamma distri-
bution, which is used to describe random variables that
represent a time period made up of the sum of several smaller
time periods [26, 27]

PDFtatt (t) =
1

βΓ
(
p
)
(
t

β

)p−1

e−t/β, (12)

where p = a shape parameter reflecting the number of
smaller time periods summed together to produce total time
attached, tatt, β = a scale parameter reflecting the average
duration of the smaller time periods. The mean tatt is
calculated as pβ, and Γ(p) = the gamma function evaluated
at p, a normalization factor.

The two parameters p and β are sufficient to provide
a gamma distribution description of PDFtatt (t). The case
of p = 1 is a special case that is equivalent to a single
exponential function with mean β. Several examples of
gamma distributions, including a case of p = 1, are illustrated
in Figures 2(a) and 2(b), which demonstrate the effectiveness
of the gamma distribution representation in accommodating
a wide variety of probability density functions for tatt. Upon
applying (10a), we attain the associated survival function
Sτ(t):

Sτ(t) = Γ
(
p, t/β

)
Γ
(
p
) , (13a)

where Γ(p, t/β) = the upper incomplete gamma function
[26]. Example survival functions are illustrated in Figures
2(c) and 2(d) and correspond to the PDFtatt (t) examples in
Figures 2(a) and 2(b). The integral of Sτ(t) over the abscissa,
which is useful for normalization, is

∫∞
0
Sτ(t)dt = pβ. (13b)

Upon applying (13a) and (13b) to (11) we have

PDFτ(t) = Γ
(
p, t/β

)
pβΓ

(
p
) . (14)

We can now state that the complex modulus that would
arise from an ensemble of myosin crossbridges, whose dis-
tribution of tatt can be represented by a gamma distribution
presented in (12), is given by the insertion of PDFτ(t) of (14)
into the expression for the mechanical transfer function of
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Figure 2: Examples of gamma distributions and associated survival functions. (a, b) The two parameters of the gamma distribution (p
and β) permit description of a wide variety of distributions useful for representing the probability density function for myosin crossbridge
attachment time, PDFtatt (t). Notably, a single exponential results when p = 1 (a), and a Gaussian distribution is approximated as p increases.
(c, d) The survival function, Sτ(t), refers to the probability that an attached crossbridge will survive to time t. The analytical relationship
between the PDFtatt (t) and Sτ(t) is provided by (10a) and (10b).

(9). Details of the evaluation of the integral in (9) after such
a substitution are provided in the Appendix. The result is

F̃hs(ω)

L̃hs(ω)
= ξ

{
1− 1

piωβ

((
iωβ + 1

)p − 1(
iωβ + 1

)p
)}

, (15)

where ξ = N(tatt/tcycle)kstiff.
Equation (15) describes the predicted complex modulus

that would arise from length perturbation analysis of an
ensemble of myosin crossbridges whose distribution of
attachment times is represented by a gamma distribution.
From a measured viscoelastic complex modulus represented

on the left-hand side of (15) we could use nonlinear least-
squares methods to estimate the values of the three indepen-
dent parameters ξ, p, and β, on the right-hand side of (15).

3. Methods
3.1. Computer Simulations. The force response of a virtual
half sarcomere was simulated for a time period of two
seconds for many (20,000) independent myosin heads
alternately attaching and detaching to actin according to
independent stochastic processes governing the random
variables tatt and tdet. For any one computer simulation,
random numbers representing tatt were generated to conform
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with a gamma distribution with values for p ranging from
1 to 48 and for β ranging from 2 to 24 such that the
mean time attached was either 24 ms or 96 ms. Random
numbers representing tdet were generated with values for
p = 2 and β = 48 ms such that the mean time detached
was always 96 ms. Figure 3(a) illustrates the PDFtatt (t) when
p = 3 and β = 8. Each random number generated from
this PDFtatt (t) was used to dictate the time period over
which a virtual crossbridge was attached for each occasion,
as indicated in Figure 3(b). Figure 3(c) illustrates the PDF
for tdet, PDFtdet (t), with p = 2 and β = 48. Each random
number generated from this PDFtdet (t) was used to dictate the
time over which a virtual crossbridge was detached for each
occasion. Figure 3(b) illustrates an example of successive
attachment and detachment time periods.

Sinusoidal length perturbations of the virtual half sar-
comere were simulated as having amplitude 1 nm and
frequencies over the range 1–250 Hz. Figure 3(d) illustrates
an example perturbation at 1 Hz over a one-second time
interval. Each crossbridge was assigned a stiffness constant
of 1 pN/nm [28]. The change in length of the crossbridge
relative to the time of initial attachment was multiplied by
the stiffness constant to simulate the force resulting from the
strain on the elastic element of the crossbridge. Figure 3(e)
illustrates an example series of successive attachments and
detachments over one second. Figure 3(f) illustrates the
force deflection that would occur for a crossbridge during
each time of attachment. The resulting force deflections of
20,000, independent crossbridges were summed to provide
an equivalent two-second period for the ensemble in the
virtual half sarcomere. An example of the resultant force
from 20,000 crossbridges is given in Figure 3(g). This
simulated force of the half sarcomere, Fhs(t), was fit using
a simplex method to a sine function, whose amplitude
(Amp) and phase (φ) permitted the calculation of two
components that were in phase and out of phase with respect
to the length perturbation. The value of each moduli was
then calculated from the amplitude and phase as elastic
modulus = Amp cos(φ) and viscous modulus = Amp sin(φ).
The smooth line in Figure 3(g) presents an example fit of a
sine function to the resultant force, and Figure 3(h) presents
the in-phase and out-of-phase components provided by the
Simplex method. The resulting elastic and viscous moduli,
given in units of pN/nm due to the lack of normalization
factors used in the simulation, were fit simultaneously to (15)
using a nonweighted Levenberg-Marquardt nonlinear least-
squares routine. The diagonal of the resulting covariance
matrix indicated the variances of parameter estimates. The
square root of the variance thus provided the standard error
for each parameter estimate, which was then multiplied
1.96 to provide the 95% confidence range. All computer
simulations, random number generation, curve-fittings, and
parameter estimation routines were performed using IDL
Version 7.0 (ITT, Boulder, CO).

3.2. Solutions. All reagents were purchased from Sigma (St.
Louis, Mo). Solutions were formulated by solving equa-
tions describing ionic equilibria [29]. Concentrations are
expressed in mmol/L unless otherwise noted. Relaxing solu-

tion: pCa 8.0, 5.0 ethylene glycol-tetra-acetic acid (EGTA),
5.0 ATP, 1.0 Mg2+, 20 hydroxyethyl-aminoethanesulfonic
acid (BES), 35 phosphocreatine, 300 U/mL creatine kinase,
ionic strength 200, pH 7.0. Activating solution: same as
relaxing solution with pCa 4.0. Rigor solution: same as
activating without added ATP, creatine kinase, or phospho-
creatine. Storage solution: same as relaxing with 10 μg/mL
leupeptin and 50% wt/vol glycerol. Skinning solution: same
as storage with 30 mM 2,3-butanedione monoxime (BDM)
and 1% wt/vol Triton X-100.

3.3. Viscoelastic Mechanics. All procedures were reviewed
and approved by the Institutional Animal Care and Use
Committees of The University of Vermont. Male wild-type
mice were fed either a normal mouse diet (WT) or an iodine
deficient, 0.15% 6-N-propyl-2-thiouracil (PTU) diet for at
least nine weeks prior to their being killed by rapid cervical
dislocation. The PTU mice therefore became hypothyroid
resulting in the expression of β-MyHC in the myocardium in
contrast to the α-MyHC expressed in the WT mouse heart.

Mouse left ventricular skinned myocardial strips were
prepared using methods similar to those described pre-
viously to yield thin strips (∼140 μm diameter, ∼800 μm
length) with longitudinally oriented parallel fibers [7].
These strips were chemically skinned for 2 hr at 22◦C and
stored at −20◦C for no more than 5 days. At the time
of study, aluminum T-clips were attached to the ends of
a strip ∼150 μm apart. The strip was mounted between a
piezoelectric motor (Physik Instrumente, Auburn, MA) and
a strain gauge (SensoNor, Horten, Norway), lowered into
a 30 μL droplet of relaxing solution maintained at 37◦C
and incrementally stretched to and maintained at 2.2 μm
sarcomere length detected by videography and digital Fourier
transform techniques (IonOptix, Milton, MA).

Strips were calcium activated at pCa 4.5 and subjected
to decreasing concentrations of 5, 2, and 1 mM MgATP
by exchanging equal volumes of rigor solution. Sinusoidal
perturbations of amplitude 0.125% strip length were applied
over the frequency range 0.125–250 Hz. The elastic and
viscous moduli were calculated from the recorded tension
transient as the relative magnitudes of the in-phase and
out-of-phase components with respect to the imposed
sinusoidal length perturbations [13, 20, 30]. The measured
complex modulus was fit to (1), representing the single
exponential distribution model of tatt, and to (16) below,
representing the gamma distribution model of tatt, using a
non weighted Levenburg-Marquardt non linear least-squares
routine running within IDL Version 7.0 (ITT, Boulder, CO)

Y(ω) = A(iω)k − B
(

iω

2πb + iω

)

+ ξ

{
1− 1

piωβ

((
iωβ + 1

)p − 1(
iωβ + 1

)p
)}

.

(16)

Mean myosin time attached was calculated as (2πc)−1

when the fit was performed with (1) and as pβ for fits
using (16). The correlation coefficients between the recorded
data and the fitted models were calculated as a Pearson
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Figure 3: Schematic representation of computer-generated elastic and viscous moduli. (a)–(c) Random numbers generated from various
PDFtatt (t) (one example shown in (a)) were used to dictate the attachment times, tatt, of a virtual crossbridge. (b) shows an example
attachment and detachment sequence. (c) illustrates the PDFtdet (t), with p = 2 and β = 48, used to dictate the intermittent times of
detachment. (d) A sinusoidal length perturbation with amplitude 1 nm was used to simulate an externally applied length perturbation. This
example is at 1 Hz. (e) An example series of successive crossbridge attachments and detachments would be subject to the length perturbation.
(f) The length change that occurs during the time of attachment results in a force deflection. (g) The sum of these force deflections from
20,000 crossbridges is then fit to a sinusoidal (solid smooth line). (h) The magnitude of the component of the fitted sinusoid in phase with
the length perturbation represents the elastic modulus at this frequency, the magnitude of the component out of phase represents the viscous
modulus.

correlation coefficient. The two models used to calculate
the mean myosin time attached were compared using linear
correlation. Data points are presented as mean ± sem.

4. Results

4.1. Computer Simulations. The computer simulations pre-
sented here served two purposes: first, to demonstrate the

accuracy of the analytical derivation resulting in (15) and
second, to demonstrate that estimating the parameters
of (15) by the nonlinear least-squares methods provided
reasonable estimates of the parameters known a priori to
underlie the computer generated elastic and viscous moduli.

Figures 4(a) and 4(b) illustrate example elastic and
viscous moduli, which resulted from three separate computer
simulations using the parameter pairs p = 1 and β = 24, p = 8
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Figure 4: Examples of results from computer simulations. (a, b) The elastic and viscous moduli are plotted against frequency for three p and
β pairs. Nonlinear least-squares fitting of (15) to the data produced a good fit shown as the line for each pair of p and β. (c) The parameters
estimated from fitting (15) to the simulated data provided a comparison between the PDFtatt (t) used to generate the data and the gamma
distribution predicted from the fits. In this case, the predicted gamma distributions are nearly indistinguishable from the original PDFtatt (t).
(d) The survival function, Sτ(t), was also predicted from the parameter estimates and again very closely resembles the original Sτ(t).

and β = 3, and p = 24 and β = 4. The thin solid line represents
the best fit of (15) to the simulated data. It is interesting
to note that the first example, p = 1 and β = 24, represents
the results from a single exponential model of PDFtatt (t). The
elastic modulus monotonically rises to a maximum, and the
viscous modulus monotonically rises to a max at 6.6 Hz and
then monotonically falls. It is important to note that the
shape of the viscous modulus when p = 1 is symmetrical
about the peak when shown on the log-scaled axis. The other
examples with p > 1 shown in Figures 4(a) and 4(b) do
not demonstrate similarly smooth monotonic behavior. The
elastic and viscous moduli instead show fluctuations, which
result from the narrower distributions of tatt when p > 1

compared to the single exponential distribution. Also, the
viscous modulus is no longer symmetrical about its peak.

Table 1 provides a comparison of parameter values used
to generate the simulations and the parameter estimates
calculated by the nonlinear least-squares routine fitting
(15). For the three fitted parameters p, β, and ξ, the 95%
confidence intervals for the parameter estimates were narrow
compared to the magnitude of the values. These confidence
intervals demonstrate the high precision and uniqueness of
the parameter estimates. In addition, the correlation coeffi-
cients between values used and values estimated were con-
sistently greater than 0.997. Based on the narrow confidence
intervals for parameter estimates and the high correlation
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Table 1: Parameter values used to generate random numbers in computer simulations of a force response due to myosin crossbridges
subjected to sinusoidal length perturbations, and estimated parameter values from that force response fit to (15). For all simulations
tdet = 96ms, N = 20, 000 and kstiff = 1 pN/nm. Est[] = estimated value of bracketed parameter, () indicates the ±95% confidence intervals
for estimated value. The correlation between actual and estimated values resulted in a correlation coefficient greater than 0.997 for each
parameter.

Sim number p β (ms) tatt (ms) ξ (pN/nm) Est[p] Est[β] (ms) Est[tatt] (ms) Est[ξ] (pN/nm)

(1) 1 24 24 4000 0.91 (0.01) 25.13 (0.06) 22.89 4005.0 (0.5)

(2) 2 12 24 4000 2.01 (0.01) 11.98 (0.03) 24.09 4019.8 (0.4)

(3) 3 8 24 4000 3.22 (0.01) 7.48 (0.02) 24.08 3981.2 (0.4)

(4) 6 4 24 4000 6.11 (0.02) 3.89 (0.01) 23.79 3986.4 (0.4)

(5) 8 3 24 4000 8.70 (0.03) 2.75 (0.01) 23.95 3997.4 (0.4)

(6) 4 24 96 10000 3.99 (0.01) 24.03 (0.03) 95.88 10007.0 (0.3)

(7) 8 12 96 10000 6.83 (0.01) 13.93 (0.02) 95.12 10003.8 (0.3)

(8) 12 8 96 10000 12.00 (0.02) 7.98 (0.01) 95.71 10012.8 (0.3)

(9) 16 6 96 10000 16.04 (0.03) 6.05 (0.01) 97.03 10022.6 (0.3)

(10) 24 4 96 10000 24.10 (0.06) 3.99 (0.01) 96.07 10017.2 (0.3)

(11) 48 2 96 10000 49.61 (0.15) 1.92 (0.01) 95.13 10004.0 (0.3)

Note: ξ = N(tatt/tcycle)kstiff.

between parameter estimates and actual parameter values,
we are confident that the analytical expression provided by
(15) accurately represents the mechanical consequences of
temporarily attached myosin crossbridges, whose times of
attachment are gamma distributed.

For the three examples given in Figures 4(a) and 4(b),
the estimated parameter values were used to calculate the
PDFtatt (t) and Sτ(t) using (12) and (13a), respectively.
Figure 4(c) illustrates a comparison between the PDFtatt (t)
used to generate the simulation and that calculated from
the parameter estimates. Figure 4(d) provides a similar
comparison for S(τ). For both PDFtatt (t) and Sτ(t), the
estimated parameters reasonably reproduced the original
functions used to generate the simulations. These compar-
isons illustrate the robustness with which parameters of the
gamma distribution can be estimated using the nonlinear
least-squares methods, which fit (15) to the elastic and
viscous moduli.

4.2. Viscoelastic Mechanics. Muscle strips from both groups
activated to a similar maximum developed tension of
20.7 ± 1.8 mN·mm−2 for WT (n = 6) and 22.1 ± 1.7
mN·mm−2 for PTU (n = 6). Figure 5 illustrates the elastic
and viscous moduli recorded for maximally activated muscle
strips isolated from WT and PTU mice, representing, respec-
tively, the α-MyHC (Figures 5(a) and 5(b)) and β-MyHC
(Figures 5(c) and 5(d)) isoforms. The myosin crossbridge
kinetics in the α-MyHC are faster than those in β-MyHC
and are reflected in the higher frequencies ranges for the
dips and shoulders in the α-MyHC. For example, the most
prominent dip and shoulder of the viscous modulus at 5 mM
MgATP occur at ∼9 and 90 Hz, respectively, in the α-MyHC
and occur at lower frequencies 2 and 30 Hz in the β-MyHC.
These observations are consistent with a longer-lived tatt in
the β-MyHC compared to α-MyHC [5, 9].

As MgATP is reduced the dips and shoulders of the
moduli shift to lower frequencies, as best seen in the

viscous modulus. The muscle also becomes stiffer, which
is reflected in higher values of the elastic modulus, due to
a greater fraction of crossbridges formed at any one time.
These observations with lowering MgATP concentrations are
consistent with a prolonged tatt due to a prolonged rigor state
prior to MgATP binding to myosin and subsequent myosin
detachment from actin.

4.3. Parameters of Gamma Distribution Model of tatt. Fits of
(16) to the elastic and viscous moduli provided estimates
of the gamma distribution parameters, p and β, and a
calculation of mean tatt as the product pβ. At 5 mM MgATP
the shape parameter p was lower in the α-MyHC compared
to β-MyHC (Figure 6(a)). At lower MgATP (1 and 2 mM),
the shape parameter rises in both myosin isoforms and
is not different between them. At all MgATP conditions
and in both isoforms, the estimate for p was consistently
near or greater than 2. This finding suggests that a single
exponential distribution, which would have been represented
by the gamma distribution with p = 1, did not fit the data
as well as a gamma distribution with p > 2. Our finding
p > 2 suggests two or more intermediate time periods within
tatt. These results imply that the PDFtatt (t) reflected in the
recorded elastic and viscous moduli is better represented
by a distribution that describes multiple time intervals
within tatt. In the strictest interpretation of the gamma
distribution shape parameter, the rise in p with decreasing
MgATP implies additional elemental time periods summed
together to produce the total tatt. We would, however, caution
that p approaching 10 as MgATP is lowered may be more
reflective of an increasing tatt and not suggestive of additional
biochemical states, as the lower MgATP would prolong only
one biochemical state, the rigor state [4].

The parameter β effectively represents the duration of the
intermediate time period that is summed p times to make up
the total tatt. As illustrated in Figure 6(b), parameter β was
found to be on the order of 1.5–2 ms for both α-MyHC and
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Figure 5: Example elastic and viscous moduli from mouse cardiac muscle strips. (a, b) The elastic and viscous moduli recorded at frequencies
ranging 0.125–250 Hz for wild-type mouse cardiac muscle expressing α-MyHC at maximum calcium activation and 37◦C. The frequency
characteristics of the dips and shoulders are reflective of the underlying enzymatic activity and shift to lower frequencies as MgATP is
reduced from 5 to 1 mM. (c, d) The elastic and viscous moduli recorded for PTU-fed mouse cardiac muscle expressing β-MyHC. Frequency
characteristics appear at lower frequencies compared to α-MyHC. Again, characteristics shift to lower frequencies as MgATP is reduced.

β-MyHC, except at 5 mM MgATP where β was 3.5 ms in the
β-MyHC. We expected this parameter to have increased with
decreasing MgATP, as lowering MgATP prolongs the rigor
state. This parameter, however, was not as sensitive as p in
describing the prolongation of tatt with decreasing MgATP.

Fluctuations and asymmetries in the elastic and viscous
moduli, which are characteristic of the gamma distribution
for PDFtatt (t), may not be easily seen in the averaged values
for the moduli presented in Figure 5. To better demonstrate
these fluctuations, an example pair of elastic and viscous
moduli recorded from one β-MyHC muscle preparation at
1 mM MgATP is presented in Figures 6(c) and 6(d). The
A- and B-processes have also been subtracted from the
measured elastic and viscous moduli resulting in the C-
process, which reflects the viscoelastic mechanics modeled
here. The dotted lines shown in Figures 6(c) and 6(d)

represent the expected C-process when p = 1, the single
exponential distribution. The recorded C-process, however,
demonstrates fluctuations in the elastic modulus and an
asymmetry in the viscous modulus different from the p = 1
case and consistent with the fluctuations and asymmetries
for p > 1 illustrated in Figure 4.

The mean tatt was prolonged in the β-MyHC compared to
α-MyHC at each MgATP examined and was also prolonged
as MgATP was reduced (Figure 7(a)). These findings are
consistent with known consequences of myosin isoform and
MgATP availability [5, 9, 16]. The calculation of the mean
tatt based on the gamma distributed tatt was generally higher
than that calculated based on the exponential distributed tatt,
showing that the shape of the PDFtatt (t) affects the calculated
value of mean tatt. Notably, the correlation between tatt based
on the gamma distribution and that based on the exponential
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Figure 6: Results of fitting elastic and viscous modulus to gamma distributed and single exponential distributed models of PDFtatt (t). (a,
b) The shape parameter, p, and the scale parameter, β, were estimated from fitting the gamma distribution model of (16) to the measured
elastic and viscous moduli. ∗P < 0.05 by t-test between MyHC isoforms at same MgATP. (c) The elastic modulus recorded from one PTU
β-MyHC muscle preparation at 1 mM MgATP is shown with its fit to (16), that is, the gamma distribution (GD) model. The goodness of
fit is representative of the fits for all samples in this study. The A- and B-processes of (16) were then subtracted from the recorded elastic
modulus to demonstrate fluctuations in the remaining C-process, which are more apparent when compared against the single exponential
model (p = 1) of the tatt distribution (dotted line). These fluctuations are mechanical consequences of the gamma distributed tatt. (d) The
corresponding viscous modulus was also subjected to fit and subtraction of A- and B-processes. The resulting C-process is compared against
the single exponential model of the tatt distribution (dotted line). The asymmetry in the peak of the viscous modulus is subtle, but apparent
at frequencies higher than 11 Hz.

distribution model was very strong, r2 = 0.932 (Figure 7(b)),
which indicates that both methods are capable of making
comparisons of tatt among multiple groups or conditions.
The Pearson correlation coefficient between the recorded
data and the fitted models was very high, but was higher in
the gamma distribution model (r2 = 0.986 ± 0.002) com-
pared to single exponential model (r2 = 0.980 ± 0.002). We
would expect the estimate of mean tatt based on the gamma
distribution to be somewhat more accurate than those based
on the single exponential distribution. Unfortunately, at this

time and without some other independent method to verify
the actual mean tatt in the muscle strip, we cannot say with
certainty what bias is introduced into our estimate of tatt

using either model.
The parameter estimates resulting from the fits to (16)

were used to predict the distributions of tatt, that is, PDFtatt (t),
for each MyHC isoform and at each MgATP condition
examined (Figure 8). The distributions for the α-MyHC
(Figure 8(a)) appear at shorter time periods compared to
those of β-MyHC (Figure 8(b)). The distributions in both
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Figure 7: Mean time of crossbridge attachment. (a) The mean time of crossbridge attachment using both models of PDFtatt (t) demonstrated
a longer tatt for β-MyHC and a prolongation in tatt as MgATP was reduced. The two models agreed qualitatively in these respects, but did
not agree quantitatively as estimates using the gamma distribution (GD) model were ∼40% higher than those using the single exponential
distribution model (SED). (b) Values for tatt using the two models correlated strongly. Despite the relative differences in the estimates of tatt,
either model produces similar results for comparing the effects of isoform and MgATP. ∗P < 0.05 by t-test between MyHC isoforms at same
MgATP.

isoforms shift to longer time periods as MgATP is reduced.
According to results from optical trapping [2, 4], in both
isoforms inorganic phosphate Pi is released either prior to
force production or very quickly after force production. Thus
we depict Pi release in Figures 8(c)–8(f) to occur quickly.
At saturating MgATP concentrations (i.e., 5 mM), the rigor
state would be very short and the longest-lived state and the
most significant contributor to the total tatt would be the
ADP state (Figures 8(c) and 8(e)). Because lowering MgATP
concentration would lengthen only the rigor state (Figures
8(d) and 8(f)), the mean tatt in both isoforms would have
been prolonged due to longer rigor states. Particularly in
the cases of lower MgATP, the value for tatt would be made
up of the sum of multiple times periods, as indicated by
the increased shape parameter, and the distribution of tatt is
better represented by the gamma distribution.

5. Discussion

It is generally understood that force recorded in response
to a length perturbation reflects (i) the number of myosin
crossbridges bound to actin in a force-generating postpower
stroke confirmation and (ii) a viscoelastic response that is
the consequence of the length perturbation having been
applied to temporarily formed crossbridges. The viscoelastic
response, however, is often overlooked as a significant com-
ponent of the dynamic force response. By frequency domain

analysis, however, it is clear that the viscoelastic response is
substantial in magnitude, and the frequency characteristics
of the viscoelastic response emerge as a consequence of cross-
bridge kinetics [14, 16, 19]. The macroscopic measurements
of viscoelastic mechanics in striated muscle combined with
the modeling results presented in this paper can be used
to estimate the microscopic temporal parameters reflecting
myosin crossbridge kinetics, specifically the distribution of
myosin attachment times (tatt) in a muscle fiber.

Our current modeling culminated in a specific math-
ematic representation of the mechanical transfer func-
tion that would arise from intermittently attached myosin
crossbridges, (9). This representation was also provided
previously [19], but without significant discussion regarding
the normalized survival function, that is, the PDFτ(t) term,
in the integrand. We have provided here an explanation
of the survival function, which underlies PDFτ(t) and its
relationship with the distribution of tatt, namely, PDFtatt (t)
((10a) and (10b)). Using the survival function and its
relationship to the distribution of tatt was a very important
step in demonstrating how the macroscopic viscoelastic
mechanics emerge from molecular phenomena.

The gamma distribution model provided a more gen-
eralized representation of the many possible distributions
of tatt and in so doing provided an opportunity to discern
the more subtle consequences of the tatt distribution. The
shape parameter in particular permits this more generalized
description of the tatt distribution. The effect of the shape
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Figure 8: Predicted gamma distributed PDFtatt (t) for the two myosin isoforms under varying MgATP conditions at 37◦C. (a) The parameter
values estimated for the α-MyHC demonstrate an increasing shape parameter and prolonged tatt as MgATP was reduced. The resulting
PDFtatt (t) looks more Gaussian in shape rather than exponential as MgATP was reduced. This would be consistent with a longer rigor state
prior to MgATP binding and detachment of the myosin crossbridge. (b) The distributions for β-MyHC represent longer tatt compared to
α-MyHC. Again, a longer rigor state would arise with lower MgATP. (c, d) In the α-MyHC at 5 mM MgATP, the release of Pi, release of
ADP, and binding of ATP occur in relatively quick succession. The time periods that represent the Pi and ADP states, however, would not be
affected by MgATP availability. With the reduction in MgATP concentration, the rigor state would be prolonged as detected in the viscoelastic
mechanics. (e, f). In the β-MyHC, the ADP state is longer than that in the α-MyHC and the rigor state is more dramatically prolonged with
decreasing MgATP compared to α-MyHC.

parameter, which was always estimated to be near or greater
than 2, indicates that the distributions of tatt that underlie
that recorded elastic and viscous moduli in both isoforms
and under various MgATP conditions were distinct from
the single exponential distribution and with lower MgATP
begin to resemble Gaussian distributions. The increasing
shape parameter with decreasing MgATP is consistent with
the prolongation of the rigor state of the myosin crossbridge.
We interpret these results for p and β to indicate that the
crossbridge tatt is best represented by two or more interme-
diate time periods, but we caution that a p approaching a
value of 10 may simply reflect a longer tatt and not additional
biochemical states. The production of additional models

stipulating only 2- or 3-specific states may be warranted.
Such a model may be useful in detecting which biochemical
state of the crossbridge cycle is affected by an intervention
such as that due to drug or posttranslational modification.
We are aware, however, that increasing the number of fitted
parameters may also lead to greater covariance among the
parameters and less meaningful results.

We believe that our results demonstrate a benefit and
utility of the gamma distribution model, which allows
for near-zero occurrences of very short values for tatt, as
would be expected for some cases such as low MgATP
concentrations and lower temperatures. The single exponen-
tial model, on the other hand, presumes that the most
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frequent values for tatt occur at the shortest times. Our
results, particularly at lower MgATP, suggest that the single
exponential model may not be sufficient to fully describe the
distributions of tatt and the viscoelastic mechanical conseq-
uences as occuring in skinned muscle strips. It is notable,
however, that while the gamma distribution model of tatt

provides a generalized model of the mechanical conseq
uences of the intermittent attachment of myosin to actin,
we found that the single exponential model is sufficient for
purposes of comparing estimated values of mean tatt based
on the elastic and viscous moduli.

The gamma distribution model of myosin tatt leads to
characteristics of elastic and viscous moduli that might not
be obvious or intuitively predictable. Specifically, we did not
expect the fluctuations and asymmetry in the elastic and
viscous moduli that emerged from a gamma distributed tatt

with p > 1. As the shape parameter increases and the tatt

distribution becomes more Gaussian in shape, the fluctua-
tions and asymmetries observed in the elastic and viscous
moduli in the frequency domain became more pronounced.
Only through completion of the analytical derivation and
computer modeling were we able to demonstrate these
particular mechanical consequences.

5.1. Limitations. Myosin kinetics are known to demonstrate
dependencies on load or strain [10, 12], which were not
considered in the present work. The modeling in the
present work focuses on explaining only the viscoelastic
mechanics at higher frequencies and specifically ignores any
strain dependencies thus providing a limited model of the
macroscopic mechanical consequences of myosin kinetics. A
more complete model of viscoelastic mechanics would need
to predict and explain the dips in the elastic and viscous
moduli like those observed at the lower frequencies. The
negative viscous modulus, which corresponds to mechanical
energy production by the muscle preparation, may well
be one particular outcome of a strain dependency on
myosin kinetics. For example, the myosin time attached
may be shortened during muscle lengthening at these lower
frequencies, perhaps in a Pi-dependent manner [31–33], and
the number of force-generating crossbridges attached during
shortening versus lengthening would therefore contribute to
an observation of mechanical work production.

5.2. Conclusion. The importance of experimental observa-
tions of the single myosin molecule using optical techniques
cannot be overstated. Without these methods, we would not
likely be able to discern the nature of muscle force production
at the molecular level. Discerning the performance of myosin
within the context of myofilament lattice structure like that
found in vivo is also important. Mathematical and computer
models of muscle performance, such as that presented in
this work, are valuable in their providing the opportunity
to detect a measure of myosin performance, that is, the
distribution of tatt, within the context of in vivo sarcomeric
structure that is not currently technologically possible by
other means.

Appendix

In this appendix we provide a more detailed derivation
of (15), which is the solution to (9) when PDFtatt (t) is
represented by a gamma distribution. Therefore, PDFτ(t) in
the integrand of (9) is represented by a normalized upper
incomplete gamma function shown in (14):
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We choose to take the terms not containing t out of the
integral:
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For purposes of solving the definite integral above, we scale
every occurrence of t within the integral by β as follows:
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The definite integral has been solved previously [34]:
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Upon canceling factors we get the following:

F̃hs(ω)

L̃hs(ω)
= N

(
tatt

tcycle

)
kstiff

{
1− 1

piωβ

(
1− 1(

iωβ + 1
)p
)}

.

(A.5)

We choose to write the bracketed term in the following form:

F̃hs(ω)

L̃hs(ω)
= N

(
tatt

tcycle

)
kstiff

{
1− 1

piωβ

((
iωβ + 1

)p − 1(
iωβ + 1

)p
)}

.

(A.6)

Equation (A.6) represents the predicted complex modulus
that would arise from an ensemble of myosin crossbridges
whose time attached is described by a gamma distribution
with shape parameter p and scale parameter β.

When p = 1 we get the special case for the gamma distri-
bution being equivalent to a single exponential distribution.
The solution provided in (A.6) for p = 1 then reduces to the
following.

F̃hs(ω)

L̃hs(ω)
= N

(
tatt

tcycle

)
kstiff

{
iωβ

iωβ + 1

}

= N

(
tatt

tcycle

)
kstiff

{
iω

iω + β−1

}
.

(A.7)
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The form of (A.7) is equivalent to that provided previously
as a model for the C-process of sinusoidal analysis [19]. The
mean time attached is represented here as β.
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