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Contact tracing has for decades been a cornerstone of the public
health approach to epidemics, including Ebola, severe acute respi-
ratory syndrome, and now COVID-19. It has not yet been possible,
however, to causally assess the method’s effectiveness using a ran-
domized controlled trial of the sort familiar throughout other areas
of science. This study provides evidence that comes close to that
ideal. It exploits a large-scale natural experiment that occurred by
accident in England in late September 2020. Because of a coding
error involving spreadsheet data used by the health authorities, a
total of 15,841 COVID-19 cases (around 20% of all cases) failed to
have timely contact tracing. By chance, some areas of England were
much more severely affected than others. This study finds that the
random breakdown of contact tracing led to more illness and death.
Conservative causal estimates imply that, relative to cases that were
initially missed by the contact tracing system, cases subject to
proper contact tracing were associated with a reduction in subse-
quent new infections of 63% and a reduction insubsequent COVID-
19–related deaths of 66% across the 6 wk following the data glitch.
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Contact tracing has been a central pillar of the public health
response to COVID-19, with countries around the world al-

locating unprecedented levels of resources to the build-up of their
testing and tracing capacities (1). Public health experts argue that
even as vaccines have become available, nonpharmaceutical inter-
ventions such as contact tracing remain indispensable (2). Simul-
taneously, however, the effectiveness of contact tracing has been
subject to controversial public and scientific debates: reports on
low adherence to self-quarantine, insufficiently trained contact
tracers, and people providing incomplete or inaccurate informa-
tion about their contacts due to concerns about privacy, stigma,
and scams abound (3–8). Why does significant uncertainty about
the effectiveness of contact tracing persist?
One reason is that the type of evidence required for its evalu-

ation is notoriously hard to obtain. Ideally, public policies are
based on causal evidence demonstrating their effectiveness, which
requires randomized experiments. Experimenting with public
policies, however, is often infeasible due to logistical constraints
and ethical concerns. For example, it may not be morally ac-
ceptable to implement better contact tracing in some randomly
selected areas than in others, because this may selectively lead to
more adverse outcomes in specific areas. As a consequence, sci-
entific research on the effectiveness of contact tracing both in
previous pandemics (10–13) and during COVID-19 (9, 14–19) has
had to rely on observational data and modeling techniques. The
existing correlational evidence points to a positive impact of con-
tact tracing measures but is subject to the concern that correlations
may not reflect a causal relationship. For example, the underlying
variation in contact tracing may co-occur with changes in other
policies such as contact restrictions or with changing epidemio-
logical trends, so that it is difficult to cleanly identify which factor
is truly responsible for an observed correlation.
To address this lack of causal evidence, we exploit a unique source

of experimental variation in contact tracing. On October 4, 2020,
the public health authorities in England released a public statement

on a “technical issue” discovered in the night of October 2 to
October 3 (20). An internal investigation had revealed that a total
of 15,841 positive cases had accidentally been missed in both the
officially reported figures and the case data that was transferred to
the national contact tracing system—around 20% of all cases
during that time. This omission occurred because case information
had accidentally been truncated from Excel spreadsheets after a
row limit had been reached. According to government reports, the
original reporting dates of the missed cases would have been be-
tween September 25 and October 2. While the data glitch did not
affect the individual dissemination of test results to people who
tested positive, an anticipated 48,000 close recent contacts had not
been traced in a timely manner and had therefore not been or-
dered to self-quarantine. The evolution of the daily number of
newly reported cases in England is shown in Fig. 1A (black line).
The reporting date of a case simultaneously marks the day on
which it is referred to the contact tracing system (21, 22). The
figure further shows the number of positive test results by the date
on which these tests were actually taken (i.e., their so-called
specimen date [red line]). Reported cases (black line) trail behind
actual cases (red line) due to a natural lag in reporting: because
laboratory tests need to be evaluated and processed, close to
100% of all new test results enter the official statistics and are
referred to the contact tracing with a delay of two to five days (see
also SI Appendix, Fig. S1 and Table S1). Fig. 1A documents a
striking change in the relationship between reported and actual
cases during the time of the data glitch. Reported cases moved
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responses to the spread of infectious diseases.

Author contributions: T.F. and T.G. designed research, performed research, analyzed
data, and wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).

See online for related content such as Commentaries.
1To whom correspondence may be addressed. Email: tgraeber@hbs.edu.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.2100814118/-/DCSupplemental.

Published August 12, 2021.

PNAS 2021 Vol. 118 No. 33 e2100814118 https://doi.org/10.1073/pnas.2100814118 | 1 of 4

SO
CI
A
L
SC

IE
N
CE

S

https://orcid.org/0000-0002-3471-3469
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100814118/-/DCSupplemental
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2100814118&domain=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1073/pnas.2100814118
mailto:tgraeber@hbs.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100814118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100814118/-/DCSupplemental
https://doi.org/10.1073/pnas.2100814118
https://doi.org/10.1073/pnas.2100814118


laterally, whereas true cases surged dramatically, leading to a
much more pronounced divergence. From just 4,726 cases on
October 2, the number of reported cases skyrocketed to 10,436
on October 3 and 21,140 on October 4, which is when the cor-
rection occurred. This development was accompanied by a notable
worsening in the performance of contact tracing; see SI Appendix,
Fig. S2. While the share of contacts reached within the first 24 h
hovered steadily around 80% in prior weeks, it plummeted to just
above 60% when the delays in contact tracing kicked in.
The Excel error created a natural experiment that allows us to

study the causal effect of contact tracing: by chance, the loss of case
information was much more severe for some areas of England than
others. This source of random variation allows us to investigate to
which extent areas that were more strongly affected by the lack
of contact tracing subsequently experienced a different pandemic
progression.
We are able to reconstruct the local number of delays in contact

that are due to the Excel error using a simple approach that relies
on linkages between historically published daily data sets on newly
reported cases. In the period leading up to the data glitch, an
average of 96% of all positive test results with a given specimen
date had been reported and referred to contact tracing within the
five days following the test date (SI Appendix, Table S1). This
information on normal reporting lags allows us to identify, at the
local level, the number of positive test results that were reported
and referred to contact tracing unusually late. Specifically, our
simplest measure of missed cases exploits only test dates that
precede the discovery of the Excel error (October 3) by so long
that, under normal circumstances, virtually all positive cases
should have been reported before that correction date. For each
of the 315 Lower Tier Local Authorities (LTLA) in England, we
sum up the number of positive results from tests taken between
September 20 and September 27 that were reported on or after
October 3. This number, expressed as a share of all local cases
with the same specimen dates, yields a percentage indicator of
how strongly the data glitch affected each LTLA through delays in
contact tracing. The map displayed in Fig. 1B documents sub-
stantial variation in the geographic signature of the Excel error.
This variation is unrelated to area-specific characteristics, such as
its population size or its previous exposure to and the recent trend
in COVID-19 spread. An analysis of covariate balance (SI Ap-
pendix, Table S14) reveals no systematic relationships between
measures of missed cases and area characteristics. Note that our
baseline measure is conservative to the extent that it only relies on

early specimen dates for which delays due to the Excel error can
be inferred with high confidence, and it thus underestimates the
officially reported extent of the breakdown in contact tracing. All
of our findings are robust to alternative approaches of calculating
the local number of delays in contact tracing (SI Appendix).

Results
Before quantifying the causal effect of delays in contact tracing,
we illustrate the relationship between delays in contact tracing
and COVID-19 infection dynamics. Note that the local share of
cases subject to contact tracing delays provides a continuous
measure of local affectedness by the Excel error. For the purpose
of a visual illustration, we now split all 315 LTLAs into two groups
based on whether contact tracing in an area was relatively strongly
affected or relatively little affected. We separate areas based on
whether their share of cases subject to delays in contact tracing
was above or below the median share. Fig. 2 plots the average of
COVID-19 incidence per 100,000 population separately for areas
with above-median shares of cases subject to delays in contact
tracing and areas with below-median shares. The data are plotted
for specimen dates at the weekly level. We make three observa-
tions. First, the two groups experienced virtually identical epide-
miological trajectories in the weeks preceding the onset of the
data glitch. Second, we see an increase in COVID-19 incidence
across time in both groups. Third, and most importantly, the in-
crease in COVID-19 infections was much more pronounced in
areas with above-median exposure to delays in contact tracing.
This divergence started during the period of the data glitch and
led to a quantitatively large difference in infection intensity across
the four weeks following the data error. Except for the divergence
appearing during the time of the data glitch, the development of
COVID-19 incidence over time looked remarkably similar be-
tween the two groups. This again reflects the random nature of the
variation in how strongly different areas were affected.
To provide a quantitative estimate of the causal effect of delays in

contact tracing, we follow a canonical “difference-in-differences”
regression approach. Crucially, this empirical strategy is immune
to the fact that the COVID-19 development across England al-
ready displayed an upward trend before the error occurred: the
effect estimate subtracts out the “normal” trend in COVID-19
spread in areas that were not affected by the Excel error. Intu-
itively, for each area, the estimation first computes the difference
in the spread of COVID-19 before and after the data glitch. The

A B

Fig. 1. Evolution of COVID-19 in England and regional variation in contact tracing delays due to the Excel error. (A) COVID-19 cases in England separately by
date of test and by reporting date. The reporting date equals the date on which a case is referred to the national contact tracing system. Reported cases trail
behind actual positive case numbers due to a normal reporting lag. Reported and actual cases notably diverge during the time in which the Excel error
occurred, highlighted by the area shaded in red. (B) For each local authority district, we calculate the fraction of all local COVID-19 cases with test dates
between September 20 and September 27, 2020, that were referred to contact tracing with an unusual delay of 6 to 14 d due to the Excel error. The different
color shades represent different quintiles of the distribution of this fraction measure. The map shows substantive heterogeneity in how strongly different
areas were affected.
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difference-in-differences estimator captures to what extent this
local change over time differs between areas that were, by chance,
more strongly affected by delays in contact tracing and areas that
were less strongly affected. Note that this approach relies on
cross-area comparisons and is thus immune to nationwide epi-
demiological trends in infections that affect all regions similarly.
Our local measure of exposure to delays in contact tracing due to
the Excel error isMi.Mi captures the number of late referrals per
100,000 population in area i that was likely due to the data glitch
(see SI Appendix for further details on how Mi is constructed).
The resulting baseline regression specification is

yi,t = μi + γt + η × Postt ×Mi + β’Xi,t + e,

where yi,t denotes a measure of COVID-19 spread in area i
on day t. We study various outcome measures yi,t. The regression
controls for area fixed effects, μi, and day fixed effects, γt. Across

different specifications, we also control for a host of additional
measures, Xi,t, that account for, first, the nonlinear nature of case
growth by controlling for previous levels and trends in COVID-19
spread and, second, for a multiplicity of more than 50 area char-
acteristics (see also the covariate balance SI Appendix, Table S14).
The area characteristics include employment shares in one-digit
industries, educational attainment, socio-economic status of the
resident population, which also captures shares in full time edu-
cation or in university, and regular in- and out-commuting flows.
These time-invariant measures are interacted with a set of date
fixed effects to account for potential nonlinear growth. However,
we do not expect those controls to significantly affect our estimate
of the coefficient of interest, η, due to the random nature of ex-
posure to delays to contact tracing Mi. In Fig. 3, we show estima-
tion results for η, capturing the average effect of delays to contact
tracing on new infections and new COVID-19 deaths based on the
above specification. The full results are reported in SI Appendix,
Table S2. Our conservative estimate for the effect of delays in
contact tracing on daily new infections during calendar weeks 39
through 44 is 0.443. This implies that one additional case referred
late to contact tracing was associated with a total of 18.6 additional
infections reported in the 6-wk posttreatment period under con-
sideration. Similarly, our estimation yields a precisely estimated
and significant effect of 0.006 additional daily deaths per late re-
ferral. This corresponds to around 0.24 new COVID-19 deaths per
late referral to contact tracing overall in the following 6 wk.
To put these effect sizes into perspective, we emphasize that

our estimates capture the cumulative effect of late referrals over
a 6-wk period. Given a total of 43,875 positive cases with test dates
during September 20 through 27 and a total of 597,381 cases in the
6-wk posttreatment period, the raw case data imply that, on
average, each case between September 20 and 27 was followed by
an expected 13.6 new cases across the following 6 wk. Our analysis
allows us to disentangle between this statistical multiplier for a
case referred to contact tracing with an Excel error-induced delay
to the multiplier for a case that was traced as normal. Our regres-
sion estimate implies that proper, timely contact tracing during
September 20 through 27 is associated with a 63% smaller multi-
plier (from 29.4 to 10.8) relative to contact tracing that was subject
to unusual delays of between 6 and 14 d. The same type of re-
gression estimate for COVID-19–related deaths implies that timely
contact tracing was associated with 66% fewer deaths (compared to
contact tracing with unusual delays of between 6 and 14 d) across
the 6-wk period following September 20 through 27.
SI Appendix, Figs. S5 and S6 and Tables S3 and S4 shed light

on the potential epidemiological mechanisms associated with
these findings, showing that the increase in infections and deaths
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Area split based on local fraction of COVID-19 cases affected by
delays in contact tracing due to Excel error:

Fig. 2. Evolution of local COVID-19 incidence in areas with above median
versus areas with below median exposure to delays in contact tracing due to
the Excel error. For each of the 315 LTLA in England, we calculate the share
of positive COVID-19 tests taken between September 20 and September 27
that were referred to contact tracing with an unusual delay of 6 to 14 d due
to the Excel error. We create two equally sized groups of areas based on
whether they—by chance—experienced above median or below median ex-
posure to unusual delays in contract tracing. We plot the average incidence of
COVID-19 for each group by test date. We observe virtually identical pre-
treatment trends across groups but a substantive and persistent divergence in
COVID-19 spread at the onset of the period during which the Excel error oc-
curred, which is highlighted by the dashed lines; 90% CIs are displayed.

Additional COVID-19 infections
in 6-week period following Excel error

(per case traced with delay of 6-14 days)
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Fig. 3. Impact of delays in contact tracing on new COVID-19 infections and deaths. Difference-in-differences regression estimates (at level of LTLA) for the
average effect of each case referred to contact tracing with a delay of between 6 and 14 d on new infections per capita and new COVID-19 deaths per capita
in the 6 wk period following the Excel error. All regressions control for area fixed effects and date fixed effects, along with nonlinear local time trends in
pretreatment infection intensity as well as nonlinear trends in a host of over 50 area characteristics. Complete regression results are reported in SI Appendix,
Table S2; 90% CIs are displayed.
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was accompanied by an increase in the test positivity rate, a sharp
increase in number of tests performed and a worsening of the
quality of contact tracing. We further find that the effects are
robust i) to different ways of constructing the measure of delays
in contact tracing, ii) to the level of spatial disaggregation, in-
dicating no significant role of interregional spillover effects, iii)
to the exclusion of individual regions, iv) to alternative empirical
strategies such as one based on matching areas that had been
evolving highly similarly in terms of the pandemic development
prior to the data glitch, v) to alternative functional forms of the
estimated relationship (e.g., log-log specifications) that account
the nonlinear nature of infection dynamics differently, vi) to al-
ternative ways of conducting statistical inference, specifically,
randomization inference, and vii) we conduct empirically highly
conservative placebo tests (SI Appendix).
Across this set of analyses, our point estimates of the effect

imply that the specific failure of timely contact tracing due to the
Excel error is associated with between 126,836 (22.5% of all cases
in the 6-wk period following the discovery of the error) and
185,188 (32.8%) additional reported infections, and with between
1,521 (30.6% of all deaths) and 2,049 (41.2%) additional COVID-
19-related reported deaths (SI Appendix).

Discussion
Contact tracing has repeatedly attracted criticism that partly re-
flects a shortage of causal evidence for its effectiveness. Reliable
evaluations of public health interventions are in dire need because
novel policy measures can have unintended harmful consequences
(23). This study delivers a casual analysis, showcasing how empirical
research can help evaluate public health policies by exploiting
natural experiments. The findings complement the state of existing
correlational evidence: despite the multiplicity of challenges that
contact tracing faces in practice, this nonpharmaceutical interven-
tion can have a strong impact on the progression of a pandemic.
The estimated effect sizes are notable in light of the baseline delays

that test and trace programs face even in the absence of unusual
errors, such as the delay between the onset of illness and the testing
date or the time lag between specimen and reporting dates due
to test processing times. In the context under consideration, the
nontimely referral to contact tracing has likely contributed to
propelling England to a different stage of COVID-19 spread at
the onset of a second wave. Our findings should be viewed in the
specific context of England with a nationally centralized tracing
system. Due to the heterogeneity in how populations cooperate
with official contact tracing efforts, for example, we do not claim
generality of our estimated effect sizes for other countries. The
robust and quantitatively large effects estimated under conserva-
tive assumptions across our analyses suggest, however, that contact
tracing may be an even more effective tool to fight infectious
diseases than was previously thought.

Materials and Methods
Our baseline analyses leverage three sources of publicly available data: the
United Kingdom’s COVID-19 dashboard, statistics on the Test and Trace
program published by the NHS, and weekly data on deaths published by the
Office for National Statistics. We identify late referrals to contact tracing
that are likely due to the data glitch by exploiting the evolution of reported
cases numbers for a given specimen date across different reporting dates, as
well as a variety of other approaches detailed in the SI Appendix.

Data Availability. Previously published data were used for this work (various
sources of publicly available COVID-19 data as specified in the text). All data
and code are available in GitHub at https://bit.ly/3rFjnkp.
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