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2Swiss Institute of Bioinformatics (SIB), Switzerland
3Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and
Paleoanthropology, Chinese Academy of Sciences, Beijing, China
4Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia
5Centre for Computational Evolution, University of Auckland, Auckland, New Zealand
6Department of Computer Science, University of Auckland, Auckland, New Zealand

*Corresponding authors: E-mails: zhangchi@ivpp.ac.cn; tanja.stadler@bsse.ethz.ch.

Associate editor: Tal Pupko

Abstract

Reticulate species evolution, such as hybridization or introgression, is relatively common in nature. In the presence of
reticulation, species relationships can be captured by a rooted phylogenetic network, and orthologous gene evolution can
be modeled as bifurcating gene trees embedded in the species network. We present a Bayesian approach to jointly infer
species networks and gene trees from multilocus sequence data. A novel birth-hybridization process is used as the prior
for the species network, and we assume a multispecies network coalescent prior for the embedded gene trees. We verify
the ability of our method to correctly sample from the posterior distribution, and thus to infer a species network,
through simulations. To quantify the power of our method, we reanalyze two large data sets of genes from spruces and
yeasts. For the three closely related spruces, we verify the previously suggested homoploid hybridization event in this
clade; for the yeast data, we find extensive hybridization events. Our method is available within the BEAST 2 add-on
SpeciesNetwork, and thus provides an extensible framework for Bayesian inference of reticulate evolution.
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Introduction
Hybridization during speciation is relatively common in ani-
mals and plants (Mallet 2005, 2007). However, when recon-
structing the evolutionary history of species, typically
nonreticulating species trees are inferred (Guindon et al.
2010; Ronquist et al. 2012; Stamatakis 2014; Drummond
and Bouckaert 2015), and the potential for hybridization
events is ignored.

To account for the distribution of evolutionary histories of
genes inherited from multiple ancestral species, the multi-
species coalescent model (Rannala and Yang 2003; Liu et al.
2009) was extended to allow reticulations among species,
named multispecies network coalescent (MSNC) model
(Yu et al. 2014). Orthologous genes are modeled as gene trees
embedded in the species network. The MSNC model
accounts for gene tree discordance due to incomplete lineage
sorting and reticulate species evolution events, such as hy-
bridization or introgression. There have been computational
methods developed based on the MSNC to infer species net-
works using maximum likelihood (Yu et al. 2014; Yu and
Nakhleh 2015; Sol�ıs-Lemus and Ané 2016) and Bayesian in-
ference (Wen et al. 2016). These methods use gene trees
inferred from other resources as input. Due to the model
complexity, applying the MSNC model in a full Bayesian

framework, that is, to infer the posterior distribution of
species network and gene trees directly from the multi-
locus sequence data, is challenging. Recently, Wen and
Nakhleh (2017) have developed a Bayesian method that
can coestimate species networks and gene trees from
multilocus sequence data, but a process-based prior for
the species network is still lacking. Their method also
integrates over all possible gene tree embeddings at
each MCMC step, which means that the estimated histo-
ries of individual gene trees within the species network are
not available for subsequent analysis, and the method
does not coestimate base frequencies or substitution
(transition and transversion) rates.

In this article, we present a Bayesian method to infer ultra-
metric species networks jointly with gene trees and their
embeddings from multilocus sequence data. Our method
assumes a birth-hybridization model for the species network,
the MSNC model for the embedded gene trees with analytical
integration of population sizes, and employs novel MCMC
operators to sample the species network and gene trees along
with associated parameters. It is able to use the full range of
substitution models implemented in BEAST 2 (Bouckaert
et al. 2014), including models with gamma rate variation
across sites (Yang 1994).
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New Approaches
In this section, we derive the (unnormalized) joint posterior
distribution. This allows us to implement a Markov chain
Monte Carlo (MCMC) procedure to sample species networks
and gene trees from the posterior distribution, given a multi-
locus sequence alignment. The MCMC operators are expati-
ated in Materials and Methods.

The Probability Density of a Species Network
The birth-hybridization process provides a prior probabil-
ity for a given species network W (fig. 1). The process
starts from t0 (time of origin) in the past with a single
species. A species gives birth to a new species with a
constant rate k (speciation rate), and two species merge
into one with a constant rate � (hybridization rate). That
is, at the moment of k species, the speciation rate is kk,

the hybridization rate is
k

2

 !
�, and the waiting time to

the next event is an exponential distribution. The process
ends at time 0 (the present).

The probability density of a species network W with n
extant species descending from n� 1þm speciation events
and m hybridization events, and these events happening at
time t1 > t2 > . . . > tnþ2m�1, conditioned on t0, k and �, is,

fðWjk; �; t0Þ ¼ knþm�1�m
Ynþ2m�1

i¼0

e
� kkiþ�ð ki

2 Þ
� �

ðti�tiþ1Þ
;

(1)

where ki is the number of lineages within time interval
ðti; tiþ1Þ and tnþ2m ¼ 0 is the present time. For the net-
work shown in figure 1a, the probability density of the
species network is

fðWjk; �; t0Þ ¼ ke�kðt0�t1Þ

ke�ð2kþ�Þðt1�t2Þ

ke�ð3kþ3�Þðt2�t3Þ

�e�ð4kþ6�Þðt3�t4Þ

e�ð3kþ3�Þt4 :

In our Bayesian analysis, the parameters k, �, and t0 can be
assigned hyperpriors.

Hybridizations or gene flow are modeled by reticulations in
the species network. c ¼ fc1; . . . ; cHg are the inheritance
probabilities, one per reticulation node in W (fig. 1). The in-
heritance probability measures the average proportion of ge-
netic material inherited from the corresponding parent (or
donor) (Long 1991; Yu et al. 2014; Wen and Nakhleh 2017).
While the prior for c can be any distribution on ½0; 1�, in this
study we use fðchÞ � Uð0; 1Þ throughout.

The Probability Density of the Gene Trees Given the
Species Network
The gene trees G ¼ fG1;G2; . . . ;GLg are embedded in the
species network W under the MSNC model (Yu et al. 2014)

(fig. 2). The effective population sizes N ¼ fN1;N2; . . . ;NBg
are assumed to be identically and independently distrib-
uted (i.i.d.) for each of the B branches in W, while each
locus has the same effective population size Ni at branch i
(i ¼ 1; . . . ; B). For each locus j, the number of coalescen-
ces of gene tree Gj within branch b of W is denoted by kjb,
and the number of lineages at the tipward end of b is
denoted by njb, thus the number of lineages at the root-
ward end of b is njb � kjb. The kjb þ 1 coalescent time
intervals between the tipward and rootward of branch
b are denoted by cjbi ð0 � i � kjbÞ. pj is the gene ploidy
of locus j (e.g., 2 for autosomal nuclear genes and 0.5 for
mitochondrial genes in diploid species). For each lineage
of Gj traversing the reticulation node Hh backward in
time, with probability ch it goes to the parent branch
associated with that inheritance probability, and to the
alternate parent branch with probability 1� ch. The cor-
responding number of traversing lineages are denoted by
ujh and vjh, respectively.
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FIG. 1. (a) A species network with three tips, three bifurcations, and
one reticulation. The inheritance probability at branch S1H1 is c, and
that at S2H1 is 1� c. (b) Another network with four tips and two
reticulations, with c1 and c2 associated with S1H1 and S3H2,
respectively.
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FIG. 2. Two gene trees embedded in the species network of figure 1a.
There are two samples from species A, three samples from B, and
either one or two samples from C. For each gene tree lineage tra-
versing the reticulation node H1 backward in time, it goes to the left
population with probability c, and to the right with probability
1� c.
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The coalescent probability of the gene trees G in species
network W with time being measured in calendar units is
thus:

fðGjW; c;NÞ ¼
YL

j¼1

"YB

b¼1

ðpjNbÞ�kjb exp

 
� ðpjNbÞ�1

�
Xkjb

i¼0

cjbi

 
njb � i

2

!!YH

h¼1

cujh

h ð1� chÞvjh

#

¼ K
YB

b¼1

rbNb
�q

b exp ð�rbN�1
b Þ;

(2)

where qb ¼
P

j kjb; rb ¼
Q

j p
�kjb

j ; rb ¼
P

j p�1
jPkjb

i¼0

cjbi

�
njb � i

2

�
, and K ¼

Q
j

Q
h cujh

h ð1� chÞvjh . When

there is no reticulation in the species network (i.e., it is a
species tree), then K¼ 1 and equation (2) is equivalent to
equation (2) in Jones (2017).

Integrating Out the Population Sizes Analytically
Equation (2) has the form of unnormalized inverse gamma
densities. The population sizes N can be integrated out
through the use of i.i.d. inverse-gamma(a, b) conjugate prior
distributions (Hey and Nielsen 2007; Jones 2017), that is,

fðGjW; cÞ ¼
Ð

fðGjW; c;NÞfðNja; bÞdN

¼ C
YB

b¼1

ð1
0

rbNb
�q

b exp ð�rbN�1
b Þ

� ba

CðaÞN�a�1
b exp ð�bN�1

b ÞdNb

¼ C
YB

b¼1

rbb
a

ðbþ rbÞaþqb

Cðaþ qbÞ
CðaÞ :

(3)

The symbolic notations follow equation (2).

The Probability of the Sequence Data Given the Gene
Trees
Assuming complete linkage within each locus, the probability
of the data D ¼ fD1;D2; . . . ;DLg given gene trees G ¼ fG1;
G2; . . . ;GLg is the product of phylogenetic likelihoods
(Felsenstein 1981) at individual loci:

PrðDjG; l;uÞ ¼
YL

i¼1

PrðDijGi; li;uiÞ; (4)

where Gi is the gene tree with coalescent times, li is the
substitution rate per site per time unit, and ui represents
the parameters in the substitution model (e.g., the transi-
tion–transversion rate ratio j in the HKY85 model;
Hasegawa et al. 1985), at locus i (i ¼ 1; . . . ; L).

There are two sources of evolutionary rate variation: across
gene tree lineages at the same locus and across different gene
loci. In the strict molecular clock model (Zuckerkandl and
Pauling 1965), l is the global clock rate, that is, no rate var-
iation across gene lineages at each locus. To extend to a re-
laxed molecular clock model (e.g., Thorne and Kishino 2002;
Drummond et al. 2006; Lepage et al. 2007; Rannala and Yang
2007), the molecular clock rate is variable across gene lineages
following certain distributions with l as the mean. To
account for rate variation across genes, gene-rate multipliers
fm1;m2; . . . ;mLg are constrained to average to 1.0

(
PL
i¼1

mixi ¼ 1, where xi is the proportion of sites in locus i

to the total number of sites). Then the substitution rate at
locus i is li ¼ lmi. Thus, when multiplying the gene tree
lineages in Gi by li, all the branch lengths are then measured
in units of expected substitutions per site.

The gene-rate multipliers are assigned a flat Dirichlet prior.
The average substitution rate (clock rate) l can be either fixed
to 1.0 such that branch lengths are measured by expected
substitutions per site, or assigned an informative prior to infer
branch lengths measured in absolute time. Note here, when
time is measured by expected substitutions per site, we use
hb ¼ Nbl as the population size parameter of branch b, and
si ¼ til as the height of node i.

The Joint Posterior Distribution
The joint posterior distribution of the parameters is:

fðW;G;HjDÞ / PrðDjG; l;uÞfðGjW; cÞfðWjk; �; t0Þ

� fðlÞfðuÞfðcÞfðk; �Þfðt0Þ:
(5)

Here, H represents ðl;u; c; k; �; t0Þ.

Simulations
We investigate the performance of the implementation using
simulations in this section. Time is measured by expected
substitutions per site throughout the simulations, so that
h ¼ Nl is used for all population sizes and si ¼ til for the
time of node i. The substitution rate l is fixed to 1.0 across all
gene lineages (strict molecular clock) and all loci (no rate
variation).

Simulation and MCMC Sampling without Sequence
Data
To verify the implementation of our Bayesian MCMC
method, we compared stochastic simulation to MCMC sam-
pling of species networks and gene trees. We first generated
networks under the birth-hybridization process. The simula-
tor starts from the time of origin (t0) with one species. A
species splits into two (speciation) with rate k, and two spe-
cies merge into one (hybridization) with rate �. At the mo-
ment of k branches, the total rate of change is

rtot ¼ kkþ
�

k

2

�
�. We generate a waiting time � exp ðrtotÞ

and a random variable u � Uð0; 1Þ. If u < kk=rtot, we ran-
domly select a branch to split; otherwise, we randomly
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select two branches to join, and generate an inheritance
probability c � Uð0; 1Þ. The simulator stops at time 0 (cf.
fig. 1). In this simulation, s0 ¼ 0:1; k ¼ 20; � ¼ 10, and we
kept 200,000 networks with exactly three tips. All the pop-
ulation sizes were fixed to h ¼ 0:01. Given each simulated
species network, we then simulated a gene tree with two
samples from each species (2, 2, 2) under the backward-in-
time MSNC, resulting in 200,000 gene trees.

In the MCMC, we used all the operators for the species
network (with three tips), gene tree (with two samples per
species), and embedding (see above). The parameters s0; k; �
and h were fixed to the truth. The likelihood of data was set to
be constant (no data). The chain was run 500 million steps and
sampled every 2000 steps. The last 200,000 sampled species
networks and gene trees were kept (i.e., the burn-in was 20%).

Theoretically, we expect the distributions of species net-
work and gene trees to be identical from both simulation and
MCMC sampling. Indeed, the networks obtained from the
simulator and MCMC match when comparing the network
length, root height, number of hybridizations, and time of the
youngest hybridization (fig. 3). The tree sets from MSNC and
MCMC also give rise to the same distributions of tree length,
the gamma-statistic (Pybus and Harvey 2000), and Colless
index (Blum et al. 2006) as expected (fig. 4).

Inference of Species Networks from Sequences
We simulated sequence alignments of multiple loci to reveal
the ability of our method to recover the true species network
from multilocus sequence data. The true network is shown in
figure 1a, with s1 ¼ 0:05; s2 ¼ 0:03; s3 ¼ 0:02;
s4 ¼ 0:01; c ¼ 0:3, and population sizes h ¼ 0:01. A ran-
dom gene tree was generated for each locus under the
MSNC. Then DNA sequences of length 200 bp were simu-
lated under JC69 model (Jukes and Cantor 1969) along each
tree. The sample configurations were (2, 4, 2) (meaning species
A has 2, B has 4, and C has 2 sampled sequences) and (5, 10, 5),
and the number of loci was 2, 5, 10, 20, 40, respectively. Under
each setting, the simulation was repeated 100 times. In the
inference, the priors were s0 � exp(10) with mean 0.1, d ¼ k
�� � exp(0.1) with mean 10, r ¼ �=k � Uð0; 1Þ, and
c � Uð0; 1Þ. The population sizes were integrated out analyt-
ically using inverse-gamma(5, 0.05) (eq. 3). The substitution
model was set to JC69 (the true model). We fixed l ¼ 1:0
for all genes as in the simulation (strict molecular clock and no
rate variation). The MCMC chain was run for 50 million steps
and sampled every 2000 steps. The first 35% of samples were
discarded as burn-in. The results are shown in figure 5.

With only two loci, the species trees are inferred with the
highest posterior probability, the distribution of species net-
work topologies is sensitive to the prior (fig. 5a). The HPD
intervals of the network height are also very wide (fig. 5b). As
sample size increases, the posterior estimates become increas-
ingly accurate. Conditional on the true species network to-
pology inferred (i.e., fig. 1a), the estimates of inheritance
probability c and time of hybridization become increasingly
accurate as the number of loci increases (fig. 5c and d). We
also observe that adding loci increases the accuracy of infer-
ence more than adding individuals. For example, by

comparing (5, 10, 5) individuals� 5 loci with (2, 4, 2) individ-
uals� 10 loci, the latter has higher probability of recovering
the true species network (fig. 5a).

To reveal the power of our method to detect both ancient
and recent hybridization events, we simulated gene trees and
sequences subsequently under the true species network
shown in figure 1b, with sR ¼ 0:05; sH1

¼ 0:03; c1 ¼ 0:6;
sH2
¼ 0:01; c2 ¼ 0:7; sS1

¼ 0:035; sS2
¼ 0:04; sS3

¼ 0:012;
sS4
¼ 0:015, and population sizes h ¼ 0:01. The sample con-

figurations were (2, 2, 2, 2) and (5, 5, 5, 5), respectively. The
other settings were kept the same as in the previous simula-
tion. The results are shown in figure 6.

We find that an ancient hybridization close to the root is
much harder to detect than a recent hybridization. With up
to 8 samples and 20 loci, the posterior probabilities of the true
network topology are all close to zero. The estimates start to
increase with 20 samples and 20 loci or more (fig. 6a). The
difficulty is mainly due to the fact that there are few gene-tree
lineages close to the root of the network, making it hard to
distinguish the true hybridization event from incomplete lin-
eage sorting in the ancestral populations. However, the recent
hybridization event is inferred with high probability using 10–
40 loci (fig. 6a). More specifically, we looked at the posterior
probability of networks having the BCDH2 subnetwork struc-
ture (cf. fig. 1b). Conditional on having this subnetwork in-
ferred, the estimates of inheritance probability c2 become
increasingly accurate as the number of loci increases
(fig. 6c), although the time of hybridization H2 is generally
underestimated (fig. 6d). It is not feasible to perform larger
scale simulations, for example, using 100 loci or more, to
investigate the power of recovering the ancient hybridization
(thus the true species network). Further studies need to be
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FIG. 3. Beanplot of network summary statistics comparing 3-tips net-
works simulated under the birth-hybridization process (left, light
gray) with those sampled using the MCMC operators (right, dark
gray). The horizontal bar is the mean.
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carried out after the efficiency of the operators is improved
(see Discussion).

Analysis of Biological Data

Three Closely Related Spruce Species
We analyzed a data set of three spruce species (Picea pur-
purea, P. likiangensis, and P. wilsonii) in the Qinghai-Tibet

Plateau (Sun et al. 2014). Picea purpurea was inferred to be
a homoploid hybrid of P. likiangensis and P. wilsonii (Sun et al.
2014). The original data have 11 nuclear loci and 166 diploid
individuals (50 from P. wilsonii, 56 from P. purpurea, 60 from
P. likiangensis, and two phased haplotype sequences per in-
dividual per locus).

To achieve proper mixing and convergence in a reasonable
time, the data were truncated into two nonoverlapping data
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FIG. 4. Beanplot of three tree summary statistics comparing gene trees simulated under MSNC (left, light gray) with those sampled using the MCMC
operators (right, dark gray). The sample configuration was (2, 2, 2).
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FIG. 5. Posterior estimates of (a) probability of the true network (black) and species trees (gray), (b) network height, (c) c in the true network topology, and (d)
H1 height in the true network topology, when the data were simulated under the network in figure 1a with sample configuration (2, 4, 2) or (5, 10, 5), and 2, 5,
10, 20, or 40 loci, respectively. For each setting in (a), the dot/circle with error bars are the median and the first and third quartiles of the percentages of 100
replicates. For each setting in (b), (c), and (d), the black dot with error bars are the median and the first and third quartiles of the posterior medians of 100
replicates, the gray circles with error bars are the same summaries for the 95% HPD intervals. The dashed lines indicate the true values.
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sets by randomly selecting individuals, resulting in 20
individuals from P. purpurea, 15 from P. likiangensis, and 15
from P. wilsonii (100 sequences per locus) for each. The priors
for the species network were s0 � exp(500) with mean 0.002,
d ¼ k� � � exp(0.01) with mean 100, r ¼ �=k � Uð0; 1Þ,
and c � Uð0; 1Þ. The population sizes were integrated out
analytically (eq. 3) using inverse-gamma(3, 0.003) with mean
0.0015 and mode 0.00075. The substitution model was
HKY85 (Hasegawa et al. 1985), with independent j (transi-
tion–transversion rate ratio) and state frequencies at each
locus. The clock rate was fixed to 1.0 (strict molecular clock
across branches) and gene-rate multipliers were used to ac-
count for rate variation across loci. The MCMC chain was run
for 1 billion steps and sampled every 20,000 steps. The first
35% of samples were discarded as burn-in. For each data set,
we obtained two independent runs, and the two runs were
checked for effective sample sizes (ESS) and the consistency of
trace plots of inferred parameters. The MCMC samples from
the two runs were combined.

The species network shown in figure 7 has a posterior
probability >0.95 for both data sets. This confirms that P.
purpurea is a hybrid species of P. likiangensis and P. wilsonii.
The estimates of c are 0.33 (0.18, 0.52) and 0.37 (0.17, 0.57),
respectively (median and 95% HPD interval). To investigate
the impact of prior on population sizes, we fixed the species

network topology to the one in figure 7, and used three priors
for the population size parameter: inverse-gamma(3, 0.0003)
with mean 0.00015 (small), inverse-gamma(3, 0.003) with
mean 0.0015 (medium), and inverse-gamma(3, 0.03) with
mean 0.015 (large), respectively. The population sizes were
either inferred using MCMC or integrated out analytically.
The other priors and MCMC settings were unchanged.

The posterior estimates of c, node heights, and population
sizes are summarized in supplementary tables S1 and S2,
Supplementary Material online. The estimates are similar
for both data sets regardless of whether the population sizes
were inferred or integrated out under the same prior, but
some estimates vary slightly across different priors. Below we
summarize the results from the inverse-gamma(3, 0.003) prior
(medium mean) for population sizes (fig. 7, and middle col-
umn of supplementary tables S1 and S2, Supplementary
Material online). Around 31–37% of the nuclear genome of
P. purpurea was derived from P. wilsonii (and thus 63–69%
from P. likiangensis). This estimate is concordant with the
original estimate of 31% made using approximate Bayesian
computation (ABC) (Sun et al. 2014). Assuming an average
substitution rate l ¼ 2� 10�4 per site per million years
(Sun et al. 2014), and dividing the node heights (s’s in sup-
plementary tables S1 and S2, Supplementary Material online)
by l, we get the times measured by million years (fig. 7). The
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FIG. 6. Posterior estimates of (a) probability of the true network (black), networks with one or two hybridizations (light gray), and networks with
the BCDH2 subnetwork (dark gray), (b) network height, (c) c2 in the BCDH2 subnetwork, and (d) H2 height in the BCDH2 subnetwork, when the data
were simulated under the network in figure 1b with sample configuration (2, 2, 2, 2) or (5, 5, 5, 5), and 2, 5, 10, 20, or 40 loci, respectively. For each
setting in (a), the dot/circle with error bars are the median and the first and third quartiles of the percentages of 100 replicates. For each setting in
(b), (c), and (d), the black dot with error bars are the median and the first and third quartiles of the posterior medians of 100 replicates, the gray
circles with error bars are the same summaries for the 95% HPD intervals. The dashed lines indicate the true values.
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time of hybridization is inferred to be around 1 Ma. The
estimate was 1.3 (0.73, 2.2) Ma in the original analysis assum-
ing the same height for nodes D, E, and H. Moreover, we get
an older and narrower estimate for the root age (fig. 7), com-
pared with 2.7 (1.4, 6.5) Ma in the original analysis. Similarly,
dividing estimates of h’s (supplementary tables S1 and S2,
Supplementary Material online) by l ¼ 1� 10�8 per site
per generation, we get the effective population sizes (fig. 7).
The inferred population sizes of P. purpurea, P. wilsonii, and
P. likiangensis are smaller than those estimated using ABC (cf.
table 4 in Sun et al. 2014).

Seven Yeast Species (Saccharomyces)
We reanalyzed another data set of seven yeast species, includ-
ing S. cerevisiae (Scer), S. paradoxus (Spar), S. mikatae (Smik),
S. kudriavzevii (Skud), S. bayanus (Sbay), S. castellii (Scas), and
S. kluyveri (Sklu). There are in total 106 orthologous gene loci
and one sequence per species per locus (Rokas et al. 2003). This
data analyzed using concatenation under maximum likelihood
yielded a single tree (fig. 8a) with 100% bootstrap values at
every branch (Rokas et al. 2003). The analysis using BEST (Liu

2008) showed two main species trees in the posterior (fig. 8a
and b) (Edwards et al. 2007). Both studies discovered extensive
incongruent phylogenies from individual genes, with phyloge-
netic conflict often involving Scas and Sklu. Recently, the full
data set was also analyzed using a Bayesian method
coestimating species networks and gene trees. Extensive hy-
bridization events were found, usually involving Scas and Sklu
as the donor or recipient (Wen and Nakhleh 2017).

For the inference using our method, the priors for the
species network were s0 � exp(10) with mean 0.1, d ¼ k�
� � exp(0.2) with mean 5, r ¼ �=k � Uð0; 1Þ, and
c � Uð0; 1Þ. The population sizes were integrated out ana-
lytically with the prior inverse-gamma(3, 2h), while the mean
population size h was assigned a gamma(2, 100) prior, which
has a mean of 0.02. We still used the HKY85 substitution
model (Hasegawa et al. 1985), gene-rate multipliers for rate
variation across loci, and the same MCMC chain settings as in
the spruce data analysis.

Similarly, we observed extensive hybridizations among
Scas, Sklu, and the remaining five species (fig. 8c) in the pos-
terior estimates from independent runs. The incongruence
among gene tree phylogenies are well captured and explained
by the hybridization events. These patterns are similar to the
results in Wen and Nakhleh (2017). The backbone tree (by
removing the reticulation branches with smaller inheritance
probabilities from the networks) is consistent with the species
tree in figure 8b. However, the complexity of hybridizations
caused difficulty and poor mixing of MCMC using the full
data. The species network topology may stay unchanged for
long durations of the MCMC chain and independent runs
give different numbers and directions of hybridizations, al-
though the hybridization pattern and the backbone tree are
the same across runs.

Using only five species by excluding Scas and Sklu pro-
duced consistent results across runs, and the posterior sam-
ples from the three runs are combined. About half of the
samples in the 95% posterior credible set are species trees
(fig. 8d) and another half are species networks with one re-
ticulation leading to Skud (fig. 8e). The result of Wen and
Nakhleh (2017, fig. 22e) showed only one species network in
the 95% posterior credible set with opposite hybridization
direction (from Skud to Sbay) and smaller c then ours (0.75
vs. 0.94). But both analyses have the same backbone tree as in
figure 8d. The difference is probably due to the different priors
and evolutionary models we used (see Discussion). The in-
heritance probability of 0.94 is fairly high, such that only a
small amount of genes in Skud are horizontally trans-
ferred from the ancestral species of Smik. Thus, we do
not interpret Skud as a hybrid species between Sbay
and the ancestral species of Smik. Further investigations
are needed to fully understand the underlining biological
mechanism. The root heights are both 0.094 (0.092, 0.096)
(median and 95% HPD interval) in figure 8d and e. The
branch lengths are measured by the mean substitutions
per site. The posterior estimate of mean population sizes
h is 0.00086 (0.00015, 0.0018). The rate multipliers range
from 0.55 to 1.5 for the 106 loci, indicating small amount
of evolutionary rate variation among loci.

FIG. 7. The species network with highest posterior probability (>95%)
inferred from the spruce data. The medians and 95% HPD intervals of
node heights (black dots with error bars) are in unit of million years.
From left to right, they are for data set 1 with population sizes inferred
and integrated out, and data set 2 with population sizes inferred and
integrated out, under the inverse-gamma(3, 0.003) prior. The num-
bers beside the branches are the medians of effective population sizes
inferred from data set 1 (above) and 2 (below). See also supplemen-
tary tables S1 and S2, Supplementary Material online.
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We further investigated the 28 loci with the strongest
phylogenetic signal. The gene trees inferred from these loci
under maximum likelihood have at least four internal
branches with bootstrap support> 70% (Nakhleh L, personal
communication). The priors and MCMC settings are the
same as for the 106 loci. Using all the seven species, the spe-
cies network with highest posterior probability (0.895) is
shown in figure 8f. Three hybridization events are recovered,
two from an ancestor of Saccharomyces sensu stricto (Scer,
Spar, Smik, Skud, and Sbay) into Scas and Sklu. In addition, we
found a hybridization event deriving from an ancestral species
of sampled extant Saccharomyces. When using only five spe-
cies by excluding Scas and Sklu in a separate run, the species
tree with the same topology as the subtree in figure 8f was
inferred with highest posterior probability (0.98). This is dif-
ferent from the backbone tree using all 106 loci (cf. fig. 8d),
indicating conflicting phylogenetic signal among loci.

Materials and Methods
We now describe the MCMC operators in detail and an al-
gorithm to summarize networks sampled from the MCMC,
followed by a convenient format for the networks and a link
to our source code.

MCMC Operators for the Species Network
Node Slider
The node-slider operator only changes the node heights
of the species network, not the topology. It selects an
internal node or the origin randomly, then proposes a
new height centered at the current height according to
a normal distribution: t0jt � Nðt; r2Þ, where r is a tuning

parameter controlling the step size. The lower bound is
the oldest child-node height, the upper bound is the
youngest parent-node height (except for the origin,
fig. 9). If the proposed value is outside this range, the
excess is reflected back into the interval. Note that for
the origin, if the proposed height is outside the range of its
prior, this move is aborted. A variation of this operator
can use a uniform proposal instead of the normal pro-
posal: t0jt � Uðt� w=2; tþ w=2Þ, where w is the window
size. The proposal ratio is 1.0 in both cases.

Node Uniform
The node-uniform operator also changes the internal-node
heights of the species network while keeping the topology. It
selects an internal node randomly, then proposes a new
height uniformly between the lower and upper bounds
(fig. 9a and b). The lower bound is the oldest child-node
height, the upper bound is the youngest parent-node height.
The proposal ratio is 1.0. Unlike node slider, this operator does
not change the time of origin. A separate operator for the
origin, such as multiplier or scaler, can be coupled to update
all the node heights.

Relocate Branch
The relocate-branch operator can change the topology, but
keeps the number of reticulations in the species network
constant. It first selects an internal node at random. If the
selected node is a bifurcation node, the rootward end of
either its child branches is selected (fig. 10a); if the selected
node is a reticulation node, the tipward end of either its
parent branches is selected (fig. 10b). Then the selected

FIG. 8. The species networks inferred from the yeast data. (a) The species tree estimated using concatenation under maximum likelihood (Rokas
et al. 2003). (a) and (b) are the two main species trees in the posterior analyzed using BEST (Edwards et al. 2007). (c) The representative species
network inferred using our method on all seven species and 106 loci. The dashed lines indicate possible hybridization events. (d) and (e) are two
species networks in the 95% posterior credible set using five species and 106 loci (excluding Scas and Sklu). The posterior probabilities are labeled at
the root. (f) The species network inferred using seven species and 28 loci with the strongest phylogenetic signal. The larger inheritance probabilities
are labeled beside the corresponding branches.

Bayesian Inference of Species Networks from Multilocus Sequence Data . doi:10.1093/molbev/msx307 MBE

511

Deleted Text: Luay 
Deleted Text: s
Deleted Text: 5 
Deleted Text: 5.1 
Deleted Text: o
Deleted Text: s
Deleted Text: n
Deleted Text: 5.1.1 
Deleted Text: s
Deleted Text: 5.1.2 
Deleted Text: u
Deleted Text: 5.1.3 


branch is detached at the side of the selected node, and a
destination branch to be attached is chosen randomly from
all possible candidate branches (including the original posi-
tion). A new height of the selected node is proposed uni-
formly between the heights of the two ends of the destination
branch (v0 and u0 in fig. 10). When the relocated branch has a
bifurcation node at one end and a reticulation node at the
other end, the candidate branches include all the remaining
branches, and the reticulation direction can be changed
depending on the proposed new height (fig. 10b). When
the relocated branch has the same type of nodes at both
ends and the resulted network is invalid, the move is aborted.
For example, moving the rootward end lower than the tip-
ward end if the two ends are both bifurcation nodes, or
moving the tipward end higher than the rootward end if
the two ends are both reticulation nodes, will result in an
invalid network. We denote with v and u the lower and upper

bounds of the backward move. The proposal ratio is
ðu0 � v0Þ=ðu� vÞ.

Add- and Delete-Reticulation
The add-reticulation and delete-reticulation operators are
reversible-jump MCMC (rjMCMC) proposals that can add
and delete a reticulation event, respectively.

In the add-reticulation operator, a new branch is added by
connecting two randomly selected branches with length l1
and l2 (fig. 11). The same branch can be selected twice so that
l1¼ l2 (fig. 11b). Then three values x1;x2 and x3 are drawn
from U(0, 1). One attaching point cuts the branch length l1 to
l11 ¼ l1x1 (and thus l12 ¼ l1ð1� x1Þ); the other attaching
point cuts the branch length l2 to l21 ¼ l2x2 (and thus
l22 ¼ l2ð1� x2Þ). Analogously, if we select the same branch
twice, the attachment times of the new branch are l1x1 and
l1x2. An inheritance probability c ¼ x3 is associated to the
new branch. We will operate on the inheritance probability c
of this added branch, while the inheritance probability of the
second reticulation branch (i.e., 1� c) changes accordingly.
We denote k as the number of branches in the current net-
work, and m as the number of reticulation branches (parent
branches of the reticulation nodes) in the proposed network.
The Hastings ratio is then ð1=mÞ=½ð1=kÞð1=kÞ�
1� 1� 1� ¼ k2=m. The Jacobian is j @ðl11;l21;cÞ

@ðx1;x2;x3Þ j ¼ l1l2.

Thus, the proposal ratio of add-reticulation is l1l2k2=m.
In the delete-reticulation operator, a random reticulation

branch together with the inheritance probability c is deleted
(fig. 11). Joining the singleton branches at each end of the
deleted branch, resulting in two branches with length l1 and l2
completes the operator (l1¼ l2 when forming a single branch,
fig. 11b). If there is no reticulation, or the selected branch is
connecting two reticulation nodes, the move is aborted. For
example, in figure 11a, deleting reticulation branch H1H2 will
result in an invalid network. We denote k as the number of
branches in the proposed network, and m as the number of
reticulation branches in the current network. The proposal
ratio of delete-reticulation is m=ðk2l1l2Þ.

Inheritance-Probability Uniform
The inheritance-probability uniform operator selects a retic-
ulation node randomly, and proposes a new value of the
inheritance probability c0 � Uð0; 1Þ. The proposal ratio is 1.0.

A B C A B C A B C

a) b) c)
R R R
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H1 H1H1

S2 S2
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FIG. 9. Three cases when the node-slider operator is applied: (a) a bifurcation node S2 is selected; (b) the reticulation node H1 is selected; and (c) the
origin is selected. The dashed lines are the lower and upper bounds for changing its height (only the lower bound is applicable in c). For the node-
uniform operator, (a) and (b) apply but (c) does not.
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FIG. 10. Two cases when the relocate-branch operator is applied.
(a) A bifurcation node S1 is selected, and branch S1H1 is relocated
to attach to RS2. (b) A reticulation node H1 is selected, and branch
S1H1 is still attaching to S2B with flipped reticulation direction. The
lower and upper bounds of proposing the new attaching point are
v0 and u0 , and the corresponding bounds of the backward move are
v and u.
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Inheritance-Probability Random-Walk
The inheritance-probability random-walk operator selects a
reticulation node randomly, and applies a uniform sliding
window to the logit of the inheritance probability c, that is
y0jy � Uðy� w=2; yþ w=2Þ, where y ¼ logitðcÞ ¼ log ðcÞ
� log ð1� cÞ. Since the proposal ratio for the transformed
variable y is 1.0, and dc

dy ¼ d
dy ey=ð1þ eyÞ½ � ¼ ey=ð1þ eyÞ2,

the proposal ratio for the original variable c is
dc0

dy0 =
dc
dy ¼ eðy0�yÞð1þ eyÞ2=ð1þ ey0Þ2.

MCMC Operators for Gene Trees
The standard tree operators in BEAST 2 (Bouckaert et al.
2014) are applied to update the gene trees, including the
scale, uniform, subtree-slide, narrow- and wide-exchange,
and Wilson–Balding (Wilson and Balding 1998). The scale
and uniform operators only update the node heights without
changing the tree topology, while the other operators can
change the topology (Drummond and Bouckaert 2015). The
species network is kept unchanged when operating on the
gene trees, and vice versa.

MCMC Operator for the Gene Tree Embedding
The gene trees must be compatibly embedded in the species
network (fig. 2). When a new gene tree is proposed using one
of the tree operators, the rebuild-embedding operator pro-
poses a new embedding for that gene tree. When a new
species network is proposed, the rebuild-embedding operator
proposes a new embedding for each gene tree in the species
network. If there is no valid embedding for any gene tree, the
gene tree or species network proposal is rejected.

The rebuild-embedding operator proposes a new embed-
ding proportional to the product of traversal probabilities
across all traversed reticulation nodes. Specifically, we define
the (unnormalized) likelihood of a compatible embedding x

as wx¼
QH
h¼1

cuxh

h ð1�chÞvxh , where H is the number of reticula-

tion nodes in the species network, uxh is the number of lineages
traversing node Hh to the branch associated with ch, and vxh is
the number of lineages traversing node Hh to the alternative
branch associated with 1�ch. If there is no reticulation in the

species network (i.e., it is a species tree), wx¼1. For example, in
figure 2, there are two possible embeddings for one gene tree
(orange) while the likelihoods are c2ð1�cÞ (current) and

ð1�cÞ3, respectively, and four possible embeddings for the
other gene tree (blue) while the likelihoods are

c2;cð1�cÞ;ð1�cÞc, and ð1�cÞ2 (current), respectively.
The proposal ratio of moving from embedding x to x0 is:

wxPE
i¼1

wi

=
wx0PE0

j¼1

wj

;

where E and E0 are the number of possible embeddings in the
current and new states, respectively. If E0 ¼ 0 (no valid em-
bedding), the move is aborted. This proposal distribution is
chosen to have a superior acceptance ratio than if a new em-
bedding is proposed randomly from all possible embeddings.

Summarizing Posterior Distribution of Species
Networks
Reducing many hundreds of posterior or bootstrap samples
to a summary result is essential in order to describe the un-
derlying distribution. For phylogenetic trees, many summary
methods have been developed such as “majority rule con-
sensus” and “maximum clade credibility” trees (Heled and
Bouckaert 2013). By comparison, methods to summarize
samples of phylogenetic networks are underdeveloped. We
have implemented a basic method for summarizing net-
works, where unique network topologies are reported in
descending order of their posterior probabilities. For each
unique topology, each subnetwork is annotated with its pos-
terior probability and node age credible interval.

To facilitate the calculation of posterior probabilities and
credible intervals, we have developed an algorithm to enumer-
ate each unique subnetwork, and label all occurrences of a
unique subnetwork in a sample of phylogenetic networks.
After running this algorithm, the label of a network’s root
node uniquely identifies its topology, and the generation of
a sorted summary of posterior topologies becomes trivial.
Details of the algorithm are given in the Appendix. The default
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FIG. 11. Three cases when the add-reticulation operator is applied. The number of branches in the current network (i.e., the network without the
red branch) is k¼ 8. The probability of selecting the illustrated branches (in blue) is 1=k2. The number of reticulation branches in the proposed
network is m¼ 4. In the reverse move, delete-reticulation, the probability of selecting the added branch (in red) is 1=m. (a) Branches S1H1 and RS2

are selected and a new branch S3H2 is added together with c2. The length of S1H1 is l1 ¼ lS1H1
, and that of RS2 is l2 ¼ lRS2

. In the delete-reticulation
move, if H1H2 is selected, the operator is aborted. (b) The same branch S2C is selected twice. l1 ¼ l2 ¼ lS2C; l11 ¼ lS2S3

; l21 ¼ lS2H2
. (c) The root

branch and S2C are selected. S3 becomes the new root.
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setting of our summary tool eliminates all parallel branches
(e.g., S3H2 in fig. 11b) from all samples in the posterior before
summarizing, which simplifies the posterior distribution of
networks and reduces the number of unique topologies.

Alternatively, users may generate a summary network us-
ing the “major displayed tree” method as implemented in the
PhyloNetworks package (Sol�ıs-Lemus et al. 2017).

Representation of Phylogenetic Networks
Species networks are outputted in extended Newick format
(Cardona et al. 2008), which is also used in the software
PhyloNet (Than et al. 2008).

For example, the species network in figure 1a is written as:

((A:0.02,(B:0.01)#H1[&gamma¼0.3]:0.01)S1:0.03,
(#H1: 0.02, C: 0.03)S2: 0.02)R: 0.03;

where the hash sign indicates a reticulation node, and the
inheritance probability is in the brackets as metadata. Such
extended Newick string can be read into IcyTree (icytree.org;
Vaughan 2017) and be displayed nicely.

Software Availability
The method is implemented in the add-on SpeciesNetwork
for BEAST 2 (Bouckaert et al. 2014), including the inference,
simulation, and summary tools, and is hosted publicly on
GitHub (https://github.com/zhangchicool/speciesnetwork;
last accessed December 10, 2017).

Discussion
We use species networks to model reticulate evolution.
Although our method is motivated by species hybridization,
species networks can also be applied to studies of migration
and lateral (or horizontal) gene transfer. Rates of migration
between taxa have been modeled previously using isolation-
with-migration (IM) models (Nielsen and Wakeley 2001; Hey
and Nielsen 2004, 2007; Wilkinson-Herbots 2008; Hey 2010;
Zhu and Yang 2012; Dalquen et al. 2017). Reticulation branches
in species networks can also model migration, and may be a
more natural fit when migration is not constant as in the case
of secondary contact. The proportion of genetic material inher-
ited through a reticulation event can come from a high rate of
migration over a short period of time, or a lower rate of mi-
gration over a longer period of time. Lateral gene transfer has
been modeled previously using gene duplication, transfer, and
loss (DTL) models (Tofigh et al. 2011; Szöll}osi et al. 2012, 2013,
2015; Sjöstrand et al. 2014). These models account for discor-
dance between species tree and gene trees by any discordance
to DTL events, but ignore incomplete lineage sorting. Our im-
plementation of species networks explicitly models the embed-
ding of gene trees within a species network, and so can be used
to infer lateral gene transfer events without confounding them
with incomplete lineage sorting.

Methods to build a species network (e.g., Park et al. 2010;
Wu 2010; Albrecht et al. 2012) traditionally use inferred gene
trees from each locus without accounting for their uncertain-
ties, and employ nonparametric criteria such as parsimony. For
population level data, the sequences are similar and the signal

in gene tree topologies is typically low, so using fixed gene trees
is assigning too much certainty to the data. These methods
typically assume that gene tree discordance is solely due to
reticulation, thus may suffer in the presence of incomplete
lineage sorting (Yu et al. 2011). The MSNC model (Yu et al.
2014) provides a statistical framework to account for both
incomplete lineage sorting and reticulate evolution. But prop-
erly analyzing genetic data to infer species networks under the
MSNC model is a challenging task. There have been methods
using only the gene tree topologies from multiple loci under
MSNC (Yu et al. 2012, 2014; Wen et al. 2016). However, gene
trees with branch lengths are more informative for inferring
species tree or network topology than gene tree topologies
alone. Accounting for branch lengths can improve distinguish-
ability of species networks (Pardi and Scornavacca 2015; Zhu
and Degnan 2017). Although methods using estimated gene
trees (with branch lengths) from bootstrap or posterior samples
as input take into account gene tree uncertainty (Yu et al. 2014;
Wen et al. 2016), directly using sequence data to coestimate
species networks and gene trees in a Bayesian framework
showed improved accuracy (Wen and Nakhleh 2017).
Pseudo-likelihood approaches (Yu and Nakhleh 2015; Sol�ıs-
Lemus and Ané 2016) compute faster than full likelihood or
Bayesian approaches, but have severe distinguishability issues
and require more data to achieve good accuracy.

At the time of writing, another Bayesian method inferring
species networks and gene trees simultaneously from multi-
locus sequence data was released (Wen and Nakhleh 2017).
The general framework here is similar, but we highlight four
major differences. We use a birth-hybridization prior for the
species network which naturally models the process of spe-
ciation and hybridization. The prior is extendable to account
for extinction, incomplete sampling, and rate variation over
time, as we outline below. Wen and Nakhleh (2017) used a
descriptive prior combining a Poisson distributed number of
reticulations with exponential distributed branch lengths.
Secondly, we allow parallel branches in the network. This is
biologically possible. Even if the true species history has no
parallel branches, the observed species network can still con-
tain such features due to incomplete sampling. Note though
that a very large number of individuals and loci are required
to detect such parallel branches. To prevent the species net-
work from growing arbitrarily big, such that it becomes in-
distinguishable by the gene trees (Pardi and Scornavacca
2015; Zhu and Degnan 2017), we typically assign an informa-
tive prior to ensure the hybridization rate is lower than the
birth rate. A similar strategy was used in Wen et al. (2016);
Wen and Nakhleh (2017) by restricting the rate of the Poisson
distribution. Third, we account for the uncertainty in the
embedding of a gene tree within a species network by esti-
mating the MSNC probability conditional on a proposed em-
bedding at each MCMC step. This provides a posterior
distribution of gene trees and their embeddings within a spe-
cies network, enabling analysis of which alleles are derived
from which ancestral species. The cost instead is additional
MCMC operations compared with integrating over all
embeddings at each step (Wen et al. 2016; Wen and
Nakhleh 2017). Last but not least, we implement analytical
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integration over population sizes in the species network
(eq. 3). This reduces the number of parameters for the
rjMCMC operators to deal with, and should improve conver-
gence and mixing. Finally, our implementation in
SpeciesNetwork is an extension to BEAST 2 (Bouckaert
et al. 2014), to take advantage of many standard phylogenetic
models, such as different substitution models, relaxed molec-
ular clock models, and the BEAUTi graphical interface.

In our approach, we employ a simple prior for the species
network based on a birth-hybridization model. Analogous to
birth-death priors for species trees (e.g., Stadler 2010; Heath
et al. 2014), the birth-hybridization prior could be extended to
account for extinction and incomplete sampling, to model
networks containing both extant and fossil taxa. The rates
could also be allowed to vary over time, to model the diver-
sification patterns during speciation (the skyline model for
trees, Stadler et al. 2013). When considering networks instead
of trees, techniques to derive the probability density of trees
cannot be directly applied as the hybridization rate depends
on pairs of lineages rather than individual lineages. This non-
linearity necessitates solving differential equations to derive
the species network probability densities, a task which we
defer to a later study.

Our approach is limited in computational speed. The em-
pirical analysis was done, for example, on only three species
with 50 individuals and 11 loci, or up to seven species and 106
loci but one individual per species. The main bottleneck is the
MCMC operators. Due to hard constraints between the spe-
cies network and embedded gene trees (fig. 2), MCMC oper-
ators changing them separately limit the ability to analyze
genomic scale data from many individuals. More specifically,
updating the species network will likely violate a gene tree
embedding, resulting in very low acceptance rate of the op-
erator. Thus, it will be essential to design more efficient
MCMC operators. There have been coordinated operators
that can change species tree and gene trees simultaneously
(Jones 2017; Rannala and Yang 2017). Such operators could
possibly be extended to species networks, and will po-
tentially improve efficiency of the MCMC algorithm.
Proposing new embeddings of gene trees in species net-
work is also costly. Thus, it might be worthwhile to in-
tegrate over the embeddings (Wen et al. 2016; Wen and
Nakhleh 2017) if they are not of interest. Moreover, there
are methods to integrate out the gene trees under the
multispecies coalescent model when analyzing biallelic
genetic markers (RoyChoudhury et al. 2008; Bryant et al.
2012; Zhu et al. 2017). However, it is not yet feasible to
apply this strategy to multilocus sequence alignment.
Computationally, implementing Metropolis-coupled
MCMC (MC3, Geyer 1991) will help to overcome multi-
ple local peaks in the posterior, and further parallelizing
the cold and hot chains will gain speed.

In summary, we developed a Bayesian method for inferring
species networks together with gene trees and evolutionary
parameters from multilocus sequence data. The method is
implemented within a general Bayesian framework, with po-
tential future extensions to the theoretical model and to the
practical implementation.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.

Acknowledgments
This research was supported by the European Research Council
under the Seventh Framework Programme of the European
Commission (PhyPD: grant number 335529 to T.S.). C.Z.
acknowledges his salary as well as a visit covered by this grant
to the Centre for Computational Evolution, University of
Auckland, New Zealand in mid-2016. H.A.O. was supported
by an Australian Laureate Fellowship awarded to Craig Moritz
by the Australian Research Council (FL110100104). We sin-
cerely thank Simone Linz for detailed discussion on modeling
phylogenetic networks. We also thank three anonymous
reviewers and the editors for many constructive comments
leading to great improvement of the original manuscript.

Appendix

Numbering and Labeling Subnetworks across a
Sample
We describe an algorithm by pseudocode to enumerate all
unique subnetwork topologies within a sample of phyloge-
netic networks. Apart from subnetwork topologies consisting
of a single node (i.e., leaf nodes), each topology label has a
corresponding set of child subnetwork topology numbers. The
algorithm works by recursively constructing the mapping of
parent to child subnetwork topology numbers, beginning at
the root or origin node of each phylogenetic network.

Initialize the counter i to 0

Initialize the ({node label set} to node label) map m

For each taxon t:

Assign i as the label of t

Increment i

For each phylogenetic network s:

Begin Recursion from the oldest node of s

Recursion:

Input: A network node n

Output: A label l toidentifythesubnetworktopologyof n

If n is a leaf node:

Get the label l of the taxon t of n

Else:

Initialize the node label set d

For each child node nc of n:

Get lc by continuing Recursion from nc

Add lc to d

If d is in m:

Get the label l of d

Else:

Set l to the value of i

Link d to l in m

Increment i

Return l
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Proposing Embeddings Proportional to Their
Likelihoods
We describe an algorithm by pseudocode to propose com-
patible gene tree embeddings, given a species network and a
set of gene trees, in proportion to their embedding likelihoods.
The algorithm works by stochastically constructing an embed-
ding during a depth-first search of a gene tree. When a gene
tree lineage traverses a bifurcation node, there is a set of com-
patible embedding histories (for the subtree defined by the
gene tree lineage) where the lineage descends through the left
child branch of the bifurcation node, and another set for the
right child branch. A left or right embedding is chosen at
random weighted by the sum total of embedding likelihoods
for each child branch of the bifurcation node, to ensure that
embeddings are proposed in proportion to their likelihoods.

The likelihood for the proposed embedding is also com-
puted during the depth-first search; when a gene tree lin-
eage traverses a reticulation node, its likelihood is
multiplied by the ch or the (alternative) 1�ch probability.
When a coalescent event occurs, the likelihoods of the left
and right subtrees are multiplied. Because embeddings are
proposed in proportion to their likelihoods, the MCMC
proposal probability is the embedding likelihood normal-
ized by the sum total of compatible embedding likelihoods.

Given the species network s:

For each gene tree g:

Get the root gene tree node gtnr from g

Get the root species network branch snbr from s

Try to get e, l, and t by Recursion from gtnr and snbr

Ifthereisnocompatibleembedding:

Reject the proposal

Else:

Propose e as the new embedding

Multiply the proposal probability by (l�t)

Recursion:

Input 1: A gene tree node gtn

Input 2: A species network branch snb

Output 1: An embedding e

Output 2: Its likelihood l

Output 3: The total likelihood t

If gtn traverses through the tipward node of snb:

For each child branch snbc of snb:

If there is any compatible embedding of gtn

through snbc:

Getec,lc,and tc byRecursionfrom gtn and snbc

Add the traversal of gtn through snbc to ec

Ifthetipward nodeof snb is a reticulation:

Multiply lc by ch or 1�ch

Multiply tc by ch or 1�ch

Pick one snbc at random weighted by tc

Settheembedding e tothevalueofec forthechosen snbc

Setthelikelihoodl tothevalueoflc forthechosen snbc

Calculatethetotallikelihood t as the sum of all tc

Else:

If gtn is a leaf:

Initialize an embedding e

Initialize the likelihood l to 1

Initialize the total likelihood t to 1

Else:

For each child node gtnc of gtn:

Getec,lc,andtc byRecursionfrom gtnc and snb

Construct the embedding e by merging both ec

Calculatethelikelihoodlastheproductofbothlc

Calculatethetotallikelihood t astheproduct

of both tc

Return e, l, and t
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