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During induction of trained immunity, monocytes and macrophages undergo a functional 
and transcriptional reprogramming toward increased activation. Important rewiring of 
cellular metabolism of the myeloid cells takes place during induction of trained immu-
nity, including a shift toward glycolysis induced through the mTOR pathway, as well as 
glutaminolysis and cholesterol synthesis. Subsequently, this leads to modulation of the 
function of epigenetic enzymes, resulting in important changes in chromatin architecture 
that enables increased gene transcription. However, in addition to the beneficial effects 
of trained immunity as a host defense mechanism, we hypothesize that trained immunity 
also plays a deleterious role in the induction and/or maintenance of autoimmune and 
autoinflammatory diseases if inappropriately activated.

Keywords: epigenetics, monocytes, immunometabolism, innate immune memory, rheumatoid arthritis, systemic 
lupus erythematosus, wegener’s granulomatosis, hyper ig-D syndroom

iNTRODUCTiON

Since the introduction of the term trained immunity for the non-specific memory of the innate 
immune system in 2011 (1), an increasing number of studies have investigated its role in homeo-
stasis and disease. Innate immune memory has been described in plants and non-vertebrates for 
a relatively long time, representing the immune adaptation in these species that lack an adap-
tive immune system (2). In vertebrates, it was firstly shown that NK cells possess a non-specific 
memory that contributes in the innate host defense (3, 4). Later also monocytes and macrophages 
were shown to have a non-specific memory (5, 6). When human monocytes were exposed in vitro 
with microbial components such as β-glucan of the Candida albicans cell wall or the Bacillus 
Calmette-Guérin (BCG) vaccine, and a week later restimulated with non-related stimuli, the 
capacity of cells to produce cytokines was increased compared with non-trained (naive) cells 
(3, 5). Moreover, when mice were challenged (or “trained”) with β-glucan or BCG in vivo, they 
showed lower mortality after lethal C. albicans or Staphyococcus aureus infections, a process that 
was largely dependent on the innate immune system (3, 5, 6). Moreover, in humans, BCG vaccina-
tion results in trained monocytes with increased responsiveness against microorganisms, which 
probably explains at least partly the lower mortality from a variety of infections in vaccinated 
children (3, 6–9).

There are a set of important characteristics that distinguish innate and adaptive immune memory 
processes. In case of the classical adaptive immune memory, a specific antigen is recognized and 
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specific T- and/or B-lymphocytes expand that specifically respond 
to that antigen. The breadth of needed responses is insured by gene 
recombination of V-D-J system. Upon reinfection, long-term 
memory cells will respond very specifically to the same antigen: 
thus, adaptive memory is both specific and enhanced, compared 
to the primary response. In contrast, the molecular substrate of 
trained immunity is epigenetically mediated, with genome-wide 
changes in histone marks and thus chromatin architecture play-
ing a major role in the change of the phenotype of monocytes 
and macrophages (6, 10). By stimulation of an innate immune 
cell (or its precursors) an enhanced non-specific immunological 
reaction will be evoked due to differences in which gene tran-
scription takes place due to changes in chromatin configuration 
(11). Innate immune memory (trained immunity) will thus evoke 
an increased response, but which is non-specific.

Also changes in cellular metabolism of trained monocytes and 
macrophages were shown to be a major important component 
of the trained immunity phenotype. Induction of glycolysis in 
an mTOR/HIF-1α-dependent manner is indispensible for the 
induction of trained immunity (12, 13), just as induction of 
glutamine metabolism that results in fumarate accumulation 
(14, 15). Interestingly, there is a tight link between metabolic and 
epigenetic changes that occur in cells (16). We have for example 
recently shown, that induction of glycolysis is essential for the 
induction of epigenetic changes seen in trained immunity. When 
glycolysis was inhibited also the induction of trained immunity 
by its epigenetic changes was inhibited (12, 13). How induction 
of glycolysis exactly leads to epigenetic changes is still unclear, but 
accumulation of acetyl-CoA has been suggested as a mechanism, 
inducing histone acetylation (11). Moreover, also accumulation of 
fumarate (one of the intermediates of the TCA cycle) was shown 
to induce trained immunity by inhibiting histone demethylases 
and therefore inducing epigenetic changes in human monocytes 
(14). Recently, we have shown that induction of the cholesterol 
synthesis pathway, which results in mevalonate accumulation, is 
also one of the contributors to the induction of epigenetic changes 
in trained immunity (17). However, this remains a rather new 
topic of research and more research has to be performed to bet-
ter understand the exact link between metabolism en epigenetics 
and its role in trained immunity.

Induction of trained immunity may be important for diseases 
characterized by defective function of innate immune responses. 
We have recently shown that the induction of trained immunity 
by β-glucan is able to counteract the epigenetic changes induced 
in monocytes in postsepsis immunoparalysis (18): this may 
represent a potential new therapy. However, trained immunity 
could also be the cause or play a role in maintaining disease 
activity in diseases characterized by excessive inflammation, 
although this needs to be investigated in future studies. In this 
review, we give an overview of literature that provides indica-
tions for the potential role of trained immunity in autoimmune 
and autoinflammatory diseases. We focus on the possibility 
that increased function of the myeloid cells in these conditions 
may be mediated by epigenetic rewiring, and thus possibly a 
trained immunity phenotype. Another possible mechanism how 
monocytes of patients with autoimmune and autoinflammatory 
diseases are more responsive is by specific genetic variations: 

this hypothesis has been extensively discussed in other reviews, 
and it will therefore be not presented here. Importantly, adaptive 
memory responses are also very well known to play a crucial 
part in autoimmune diseases. However, the role of the adaptive 
immune system in these diseases has been discussed elsewhere 
in very good recent review articles (19–21) and was therefore not 
included in this review.

RHeUMATOiD ARTHRiTiS

Rheumatoid arthritis (RA) is one of the most common inflam-
matory arthritis. The pathogenesis of this autoimmune disease 
is complex and remains partially elusive; it is partly genetically 
regulated, but environmental factors also play a role, finally 
leading to synovial inflammation and destruction of bone and 
cartilage (22). Initially, the role of the adaptive immune system 
was mainly studied, as the loss of self tolerance of CD4+ T lym-
phocytes was considered the main defect in RA (23). However, 
this paradigm is changing and nowadays the focus has also 
shifted to the role of the innate immune system in RA (24–26). 
Innate immune cells have been defined as being the cause of 
the tissue-damaging inflammatory lesions, with macrophages 
as main producers of proinflammatory cytokines. Macrophages 
are considered the cause of cartilage and bone destruction 
by inducing inflammation and regulating osteoclast activity, 
e.g., by inducing RANKL production (27–30). The number 
of infiltrated macrophages seems to negatively correlate with 
response to therapy and the degree of joint erosion (31, 32) 
and patients with highly active RA show a greater amount of 
M1-type macrophages in the synovial fluid compared to those 
with lower disease scores (33). Targeting the cytokines produced 
by macrophages [e.g., tumor necrosis factor α (TNFα)] has been 
proven to be a very successful treatment (34).

When circulating monocytes from RA patients were ana-
lyzed, gene expression of several proinflammatory cytokines 
was increased (35, 36). CD14+ monocytes showed an increased 
expression of CD11b, and when ex vivo stimulated, increased 
production of IL-1β and IL-6 is observed (37). Interestingly, 
PI3K/mTOR and MAPK signaling pathways are also activated in 
RA monocytes (36, 38), and inhibiting mTOR reduced synovial 
osteoclast formation and protected against local bone erosions 
and cartilage loss (39, 40). In addition, epigenetic changes have 
been suggested to play a role, although no genome wide epige-
netic analyses in monocytes/macrophages have been performed. 
In RA synovial tissue the HAT/HDAC balance is moved into 
the direction of histone acetylation (41). HDAC1 and HDAC2 
activity has been specifically analyzed in synovial fibroblasts 
(not in synovial macrophages), but no difference was found 
(42). Interestingly, etanercept and adalimumab downregulate 
trimetylation of H3K4, H3K27, H3K36, and H3K79, as well 
as acetylation of histone 3 and 4 at the promoter site of CCL2 
(MCP-1) in monocytes which correlated with RA disease activity 
(43). In contrast, a recent study did not identify an increase in 
H3K4me3 at TNFA and IL6 genes of circulating monocytes in 
RA patients (44). In addition, the metabolic changes that occur  
in trained immunity also occur in macrophages from RA patients: 
upon stimulation with LPS higher levels of ATP are present in the 
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TAble 1 | Comparison of H3K4me3-related GO-terms in β-trained monocytes 
and monocytes of SLE patients.

Go-term β-Glucan-induced  
trained immunity

Sle

p-value p-value

M1 Sugar binding 3.9E−2 0.72
M2 Carboxylic acid metabolic process 7.9E−5 4.5E−2

Cellular ketone metabolic process 1.3E−4 0.32
Oxidoreductase 1.4E−3 4.3E−2
Lipid metabolic process 5.4E−6 3.2E−3

M3 Signal transducer activity 2.4E−3 3.7E−2
Receptor activity 2.1E−2 1.2E−2

M4 Cofactor binding 3.5E−3 0.16
M5 Immune response 3.00E−19 3.7E−2

Response to wounding 5.00E−17 1.3E−2
Chemotaxis 5.2E−7 0.79
Cytokine activity 8.00E−12 5.3E−2
Chemokine activity 3.7E−9 9.3E−2

H3K4me3 modulations were related to gene promoter site. Related GO-terms of the 
major epigenetically modulated promoter sites in in vitro β-glucan-trained monocytes, 
defined as M clusters (10), were compared with the same GO-terms in monocytes of 
SLE patients (78) and adjusted p-values are shown.
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patient-derived macrophages (45). Glycolysis is also upregulated, 
as are rate-limiting enzymes (e.g., PKM2, PFKFB3, and HK2) and 
the glucose transporters GLUT1 and GLUT3 (46). Functionally, 
glucose uptake and oxygen consumption are increased (46), 
whereas accumulation of glutamate, succinate, and fumarate are 
present as signs of a highly metabolic active state of an RA proin-
flammatory macrophage (47, 48), similar to a trained immunity 
phenotype (12, 14).

Hence, multiple similarities exist between tissue macrophages 
or circulating monocytes in RA and trained monocytes or 
macrophages. Interestingly, in RA patients an increased risk for 
atherosclerotic disease is seen (49), which corresponds with the 
hypothesis that trained macrophages contribute to the develop-
ment of atherosclerotic lesions (50). How the training in RA is 
induced remains unknown, although several danger-associated 
molecular patterns (DAMPs), that could be released by local 
sterile inflammation and tissue damage in the joint have been 
proposed to induce trained immunity (51), just as the increased 
production of IL-32 (52). Future studies to investigate these 
mechanisms are warranted.

SYSTeMiC lUPUS eRYTHeMATOSUS 
(Sle)

In SLE several immunological abnormalities are present. The 
production of a number of antinuclear antibodies is the most 
prominent and well-known process, and they are used for 
diagnostic purposes. However, monocytes and macrophages 
also play a prominent role in the disease activity, which increas-
ingly becomes a topic of research (53–55). In SLE patients, 
macrophages are characterized by a proinflammatory status and 
show an increased production of proinflammatory cytokines, 
such as IFNα, TNFα, and IL-6 (56–58). CD16+ monocytes 
express more CD80, CD86, HLA-DR, and CX3CR1 (59) and also 
expression data of CD14+ and non-classical monocytes demon-
strate a proinflammatory phenotype (60–64). Inflammasome 
and interferon-regulated genes that were regulated by IRF1 (65), 
with IFNα as one of the main mediators (66–70), are induced 
in SLE monocytes. Moreover, monocytes show an improved 
antigen presentation capacity and are easily activated (71).  
It is therefore suggested that monocytes and macrophages are 
better capable of presenting self-antigens to autoreactive T cells 
and therefore inducing or maintaining disease activity (56). 
Interestingly, a SNP in the IL1B gene that was associated with 
lower IL-1β production upon LPS stimulation was protective for 
SLE (72).

Epigenetic modulation in monocytes clearly plays a role 
in SLE. Histones around the TNFA genomic region are highly 
acetylated in SLE monoyctes resembling high accessibility for 
transcription (73). Also whole-genome assessment of histone 
H4 of monocytes reveals hyperacetylation (74–76) and also at 
enhancers of monocytes SLE-specific alterations for H3K4me3 
and H3K27me3 could be determined (77). Whole-genome 
epigenetic analysis of H3K4me3 of primary monocytes of SLE 
patients reveals a strong association with inflammation and 
immune responses related genes (78, 79). When H3K4me3 
modulations were related to gene promoter site, and these were 

compared with the major epigenetically modulated promoter 
sites in in  vitro β-glucan-trained monocytes (10), the M2 and 
M3 clusters (defined in β-glucan training) were also significantly 
modulated in SLE monocytes (Table  1). In another article in 
which monocytes from six SLE patients were compared with 
six controls, 136,573 DNase hypersensitivity sites (DHS) were 
defined. Of these DHS, 4,583 showed SLE-specific changes 
for H3K4me3 and 1,714 for H3K27me3 at promoter sites.  
At enhancer site theses numbers were 12,109 and 3,046, respec-
tively (55). Transcription factor binding motifs analysis revealed 
PU.1 and CEBPB as main transcription factors related to the 
H3K4me3 induced genomic areas, just as seen for β-glucan-
induced training (10). Also BLIMP1 and interferon-related 
transcription factors as STAT1/6, and IRF1/4/8 were defined (55).

In trained immunity induced by β-glucan and also by BCG, 
it has been shown that important changes in cellular metabolism 
are induced, and that changing concentrations of metabolites play 
a role in the modulation of epigenetic rewiring (10, 12–14).

In immune cells from SLE patients, metabolic changes are 
present and might influence the epigenetic landscape as well 
(80). SAMs are cofactors in DNA and histone methyltranferase 
reactions and in T  cells in SLE SAMs have been shown to be 
modulated and influence the epigenetic landscape, both at DNA 
(81, 82) and histone methylation level (83, 84). Histone dem-
ethylases need α-ketogluterate and Fe2+ as cofactors, which were 
shown to be modulated in T  cells of SLE patients (84). Acetyl 
CoA functions as an acetyl donor for histone acetyl transferases. 
Histone acetylation is defective in SLE, and when in mice in an 
SLE model HDACs were inhibited, this showed a positive effect 
on disease activity and nephritis (85–87).

Finally, also activation of the mTOR pathway is a marker of 
disease and of onset of disease in SLE. The mTOR pathway is 
activated in many immune cells, among others also in mono-
cytes (88–90). Inhibition of mTOR with rapamycin has shown 
beneficial effects on several outcome measures, but monocytes/
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macrophages were unfortunately not part of the analysis 
[reviewed in Ref. (88)].

The modulation of monocytes from the peripheral blood could 
be due to changes induced in the bone marrow. Gene expression 
analysis of mononuclear bone marrow cells from SLE patients 
reveals that ERK, JNK, and p38 MAP kinases and STAT3 are sig-
nificantly upregulated (91). As anti-dsDNA antibodies can bind 
to TLR4 and activate the NLRP3 inflammasome, it is tempting 
to speculate whether they might be the factor inducing trained 
immunity in SLE patients (92, 93).

SJÖGReN’S SYNDROMe (SS)

Sjögren’s syndrome is a chronic autoimmune disease character-
ized by salivary and lacrimal gland dysfunction (94). Also in the 
case of SS, clues can be found in literature to suggest that a trained 
immunity profile may characterize its myeloid cells. Immune 
cell infiltrates of the salivary glands in SS mainly contain mac-
rophages and DCs with increased IL-12 and IL-18 expression and 
depletion of macrophages in the gland tissue improved disease 
symptoms in a mouse model (95–97). When peripheral CD14+ 
monocytes were stimulated with apoptotic cells, they showed an 
increased production of TNFα or IL-1β and a decreased produc-
tion of IL-10, thus displaying a proinflammatory profile (98, 99). 
Also when monocyte-derived dendritic cells were stimulated 
with LPS a clear proinflammatory profile was seen, with among 
others higher levels of TNFα, MIG, IFNα, IL-6, IL-12, MIP1α/β, 
MCP1 compared to healthy volunteers (100). In non-stimulated 
circulating monocytes, type I IFN-related genes were higher 
expressed compared to control monocytes, which correlated 
with the induction of B-cell activating factor (BAFF) (101–103). 
When monocytes were stimulated with IFNγ, increased IL-6 and 
BAFF production was seen as well (104). However, others have 
reported different effects, with decreased cytokine production 
upon PPD stimulation of PBMCs isolated from SS patients 
(105). Furthermore, NFκB activation is promoted by reduced 
IκBα expression in Sjögren monocytes (106). Increased STAT1 
is seen in SS monocytes (107), similar to constitutive STAT5 
activation (108).

No epigenetic assessment of monocytes from SS patients has 
been performed, apart from increased expression of miRNA 
146a and 181a in PBMCs (109–113), and miR-34b-3p, miR-
4701-5p, miR-609, miR-300, miR-3162-3p, and miR-877-3p 
upregulation in monocytes. These miRNAs collectively suppress 
TGFβ signaling, as opposed to proinflammatory interleukin-12 
and Toll-like receptor/NFκB pathways (114). Analysis of cel-
lular metabolic processes and induction of mTOR activation 
in monocytes/macrophages in SS has not been performed, but 
treatment with a rapamycin nanoparticle reduced destruction of 
lacrimal glands in a mouse model (115).

beHÇeT’S DiSeASe (bD)

Behçet’s disease is an inflammatory disorder that is characterized 
by oral en genital lesions, arthritis, and uveitis. The exact cause 
of BD is unknown (116). Myeloid cells play an important role in 
Behçet’s disease activity, as granulocyte and monocyte adsorption 

apheresis reduced disease symptoms in two patients (117). 
Furthermore, peripheral monocytes of BD patients are activated 
and produce more proinflammatory cytokines, which might be 
a first clue for the presence of a trained immunity phenotype 
in monocytes of BD patients (118–122). The P2X7 receptor, 
involved in the activation of IL-1β production, has an increased 
expression on monocytes in BD, which is regulated by TNFα 
(123), while the expression of TLR2 and TLR4 is also upregulated 
(124, 125). The response of CD14+ monocytes from BD patients 
to IFNγ showed increased production of CXCL9 and CXCL10; 
however, the CXCL10 production might be increased due to 
dysregulated posttranslational regulation (126). A whole-genome 
DNA methylation profiling of monocytes revealed 383 CpG sites 
to be differently regulated compared to healthy controls (and only 
123 were found in CD4+ T cells), with cytoskeleton modulation 
as one of the main regulated pathways (127).

SYSTeMiC SCleROSiS (SSc)

Systemic sclerosis is a complex autoimmune disease with exten-
sive fibrosis, vascular alterations and immune activation among 
its principal features (128). Also in SSc the monocyte compart-
ment appears to play an important role. CD14+ monocytes 
levels are increased in peripheral blood and in skin infiltrates 
(129, 130). An increased type I IFN signature was observed 
in early and definite SSc patient monocytes, which correlated 
with increased BAFF mRNA expression. Production of other 
cytokines, chemokines and their receptors (among others IL6, 
TNFα, and TGFβ) is upregulated as well (131–145). Monocytes 
of SSc patients produce more reactive oxygen species (146, 147), 
whereas nitric oxide production was decreased (148). SSc PBMCs 
produce more IL-8 and CCL18 when stimulated with IgG (149). 
In the vascular alterations present in SSc patients, monocytes 
appear to play a role as they can differentiate into fibroblast-like 
cells and produce extracellular matrix (modulating) proteins, 
resulting in a proangiogenic but impaired vasculogenic envi-
ronment (132, 150–156). The macrophage activation markers 
CD163 and CD204 are more expressed in SSc (129, 132), which 
by some authors has been linked to a M2 macrophage pheno-
type with anti-inflammatory and profibrotic features (157). The 
alveolar macrophages in SSc patients with pulmonary fibrosis 
have a strong M2 phenotype with expression of CCL17, CCL18, 
and CCL22 and increased activation of STAT 3 (158). Increased 
TNFα production by these cells was also reported (159).

On the level of epigenetic profiles, hardly any data are avail-
able in monocytes or macrophages from SSc patients. The only 
data available in monocytes show that histone demethylation 
plays a role in the production of tissue inhibitor of metallopro-
teinases 1 in the presence of TLR8 stimulation (160). However, 
given the broad amount of data present in the literature, an 
epigenetic analysis on circulating monocytes in SSc would be 
a logical next step.

weGeNeR’S GRANUlOMATOSiS (wG)

Wegener’s granulomatosis is a systemic inflammatory disorder 
characterized by vasculitis of the small- and medium-size vessels 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


5

Arts et al. TRIM in Diseases

Frontiers in Immunology | www.frontiersin.org February 2018 | Volume 9 | Article 298

in many organs. The exact cause remains unknown, but mono-
cytes have been suggested to play a role in disease activity (161).

Monocytes of WG patients are activated, as shown by 
increased CD11b and CD64 expression, and increased concen-
trations of neopterin and IL-6 are found in the serum (162). 
The expression of adhesion molecules is increased on mono-
cytes from WG patients (163). Interestingly, anti-PR3 induces 
cytokine production by monocytes and it was shown that when 
monocytes are primed with ANCA or PR3 antibodies, their 
responses to LPS and LTA stimulation increase, with more 
TNFα, IL-6 and IL-8 production (164) and increased expres-
sion of CD14, CD18, and several PRRs (165, 166). Monocytes 
of WG patients that did not respond to methotrexate showed 
increased intracellular levels of IL-12 and TNFα (but no IL-8) 
that normalized after cyclophosphamide treatment (167). Also 
IL-8, IL-12, and MCP-1 production was increased in WG mono-
cytes (166, 168–170). In contrast, other studies have shown that 
monocytes from WG patients are shown to produce less reactive 
oxygen species and have impaired phagocytosis (171) and in one 
report, monocytes of WG patients were stimulated with LPS, 
they produced less TNFα compared to healthy controls (172). 
No studies on epigenetic modulation of cellular metabolism 
of monocytes in WG are available. In order to assess whether 
a trained immunity phenotype is indeed responsible for the 
functional changes observed, such studies should be performed.

SARCOiDOSiS

Sarcoidosis is a complex systemic granulomatous disorder of 
unknown etiology. Circulating monocytes op sarcoidosis patients 
produce less IL-10 (173), express more CD16+ (174, 175), BAFF 
(166), TLR2 and TLR4 (176), IL-2R (177), adhesion molecules 
(178), produce more proinflammatory cytokines (176, 179–181) 
and oxygen radicals (182), and have increased phagocytic activ-
ity (183), thus showing an increased activated phenotype (184). 
Moreover, monocytes of sarcoidosis patients are more likely to 
form giant cells (185). Fibrin, which is newly formed in granulo-
mas, is able to induce IL-1β production and might therefore serve 
as an inductor of trained immunity (186).

RNA-sequencing analysis of monocytes of sarcoidosis patients 
revealed several differentially expressed genes, with enrichment 
of ribosome, phagocytosis, lysosome, proteasome, oxidative 
phosphorylation, and metabolic pathways are the main pathways 
(187). No epigenetic analysis of monocytes in sarcoidosis has 
been done so far (188).

TYPe 1 DiAbeTeS MelliTUS (T1DM)

Type 1 diabetes mellitus is an important autoimmune disease 
resulting in profound defects in glucose metabolism. The exact 
underlying mechanism is unknown, but autoimmune destruc-
tion of β-cells of the pancreas is the cause of insulin deficiency 
(189). Monocytes and macrophages are thought to play a key 
role in the development of T1DM (190, 191). When peripheral 
blood monocytes from recent-onset T1DM patients were 
assessed, more CD14+CD16+ monocytes were found, which was 
negatively correlated with insulin and C-peptide serum levels. 

Furthermore, these monocytes showed higher expression of 
HLA-DR and CD86, and showed an activated proinflammatory 
phenotype (192–196). In recent-onset T1DM patients, plasma 
TNFα levels were higher which correlated with CD14 expression 
(197). However, another study showed decreased total number 
of monocytes in T1DM (198). Serum levels of MIF and MCP-1 
are also increased (199). Prior to development of T1DM, children 
show an IFN transcriptional signature in PBMCs, which might 
be a result of a recent upper respiratory infection. Increased 
expression of SIGLEC-1 on CD14+ monocytes was also found 
(200). Furthermore, it was shown that IL-1β plays a central role 
in the inflammation seen in T1DM (201) and that during the 
development of T1DM TLR-induced IL-1β and IL-6 produc-
tion from monocytes is enhanced (202). Importantly, inhibiting 
IL-1β production or IL-1β signaling can improve T1DM outcome 
(203–206). In contrast, monocyte-derived DCs did not appear to 
be affected in recent-onset T1DM (191).

Epigenetics has been proposed to play a role in T1DM as well 
(207). Assessment of DNA methylation profiles of 32 T1DM 
patients versus 31 healthy individuals revealed 153 hypometh-
ylated and 225 hypermethylated loci in whole blood, and, 
respectively, 155 and 247 in monocytes. However, whether these 
are causative to the disease or a consequence of the pathological 
process remains unclear (208). In another study methylation vari-
able positions were assessed in monocytes prior to development 
of T1DM: 132 positions were identified and associated with a 
gene, with important immunology-related genes as HLA-DQB1, 
HLA-DRB1, NFKB1A, and TNF as major examples (209). 
Also important histone modifications were seen in H3K9ac in 
monocytes, but also these were more likely to be induced after 
development of the disease (210). However, in one study, H3K9ac 
at HLA-DRB1 and HLA-DQB1 of monocytes was shown to cor-
relate with T1DM susceptibility prior to disease (211). Differences 
in H3K9me3 in inflammatory and autoimmune-related pathways 
were found in lymphocytes of T1DM patients, but no differences 
were found in monocytes (212).

Cellular metabolism of monocytes in T1DM prior to disease 
onset is still poorly known. Only one study revealed changes in 
the transcriptional signature of cell metabolism, cell survival, and 
oxidative stress in monocytes of recent-onset DM1. Interestingly, 
one of the main induced genes was HIF1A (213), although mTOR 
does not appear among the significantly differently regulated 
genes.

Lastly, as BCG is able to induce trained immunity, it could 
be expected that BCG-vaccinated children are at higher risk to 
develop T1DM. However, in an observational trial no such cor-
relation has been found (214, 215). Interestingly, in a randomized 
controlled trial, BCG was suggested to have a beneficial effect on 
insulin production, as induction of TNF production resulted in 
reduced autoimmune phenotype of innate immune cells and 
induction of Tregs (216, 217).

AUTOiNFlAMMATORY DiSORDeRS

Autoinflammatory disorders or periodic fever syndromes 
consist of a set of diseases that are characterized by periodic 
episodes of fever and inflammation. Common symptoms 
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are joint pain, rash, abdominal pain, and long-term disease 
can result in amyloidosis. These diseases are not induced by 
autoantibodies or autoreactive T-cells but are the result of a 
hyperfunctional innate immune system, which is due to genetic 
defects. The familial autoinflammatory syndromes are generally 
rare, and the pathogenesis is not well understood for some of 
them (218). Here, we argue that trained immunity could be a 
likely contributor in these diseases.

Tumor necrosis factor receptor-associated periodic syndrome 
(TRAPS) is a multisystemic autoinflammatory condition associ-
ated with heterozygous TNFRSF1A mutations, presenting with 
a variety of clinical symptoms, many of which still unexplained. 
TRAPS monocytes shown an inflammatory baseline state, with 
enhanced IL1B and IL1R1 gene expression, also in non-active 
disease, whereas IFN and TGFβ are downregulated (219, 220). 
Also CD16 expression is upregulated (221) and MAPK can be 
spontaneously activated (220). Interestingly, a TRAPS patient 
with a monocytic fasciitis has been successfully treated with 
tacrolimus (an mTOR inhibitor) (222).

Cryopyrin-associated periodic syndromes (CAPS) are 
caused by a mutation in NLRP3 inflammasome, resulting in 
increased IL-1β and IL-18 production, but impaired production 
of the anti-inflammatory IL-6 and IL-1RA cytokines (223, 224). 
Interestingly, although the genetic defect is the main cause of 
these abnormalities, epigenetic analysis of CAPS monocytes 
revealed that DNA methylation was also affected, resulting at 
increased expression of inflammasome-related genes. When 
CAPS patients were treated with IL-1 neutralizing therapies, 
their methylation profile reversed toward that of healthy con-
trols (225).

In familial Mediterranean fever (FMF), ex vivo LPS-stimulated 
PBMCs and monocytes produce more IL-1α and β, IL-6, IL-8, 
IL-12, IL-18, and TNFα, and in non-stimulated PBMCs higher 
production of IL-6 and TNFα was found (226–230), and also 
expression of CD11b was increased (231).

Hyper-IgD syndrome (HIDS) is an autoinflammatory dis-
order caused by a mutation in mevalonate kinase (232, 233), 
in which patients experience periodic attacks of sterile inflam-
mation with symptoms such as fever, skin lesions, lymphad-
enopathy, and arthralgia (234). Interestingly, PBMCs of HIDS 
patients produce more cytokines in unstimulated as well as 
stimulated state and the IgD itself was able to induce cytokine 
production (235–238). In a whole-blood transcriptome analy-
sis several glycolysis-related genes were higher expressed in 
HIDS patients, which decreased after canakinumab treatment 
(239). In addition, we recently have shown broad genome-
wide changes in the H3K27Ac marker in monocytes of HIDS 
patients, which are due to mevalonate accumulation and are 
believed to express a trained immunity profile (Bekkering et al., 
2018 Cell in press).

The common factor in these autoinflammatory syndromes 
is overproduction of IL-1β, which is one of the reasons why 
anti-IL-1 therapeutic approaches are successful (240). As IL-1β 
is considered as a causal factor and plausibly plays a role in 
maintaining disease, accumulating evidence suggests that IL-1β 
is an important inducer of trained immunity. Interestingly, old 
studies have shown that injection of IL-1β in mice prevented 

death from subsequent bacterial and fungal infections (241, 
242). It is tempting to hypothesize that IL-1β induces trained 
immunity and prevent from the subsequent infections, by epi-
genetically modifying monocytes and macrophages resulting in 
more proinflammatory immune cells. To further substantiate 
this hypothesis, we have recently performed experiments in 
which human monocytes are ex vivo trained with IL-1β. This 
indeed resulted in trained monocytes that produced more IL-6 
and TNFα upon restimulation with LPS, and also increased 
H3K4me3 occupancy at the promoters of IL6 and TNFA 
was observed (Arts et  al., Cell Host Microbe 2018, in press). 
While IL-1 can induce beneficial effects in infections through 
induction of trained immunity, a negative consequence could 
be induction of overinflammation, which might result in an 
autoinflammatory disease. This thus opens a potential new field 
of research, where trained immunity in these autoinflammatory 
diseases should be further evaluated.

CHRONiC GRANUlOMATOUS  
DiSeASe (CGD)

Chronic granulomatous disease is an inherited immunological 
disorder, in which intracellular superoxide radical production 
is deficient. Although CGD is an immunodeficiency, it also has 
autoinflammatory characteristics, which is why it is discussed 
here as well. Normally CGD presents in the first years of life 
with severe recurrent bacterial and fungal infections, but it can 
also present later in life (243). CGD phagocytes are impaired 
in destroying phagocytozed microorganisms, rendering the 
patients susceptible to bacterial and fungal infections. Besides 
this immunodeficiency, CGD patients suffer from various auto 
inflammatory symptoms, such as granuloma formation and 
Crohn-like colitis (244). Also monocytes from CGD patients 
display a proinflammatory phenotype with increased secre-
tion of inflammasome-mediated cytokines (IL-1β, IL-18) 
possibly due the inflammasome triggering effect of ROS, but 
also increases of other cytokines and chemokines, and NKκB 
and ERK expression upon stimulation (245–247). Circulating 
monocytes display an inflammatory phenotype with more 
CD16+ expression and more intracellular IL-1β and TNFα 
(247). However, others have shown lower TNFα production 
by CGD monocytes (248). Incubation of CGD monocytes with 
rapamycin (an mTOR inhibitor) counterbalanced the preactiva-
tion state of monocytes ex vivo (247), hence implicating a role 
for mTOR. IL-1 inhibition reduced inflammation in humans 
and reduced disease activity of, e.g., CGD-associated colitis, 
possibly also by restoring autophagy (249, 250). Interestingly, 
injection of fungal β-glucan results in hyperinflammation and 
necrosis in CGD mice associated with increased IL-1β, IL-6, and 
TNFα production (251–253).

Metabolically also clear differences were found in CGD mono-
cytes. Several metabolites of the tryptophan pathway accumulate 
and indoleamine 2,3-dioxygenase is activated (254), just as seen 
in monocytes stimulated with LPS or IFNγ (255). CGD mono-
cytes have been shown to higher acidification (256), which might 
be the result of increased lactate production.
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TAble 2 | Overview of trained immunity-related patterns in autoimmune and autoinflammatory diseases.

Cytokines and chemokines Metabolism of immune cells epigenetic marks mTOR signaling Others

Rheumatoid 
arthritis

Circulating monocytes have  
increased expression of  
proinflammatory cytokines (35, 36)
Ex vivo-stimulated monocytes  
produce more IL-1β and IL-6 (37)

Higher ATP levels upon LPS  
stimulation of macrophages (45)
Upregulated glycolysis (46)
Increased oxygen consumption (46)
Accumulation of succinate in 
macrophages (47)
Accumulation of succinate, fumarate, 
glutamate in synovial fluid (48)

H3K4me3 at TNFA and IL6 is  
not induced in monocytes (44)

PI3K/mTOR signaling pathway 
and MAPK are activated in RA 
monocytes (36, 38)

Increased CD11b expression on  
CD14 circulating monocytes (37)

SLE Cirulating monocytes produce more 
proinflammatory cytokines (56–58)
SNP in the IL1B gene was protective  
for SLE (72).

No studies specific on monocytes Histones around TNFA are highly 
acetylated in monoyctes (73)
histone H4 of monocytes is 
hyperacetylated (74–76)
H3K4me3 of SLE monocytes are 
associated with inflammation and 
immune response-related genes  
(78, 79)
SLE-specific H3K4me3 and 
H3K27me3 (enhancer)  
modifications (55, 77)

Activated mTOR pathway in 
monocytes/macorphages (88–90)
Rapamycin inhibition improves 
outcome (88)

CD16+ monocytes express more CD80, 
CD86, HLA-DR and CX3CR1 (59)
CD14+ and non-classical monocytes 
display a proinflammatory phenotype 
(60–64)
Inflammasome and interferon-
regulated genes are induced in 
moncytes (65–70)
monocytes show an improved antigen 
presentation capacity (71)
ERK, JNK, and p38 MAP kinases  
and STAT3 are significantly upregula ted 
in mononuclear bone marrow  
cells (91).

Sjögren CD14+ monocytes stimulated with  
apoptotic cells show increased TNFα  
and IL-1β, and decreased IL-10  
production (98, 99).
Monocyte-derived DCs produce more 
proinflammatory cytokines (100)
Higher expression of IFN I-related genes,  
which correlated with BAFF (101–103)
IFNγ-stimulated monocytes produce  
more IL-6 and BAFF (104)

? Several miRNAs are upregulated  
in monocytes (114)

? NFκB activation is promoted by reduced 
IκBα expression in monocytes (106)
Increased STAT1 activation (107)
Constitutive STAT5 activation (108)

Behçet’s  
disease

Peripheral monocytes are activated  
and produce more proinflammatory  
cytokines (118–122)
Increased production of CXCL9 and  
10 upon IFNγ stimulation (126).

? DNA methylation profiling  
of monocytes revealed 383  
CpG sites to be differently  
regulated in monocytes (127)

? Increased P2X7 receptor (123),  
and TLR2 and 4 expression (124, 125)

Systemic Monocytes display an increased IFN  
type I signature, but also other cytokines, 
chemokines and their receptors are  
upregulated (131–145)
A SNP in TLR2, which results in increased 
production of TNFα and IL-6 of monocytes,  
was associated with SSc (257)

? ? ? Monocytes produce more ROS  
(146, 147), whereas NO production  
is decreased (148)
Increased expression of CD163  
and CD204 (129, 132)

(Continued )

7

A
rts et al.

TR
IM

 in D
iseases

Frontiers in Im
m

unology | w
w

w
.frontiersin.org

February 2018 | Volum
e 9 | A

rticle 298

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
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Wegener’s 
granulomatosis

Increased IL-6 expression (162)
Increased production of several  
proinflammatory cytokines  
(164, 166, 168–170)

? ? ? Increased CD11b and CD64 expression 
(162) and CD14, CD18, and several  
PRRs (165, 166)
Increased expression of adhesion 
molecules (163)

Sarcoidosis Higher production of proinflammatory  
cytokines (176, 179–181)

RNA-sequencing of monocytes 
shows enrichment of oxidative 
phosphorylation and metabolic 
pathways (187)

? ? Higher expression of CD14+CD16+  
(174, 175), BAFF (166), TLR2 and 4 (176), 
IL-2R (177), adhesion molecules (178)
Higher production of oxygen radicals 
(182) and increased phagocytic activity 
(183)
More likely to form giant cells (185)

T1DM Higher plasma levels of TNF, MCP-1,  
and MIF (197, 199), and TLR-induced  
IL-1β and IL-6 production by monocytes is  
increased (200–202). IL-1β inhibition  
improves T1DM outcome (203–206)

Gene expression of recent-onset  
T1DM monocytes shows signature 
with cellular metabolism and  
oxidative stress as main pathways,  
and with HIF1A among the induced 
genes (213)

Several DNA hypo and 
hypermethylated loci were  
defined in T1DM monocytes  
(208, 209). H3K9ac marks are 
correlated with T1DM (210, 211)

? More CD14 + CD16 + monocytes in 
recent-onset T1DM patients, with higher 
HLA-DR and CD86 expression and 
proinflammatory phenotype (192–196).

TRAPS Enhanced IL1B and IL1R1, and decreased  
IFN and TGFB expression (219, 220)

? ? Monocytic fasciitis successfully 
treated with tacrolimus (222)

Upregulated CD16 expression (221)
Spontaneous MAKP activation (220)

CAPS Increased IL-1β and IL-18 production,  
Production of Il-6 and IL-1RA appears  
to be impaired (223, 224)

DNA methylation was affected, 
resulting at increased expression of 
inflammasome-related genes (225)

? ? ?

FMF LPS-stimulated PBMCs and monocytes  
produce more IL-1α and β and non- 
stimulated PBMCs produce more of IL-6  
and TNFα (226–228)

? ? ? Higher expression of CD11b (231)

HIDS PBMCs produce more cytokines in  
unstimulated or stimulated state (235–238)

? ? ? ?

CGD Monocytes display a proinflammatory  
phenotype with increased secretion of IL-1β  
and IL-18, but also other cytokines and 
chemokines (245–247)
More IL-1β and TNFα expression (247)

Metabolites of the tryptophan pathway 
accumulate and  
indoleamine 2,3-dioxygenase  
(IDO) is activated (254)
Monocytes show higher  
acidification (256)

? Incubation of monocytes with 
rapamycin counterbalanced  
the preactivation state (247)

Increased NK-κB and ERK expression 
upon stimulation (246, 247)
More CD16+ expression (247)
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CONClUSiON

In this review, we present an overview of the data supporting 
the concept that monocytes from patients with several autoim-
mune and autoinflammatory diseases display features consistent 
with a trained immunity phenotype. The phenotype of a trained 
monocyte has been defined with characteristics as (1) increased 
cytokine production, (2) changes in cellular metabolism (mainly 
increased glycolysis and lactate production), and (3) epigenetic 
rewiring (Table 2). Trained immunity could serve a role in the 
initiation of the disease and in the maintenance or aggravation 
of the symptoms. In the case of disease initiation, a genetic or 
environmental factor (or combinations of both) would induce 
trained monocytes/macrophages that initiate the disease. In the 
case of disease progression, monocytes/macrophages become 
trained and are therefore easier activated, which would result in 
the maintenance or deterioration of disease symptoms. This is an 
important distinction to take into account, as different experi-
mental approaches would apply.

By providing a molecular mechanism in the described diseases 
in terms of trained immunity, we inherently describe potential 
novel therapies. For certain components of the metabolic 
pathways and epigenetic pathways described to be important 
for trained immunity, specific and non-specific inhibitors are 
already available and new ones are being developed. We have 
shown before that by inhibiting specific metabolic pathways or 
by specifically inhibiting certain epigenetic modulating enzymes, 

the induction of trained immunity can be counteracted (12–15). 
Hence, by identifying the specific trained immunity pathways that 
play a role in the induction and progression of disease activity 
in these autoinflammatory and autoimmune diseases, it is hoped 
that novel targeted immunotherapies will be developed.

However, all data presented here are circumstantial and do 
not prove a causal relation between the disease symptoms and 
monocyte function. Therefore, specifically applied experiments 
on the role of trained immunity in these diseases are essential to 
further unravel the role of trained immunity. By elucidating the 
potential role of trained immunity in these (but supposedly also 
other) diseases, new steps can be made in better understanding 
the pathophysiology of these diseases. Even more importantly, 
this could potentially lead to new approaches for therapeutic 
intervention in these diseases.
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