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Abstract

Genetic association studies of child health outcomes often employ family‐based
study designs. One of the most popular family‐based designs is the case–parent
trio design that considers the smallest possible nuclear family consisting of two

parents and their affected child. This trio design is particularly advantageous for

studying relatively rare disorders because it is less prone to type 1 error inflation

due to population stratification compared to population‐based study designs (e.g.,

case–control studies). However, obtaining genetic data from both parents is

difficult, from a practical perspective, and many large studies predominantly

measure genetic variants in mother–child dyads. While some statistical methods

for analyzing parent‐child dyad data (most commonly involving mother–child
pairs) exist, it is not clear if they provide the same advantage as trio methods in

protecting against population stratification, or if a specific dyad design (e.g.,

case–mother dyads vs. case–mother/control–mother dyads) is more advanta-

geous. In this article, we review existing statistical methods for analyzing genome‐
wide marker data on dyads and perform extensive simulation experiments to

benchmark their type I errors and statistical power under different scenarios. We

extend our evaluation to existing methods for analyzing a combination of

case–parent trios and dyads together. We apply these methods on genotyped and

imputed data from multiethnic mother–child pairs only, case–parent trios only or
combinations of both dyads and trios from the Gene, Environment Association

Studies consortium (GENEVA), where each family was ascertained through a

child affected by nonsyndromic cleft lip with or without cleft palate. Results from

the GENEVA study corroborate the findings from our simulation experiments.

Finally, we provide recommendations for using statistical genetic association

methods for dyads.
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1 | INTRODUCTION

Studies of genetic associations of most human traits and
diseases focus on population‐based designs (e.g., case–
control studies, cohort studies, or data from biobanks)
especially for complex and heterogeneous disorders, where
both genetic and environmental risk factors are likely
involved. For rare disorders, this often requires amassing
cases sampled from multiple populations, which creates the
possibility of type I error inflation due to confounding
(as termed by epidemiologists) or population stratification
(as referred to by geneticists). Family‐based designs, on the
other hand, play an important role in the investigation of
genetic underpinnings of low frequency or rare disorders
(e.g., birth defects) (Benyamin et al., 2009). The case–parent
trio design is one of the most popular family‐based designs
which consists of an affected child (i.e., the proband) and
both parents. Statistical methods focused on transmission of
variants within families, such as in case–parent trio design,
protect against population stratification (Schwender
et al., 2012). However, genetic information on both parents
is often not available because it is more difficult to recruit
biological fathers, which often leads to an abundance of
information on mother–child dyads (Shi et al., 2008). As
more multiethnic studies become possible, the value of
family‐based methods that are less prone to population
stratification are key for studies of childhood diseases. It is
essential to define the best suited analytical approach for
each alternative family‐based scenario, especially in the
presence of a predominance of dyads in available samples.

Although statistical methodologies for population‐
based genome‐wide association studies (GWAS) continue
to evolve, less ongoing attention has been devoted to
methods for family‐based studies. While there exist
methods for analyzing dyads, it is not clear if one
method is consistently more advantageous over another
for a given design, and if they have the same robustness
against population stratification as full case–parent trios.
Furthermore, methods for analyzing dyads were mostly
developed 20 or more years ago when type I error
performance and statistical power were evaluated at
nominal significance levels instead of the more stringent
genome‐wide levels used now. Recently, Hecker et al.
(2019) compared type I error and power of methods for
general pedigree designs under different founder geno-
type distribution schemes but only considered the
case–parent trio design among nuclear family designs
with no hybrid designs. Gjerdevik et al. (2020) compared
the relative efficiency of different hybrid designs with the
case–control and the case–parent trio designs using
direct and indirect effects under log‐linear models
implemented in the HAPLIN program. However,
Gjerdevik et al. (2020) focused on log‐linear models

only, power/sample size comparisons without any type I
error calibration or compute time comparison, and were
restricted to a homogenous racial/ethnic group.

In this paper, we benchmark multiple open‐source
popular statistical methods across both dyad and trio
designs on multiethnic samples in terms of their compute
times, type I error control, and statistical power for
identifying common variant associations at stringent
significance levels. We focus on identifying the direct
effects of common variants in offspring on their phenotype
and not on the indirect effects of parental genotypes. Using
large‐scale simulations, we compare and evaluate methods
for three nuclear family designs (case–parent trios,
case–mother dyads, and a combination of case–parent trios
and case–mother dyads), plus two related hybrid designs
(case–parent/control–parent trios, case–mother/control–
mother dyads) under different parameter settings. Then,
we apply these methods to genotyped and imputed data
from multiethnic mother–child pairs only or trios only or
combinations of both dyads and trios from the Gene,
Environment Association Studies consortium (GENEVA).

2 | MATERIAL AND METHODS

2.1 | Model and notation

In the following, we consider a GWAS of individuals
collected under different nuclear‐family study designs,
particularly case–parent trios and case–parent dyads
(typically mother–child pairs). All individuals are geno-
typed/imputed or sequenced genome‐wide at pgenetic
variants (where pis of the order of millions), and their
disease status of interest is measured. For simplicity, we
only consider data on biallelic single nucleotide poly-
morphisms (SNPs). We are interested in testing for the
association between an SNP and the disease status. In the
following sections, we provide a brief overview of existing
methods for analyzing different nuclear family and
related hybrid designs.

2.2 | Methods for case‐parent trios

Consider a study of n case–parent trios, where n affected
(case) offspring are ascertained from a population, and
the affected offspring along with their parents are
genotyped/imputed or sequenced. Whether information
on parents' disease status is needed depends on the
statistical method used. This is the simplest family‐based
design and existing approaches for analyzing such data
include variations of the transmission disequilibrium test
and mating‐type‐stratified regression approaches.
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2.2.1 | Transmission disequilibrium
test (TDT)

The TDT was originally proposed to assess if one allele at
an SNP is transmitted from heterozygous parents to their
affected offspring more often than that expected under
strict Mendelian transmission (Spielman et al., 1993).
This would indicate that the SNP being tested (or marker
locus) is both linked and associated with a causal SNP (or
disease‐susceptibility locus [DSL]) for the disease. Essen-
tially, the TDT is a nonparametric test that does not
require assumptions about the disease model or disease
distribution in the population (Laird & Lange, 2006).
Note, although the TDT does not require prior specifica-
tion of a disease model, it implicitly assumes multiplica-
tive effects of alleles (Fallin et al., 2002). It does not use
parental phenotype information even when available. It
is also referred to as the allelic TDT, and it boils down to
McNemar's test for a 2 × 2 contingency table that cannot
accommodate covariates or provide estimates of relative
risks (RRs). For a large enough sample size, the TDT
statistic has a χ2 distribution with 1 degree of freedom
(df) under the null hypothesis of no association or no
linkage between the marker SNP and an unobserved
DSL.

Although the TDT was originally proposed to test for
linkage in the presence of association, it is now typically
used as a test for association (Laird & Lange, 2006) where
the goal is to detect a disease‐associated SNP by considering
alleles at several markers in a region sequentially rather
than a single marker SNP in linkage disequilibrium (LD)
with an unobserved DSL underlying the disease phenotype
(Fallin et al., 2002). Presence of linkage but no association
between the marker SNP and a DSL results in no
association between the disease and the marker SNP (Laird
& Lange, 2006). The presence of both linkage and
association between the marker SNP and a DSL indicates
the presence of an association between the disease and the
marker SNP being tested. Henceforth, in general, any
reference to the null hypothesis will refer to no association
between the disease and the marker SNP. In particular, for
the TDT‐like methods, this null hypothesis will mean no
association between the marker SNP and a DSL in the
presence of linkage between them.

2.2.2 | Genotypic TDT (gTDT)

The gTDT compares the case's transmitted genotype at
the SNP to the set of all possible genotypes the case could
have inherited from the parental genotypes (Schaid, 1999,
Self et al., 1991). Unlike the TDT, the gTDT considers
individuals as units of analysis; can accommodate

family‐level covariates; assumes some prespecified
genetic inheritance model; and yields estimated RRs
with their standard errors (Fallin et al., 2002). The gTDT
uses a conditional logistic regression model and involves
a numeric‐likelihood maximization that can be compu-
tationally burdensome at a genome‐wide level. However,
recently derived closed‐form parameter estimates enable
rapid genome‐wide application of the gTDT when testing
additive, dominant or recessive effects using Wald's test
(Schwender et al., 2012). The gTDT statistic has an
asymptotic 1‐df χ2 distribution under the null hypothe-
sis. Like TDT, the gTDT too does not use parental
phenotype information.

2.2.3 | Generalized disequilibrium
test (GDT)

This is a generalization of TDT‐like family‐based
association method proposed to take advantage of larger
pedigree information (Chen et al., 2009). It assesses the
genotypic differences between all discordant relative
pairs; can model covariates and uses a score test, where
the score is obtained from the quasi‐likelihood function
for a conditional logistic regression model. Unlike the
TDT or the g TDT, the GDT uses parental phenotype
information. Under the null hypothesis, the GDT statistic
has an asymptotic N (0,1) distribution that does not
depend on the inheritance model for the DSL. For
case–parent trios, a special case of the GDT called the
GDT‐PO is used where the score is a weighted sum of
genotypic differences between phenotypically discordant
parent–child pairs.

2.2.4 | Mating‐type‐stratified
conditional likelihood approach

Similar to the genotype RR modeling of Schaid and
Sommer (1993) and the retrospective likelihood‐based
approach of UNPHASED (Dudbridge, 2008), Fan et al.
(2013) derived the conditional‐likelihood of parental
mating type and offspring genotype at an SNP given
the affected status of offspring under a specific inheri-
tance model assuming Hardy–Weinberg equilibrium
(HWE) and random mating in the parental generation.
This approach does not use parental phenotype informa-
tion, can handle missing parental data without imputa-
tion, and can be applied to data on trios, dyads, and
monads (henceforth, it is referred to as the 'TDM'). The
likelihood function is modeled using the two unknown
genotypic relative risk (GRR) parameters and the minor
allele frequency (MAF) at the marker SNP, obtained
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using the Newton–Raphson method. Additive, dominant,
recessive or multiplicative effects may be assumed, and
the resultant likelihood ratio test (LRT) statistic for the
TDM has an approximate 1‐df χ2 distribution under
the null hypothesis. One need not assume any inheri-
tance model (i.e., assume an unrestricted model)
and the resultant TDM statistic has an approximate
2‐df χ2 distribution under the null hypothesis.

2.2.5 | Log‐linear modeling approach

The log‐linear approach generalizes the TDT to include
orthogonal tests of offspring versus maternal genetic
factors, and can accommodate different risk conferred by
a single copy versus two copies of a risk allele (Weinberg
et al., 1998). This approach does not use parental
phenotype information, provides RR estimates for
offspring genotype and is generalizable to a wide range
of causal scenarios. It lists all possible trio genotypes
stratified by parental mating type and applies a Poisson
regression to the expected counts of the different trio
genotypes conditional on the affected status of the
offspring. Inferences about the association are carried
out using asymptotically χ2‐distributed LRT statistic. The
χ2df under the null is dictated by the number of GRR
parameters, which in turn depends on the inheritance
model and the causal scenario assumed. van den Oord
and Vermunt (2000) described how this log‐linear
approach can be implemented in LEM, a general
computer program for analyzing categorical data. Later,
a dedicated genetics software package, HAPLIN, was
developed to implement such log‐linear models not only
for biallelic variants but also for multiallelic variants and
other generalizations (Gjerdevik et al., 2019, Gjessing &
Lie, 2006). Using LEM or HAPLIN, one can test for
offspring effects only using a 2‐df test, maternal effects
only in a separate 2‐df test or both offspring and maternal
effects in a 4‐df test. P values from the 2‐df test of
offspring effects are directly comparable to p values
from other TDT‐like methods. While these 2‐df and 4‐df
tests assume no particular inheritance model, one can
also implement a 1‐df test in HAPLIN assuming
multiplicative effects of allele like the TDT.

2.3 | Methods for case–mother dyads

In any study of nuclear families, genetic measurements
are frequently missing for one parent. More often than
not, fathers are missing: they can be harder to recruit,
and paternity is inherently harder to be confident of
than maternity (Shi et al., 2008). Consider a study of n

case–mother dyads, where n affected (case) offspring are
sampled from the population, and the affected offspring
and their mothers are genotyped/imputed or sequenced.
One might come up with a straightforward approach of
applying the TDT (or any method for case–parent trio
data) on such family pairs for whom the genotype of the
father at the SNP of interest can be unambiguously
inferred. However, this process of selectively including
only unambiguous dyads and discarding ambiguous ones
can lead to invalid inference due to biases that depend
heavily on allele frequencies (Curtis & Sham, 1995).

2.3.1 | TDT‐like approaches

The first appropriate methodological development for the
analysis of nuclear family data with missing genetic
information on one parent was the 1‐TDT (Sun
et al., 1999). It examines the difference between the
GRRs of heterozygotes versus homozygotes (two possible
choices) by using all heterozygous parent–homozygous
offspring and homozygous parent–heterozygous off-
spring pairs (Sun et al., 1998, 1999). Under the null
hypothesis, these two GRRs are expected to be the same
and the 1‐TDT test statistic has an approximate N (0,1)

distribution. If the total number of afore‐mentioned
parent–child pairs is not large, an exact p value can also
be calculated under the binomial distribution. Like the
TDT, the 1‐TDT does not use parental phenotype
information. The GDT‐PO can also be directly applied
to data with one missing parent. Unlike the 1‐TDT, GDT‐
PO examines all heterozygous parent–homozygous off-
spring and homozygous parent–heterozygous offspring
among available parents that are unaffected (recall, GDT
only uses phenotypically discordant pairs). For a data set
where all offspring are affected and all their parents are
unaffected, 1‐TDT and GDT‐PO become identical. The
GDT‐PO statistic has an asymptotic N (0,1) distribution
under the null hypothesis.

2.3.2 | Mating‐type‐stratified likelihood
approaches

The TDM is another approach that may be applied to
data on parent–child dyads alone and gives a 1‐df or a
2‐df χ2 test statistic under the null depending on whether
a specific inheritance model is assumed or not. The log‐
linear approach, too, is flexible enough to handle missing
genetic data on parents via the Expectation–
Maximization (EM) algorithm (Weinberg, 1999), and
can be implemented using programs such as LEM or
HAPLIN.
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2.4 | Methods for case–mother dyads
and case–parent trios combined

When conducting family studies, it is not always possible
to collect only families of one structure. In practice, we
may not have only case–parent trios or only case–mother
dyads but combinations of both. Suppose we have n1
complete case–parent trios and n2 incomplete trios
where, without loss of generality, the fathers are missing.
Note, it does not matter here if the fathers or the mothers
are missing since we are only assessing the direct effects
of inherited genotypes of offspring on their disease status.

2.4.1 | TDT‐like approaches

Instead of ignoring one set of families depending on
whether the sample size n1 is larger than n2 or not, Sun
et al. (1999) proposed applying the TDT on all complete
trios and the 1‐TDT on all dyads and then combining the
two statistics. The resultant combined statistic, denoted
TDTcom, has an asymptotic N (0,1) distribution. How-
ever, there is currently no software for TDTcom. One can
instead implement the 1‐TDT or the GDT‐PO on all
parent–child pairs without discarding any families.

2.4.2 | Mating‐type‐stratified likelihood
approaches

As described before, the TDM and the log‐linear models
can also be used in this scenario.

2.5 | Methods for case–parent/
control–parent trios

Genetic association studies, whether family‐based (e.g.,
case–parent trio design) or population‐based (e.g.,
case–control design), have their own strengths and
limitations; see Weinberg and Umbach (2005) for a
comprehensive summary of their advantages and dis-
advantages. A hybrid design bringing the strengths of
case–parent trio and case–control designs into a single
analytic framework is the case–parent/control–parent
trio design. Consider a study of n trios, where n1 affected
(case) and n n n= −2 1 unrelated unaffected (control)
offspring are sampled from the population, and all
sampled offspring and their parents are genotyped/
imputed or sequenced. Although control–parent trios
are generally easier to recruit and, along with
case–parent trios, can help guard against spurious signals

due to segregation distortion, they are typically either not
recruited or discarded from analysis even when available
because the TDT or the gTDT is only applicable to trios
with affected offspring (Deng & Chen, 2001).

2.5.1 | TDT‐like approaches

A straightforward approach is to apply the TDT on case‐
parent trios alone (refer to this as TDTD) and on
control–parent trios separately (refer to this as TDTC,
which, in contrast to TDTD, can be viewed as a test of
transmission of the “nonrisk” allele at the DSL rather
than the “risk” allele), and then combine these two
independent tests into a new test TDTD+C (Deng &
Chen, 2001). This TDTD+C statistic has an asymptotic
2‐df χ2 distribution under the null hypothesis. Deng and
Chen (2001) additionally proposed TDTDC, a contingency
table association test of allele transmissions (from
heterozygous parents) with disease status in unrelated
offspring. This TDTDC statistic has an approximate 1‐df
χ2 distribution under the null hypothesis and does not
require equal numbers of case–parent and control–parent
trios. Neither of these two TDT‐like tests uses parental
phenotype information.

2.5.2 | Mating‐type‐stratified likelihood
approaches

A log‐linear model can be used to combine the family‐
based case–parents‐trio component and the population‐
based parent–parent component, thus not requiring
genetic data on the control offspring (Weinberg &
Umbach, 2005). The requirement of only the parental
genotypes and the case genotypes provides a distinct
advantage of log‐linear models over TDT‐like approaches
for such hybrid designs. It assumes the disease is rare for
the offspring of each parental genotype combination,
mating symmetry, and Mendelian proportions in the
population. It neither assumes HWE nor random mating.
In the presence of population structure, one can
generalize this log‐linear model to include a disease‐
status by total‐number‐of‐parental–alleles interaction
term or five additional disease‐status by mating‐type
interaction terms (note, six distinct unordered parental
mating types are possible here). However, “[a] direct
consequence of preferring the enlarged model is that the
control portion of the data will not contribute to
inference related to the risk parameters, and the
population‐based component, in effect, becomes statisti-
cally irrelevant” (Weinberg & Umbach, 2005).
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2.6 | Methods for case–mother/
control–mother dyads

Consider a study of n dyads, where n1 affected (case)
offspring are ascertained, and n n n= −2 1 unaffected
(control) offspring are sampled. Genotype data are
available on offspring and their mothers. There are fewer
methods for this hybrid dyad design. To our knowledge,
no TDT‐like method has been proposed for this design
but the log‐linear approach using LEM or HAPLIN is
applicable (Shi et al., 2008).

2.7 | Simulation experiments

We first simulated n =1000 trios using the LE program
(Chen & Deng, 2001, Chen et al., 2009) as follows, and
for the relevant scenarios detailed below, we removed
fathers from trios to obtain mother–child pairs (dyads).
The LE program is a general program for simulating
pedigrees with only 1 DSL (causal SNP) at a time and
requires the following parameters as input: disease
prevalence, disease allele frequency, genotypic pene-
trances, number of families, and structure of the
pedigree. For simulating phenotypes, we set the
parental phenotypes as 0 (control) always, and
offspring as 1 (case) or 0 depending on whether we
simulated a case– or a control–family. For genotypes,
we simulated multiple independent replicates of only
one biallelic causal SNP to ensure the independence of
SNPs needed to estimate type I error rate and statistical
power. The main results are described for a fixed MAF
at this causal SNP to ensure a fair comparison of type I
error and power across methods keeping all other
parameters fixed (additional results for varying MAFs
are included in the Supporting Information). We
simulated only offspring GRR effects and assume
different GRR values to generate both null and nonnull
SNPs. For our type I error and power analyses, we
simulated 1 million null SNPs (GRR = 1) and 10,000
nonnull SNPs (GRR=2), respectively. In other words,
we generated either 1 million or 10,000 independent
and identically distributed replicates of 1,000 families
for a single SNP. For nonnull SNPs, we assume GRR =
2 under four different inheritance models (additive,
multiplicative, dominant, and recessive). Note, for
GRR = 1, the inheritance model does not influence
the values of genetic penetrance, and hence data
generated under different inheritance models are all
identical. Our choices of other parameters, such as
disease prevalence, MAF and subgroup‐specific sample
sizes, are described later for specific scenarios.

We evaluated two classes of methods: TDT‐like
methods (TDT, gTDT, 1‐TDT, GDT‐PO, TDTDC, TDTD
+C) and the mating‐type‐stratified likelihood approaches
(HAPLIN). While the TDM and the log‐linear modeling
using LEM are also candidates for mating‐type‐stratified
likelihood approaches, we excluded both. In many
analyses, TDM faced issues with matrix inversion
preventing successful model fit, leading to missing results
for many SNPs. We also faced several roadblocks in
implementing the current LEM executable genome‐wide
on a Unix cluster. Note, not all methods in each class are
applicable for a given study design. We simulated two
scenarios involving samples from either one or two
homogenous ancestral populations mimicking situations
without or with population stratification. In all our
analyses, we specified an additive model for implementing
gTDT, regardless of the genetic inheritance model we used
to generate data. Implementation of TDT, 1‐TDT, GDT‐
PO, TDTDC, and TDTD+C do not require prespecification
of a genetic model since they implicitly assume multipli-
cative effects of alleles. For HAPLIN, the use of 2‐df and 4‐
df tests implies no specific inheritance model is assumed.
While we benchmarked type I error of methods for all
simulation settings, only statistical power for the homoge-
nous group was used for benchmarking since not all
methods could maintain type I error in the presence of
population stratification. We used QQ plots as well as type
I error estimates with 95% confidence interval (CI) to
evaluate type I error control at stringent levels, and
compared power estimates calculated at the conventional
genome‐wide level (5 × 10−8). The type I error and the
power estimates at a fixed significance level (α) are
calculated as the proportion of SNPs with p values α<

from the null and the nonnull data, respectively. An
approximate asymptotic 95% CI for such an estimate (α̂ )

is calculated as α α[ ˆ − 1.96 , ˆ + 1.96 ]α α

N

α α

N

ˆ (1− ˆ ) ˆ (1− ˆ ) ,

where N is the total number of independent SNPs from
which α̂ is estimated.

2.7.1 | Scenario 1: One homogenous genetic
ancestry

All the parents were simulated from a single homoge-
nous ancestral population with disease prevalence of
30%. While family‐based designs are best suited for
disorders with rare prevalence, we simulated data for a
common disease prevalence to ease simulation time and
computational resources needed for sampling millions of
case families across several combinations of parameter
values. A fixed MAF of 10% is assumed for the causal
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SNP. Under this scenario, both type I error and power are
compared for all methods.

Scenario 1A: Case–mother dyads. The fathers from
1,000 case–parent trios are removed to obtain 1,000
case–mother dyads. Note, although we removed the
fathers for this parent–child design, the mothers could
have been removed instead and the inference on direct
effects of offspring genotype from these methods would
remain unchanged.

Scenario 1B: Case–mother dyads and case–parent
trios combined. We removed fathers from the first 750
case–parent trios to obtain 750 case–mother dyads (75% of
the data set), leaving the remaining 250 case–parent trios
as is (25% of the data set).

Scenario 1C: Case–mother/control–mother dyads.
We generated 500 case–parent trios and 500 control–
parent trios independently. Removing the father from
each trio resulted in 500 case–mother dyads and 500
control–mother dyads, which were analyzed together. For
power calculations, besides this 50:50 case–control ratio
among offspring, we also explored 70:30 and 30:70 ratios
of case–control families.

2.7.2 | Scenario 2: Two distinct genetic
ancestry groups

This scenario considers the existence of population
substructure between families in the sample. We simu-
lated the parents of 500 families from one homogenous
ancestral population with a disease prevalence of 30%, and
the parents of the other 500 families from a separate
ancestral population with a lower disease prevalence of
15%. The causal SNP was simulated to have an MAF of
10% and 3%, respectively in the two populations. We
analyzed a pooled sample for all methods. Additionally,
for the mating‐type‐stratified likelihood approach, we
applied HAPLIN to each ancestry group separately and
then meta‐analyzed using Fisher's p value combination
method (Fisher, 1925, Ray et al., 2016). Under this
scenario, we compared type I error rates only.

Scenario 2A: Case–mother dyads. Fathers from all
1,000 case–parent trios (500 from each ancestral popula-
tion) were removed to obtain 1,000 case–mother dyads.

Scenario 2B: Case–mother dyads and case–parent
trios combined. From each ancestral group, we removed
fathers of the first 75% of the case–parent trios to obtain
750 case–mother dyads in total and combined this with
the remaining 250 case–parent trios. This resulted in 375
case–parent trios and 125 case–mother dyads from each
ancestral population.

Scenario 2C: Case–mother/control–mother dyads.
We generated 500 case–parent trios and 500 control–

parent trios independently. Among case–parent trios,
250 were simulated for each ancestral population.
Similarly for the control–parent trios. Removing the
father from each trio gave us 500 case–mother and 500
control–mother dyads in a genetically heterogeneous
sample.

2.8 | Application to GENEVA data on
orofacial clefts

In GENEVA, case–parent trios were ascertained through
cases with an isolated, nonsyndromic orofacial cleft (i.e.,
cleft lip; cleft palate; or cleft lip with palate). They were
largely recruited through surgical treatment centers by
multiple investigators from Europe (Norway and Den-
mark), the United States (Iowa, Maryland, Pennsylvania,
and Utah) and Asia (People's Republic of China, Taiwan,
South Korea, Singapore, and the Philippines) over several
years (Beaty et al., 2010). Type of cleft, sex, race, family
history, and common environmental risk factors were
collected through direct maternal interview. Genotyping
on the Illumina Human610 Quadv1_B array with 589,945
SNPs was performed at the Center for Inherited Disease
Research (https://cidr.jhmi.edu/). As part of two recent
publications (Ray et al., 2021, Zhang et al., 2021), trio‐
aware phasing and reimputation using the 1000 Genomes
Phase 3 release 5 reference panel were performed. Among
GENEVA participants who were reimputed and used in
these two articles, we restricted our analysis to the
participants ascertained through nonsyndromic CL/P.
We used “hard” genotype calls: if the calls had uncertainty
>0.1 (i.e., genotype‐likelihoods <0.9), they were treated as
missing; the rest were regarded as observed genotype calls.
All imputed SNPs were filtered to exclude any with
R < 0.32 . All variants are on the forward strand.

We analyzed genotyped/imputed SNPs only and
employed the following quality control measures using
PLINK 1.9 (Chang et al., 2015): all SNPs with MAF< 5%
and any showing deviation from HWE at p < 10−6 among
parents were excluded; all genotyped SNPs with missing-
ness >5% and Mendelian error rate >5% were also
removed. Additionally, all trios with per‐trio Mendelian
error rate >5% were dropped. Our final GENEVA analytical
data set contained 5,204,784 autosomal SNPs, including
both observed and imputed SNPs having MAF> 5% among
parents, for 1,487 multiethnic complete case–parent trios.
Of these 1,487 complete trios, 891 trios were of Asian
ancestry (including Malays from Singapore) and 575 were
of European ancestry. The remaining 22 trios were from
other racial/ethnic groups. Among 2,974 parents, 560 had
missing phenotype information. There were 534 female and
953 male CL/P probands in total.
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We analyzed three separate designs: case–parent trios
only (considered here as the gold standard); case–mother
dyads only; and trios and dyads combined. For the trios
only data set, we analyzed all 1,487 case–parent trios
(a multiethnic sample). For the dyads only data set, we
removed the father from each trio and analyzed the
resulting 1,487 case–mother pairs. For the combined data
set, we removed the father from 75% of all trios within
each racial/ethnic group (consistent with the simulations
for scenario 2B detailed above), yielding 1,116 multi-
ethnic case–mother pairs and 371 multiethnic
case–parent trios. We compared findings from the dyads
only and the combined designs against the trios only
design. Note, there are no control families in GENEVA,
and hence no case–parent/control–parent or
case–mother/control–mother design could be considered.
We analyzed the complete GENEVA data set using TDT‐
like methods. We applied HAPLIN to the Asian and the
European groups separately and then meta‐analyzed
results from the 2‐df test for offspring genotype effects
using Fisher's p value combination. We excluded the 4‐df
combined test of offspring or maternal effects in this
comparison since we cannot rule out the influence of
maternal genes on risk of clefts in offspring (Jugessur
et al., 2010, Shi et al., 2012).

For each analysis, we defined independent loci by
clumping all the genome‐wide significant SNPs
(p < 5 × 10−8) in a ±500 kb span and with LD r > 0.22

into a single genetic locus. We used the SNP2GENE
function of FUMA (v1.3.6b; Watanabe et al., 2017) for
clumping and mapping each locus to the gene nearest to
the lead SNP. The index SNP for each locus was the most
significant SNP. Since we performed multiethnic analysis,
we separately used 1000G Phase 3 EUR and EAS as
reference populations for LD calculation. For a given
analysis, we found independent hits to be the same
regardless of the ancestry of the reference group chosen
for LD calculation. We defined the bounds of a locus as the
minimum of lower bounds and the maximum of upper
bounds across both ancestry groups. All genomic coordi-
nates are given in NCBI Build 37/UCSC hg19.

3 | RESULTS

3.1 | Simulation experiments: Type I
error

3.1.1 | Scenario 1A: One homogenous
ancestry group, case–mother dyads

The QQ plots of all methods, except 1‐TDT and GDT‐PO,
reside within the 95% CI for the expected distribution of

p values, indicating their correct type I error control
(Figure 1). The 1‐TDT and GDT‐PO performed well at
nominal error levels (λ = 11−TDT and λ = 1GDT‐PO ) but
showed some inflation at stringent error levels as
indicated by the data points outside the 95% CI. The
corresponding gold standards for all methods (i.e.,
methods applied to case–parent trios) maintained correct
type I error, although the TDT‐like methods were slightly
conservative at stringent levels. The type I error estimates
and their 95% CIs provide a granular view of type I
error control of each method at specific significance
levels (Table S1). For instance, the TDT‐like methods
were slightly conservative at all levels for case–
parent trios while they were less conservative at nominal
levels and more inflated at stringent levels for
case–mother dyads. On the other hand, HAPLIN showed
similar type I error control at all levels for case–mother
dyads and case–parent trios. As expected, when all
offspring are affected and all parents are unaffected, the
1‐TDT and the GDT‐PO results are identical for
case–mother dyads. While these findings were based on
SNPs with a fixed MAF, we also simulated data on null
SNPs with varying MAFs and found qualitatively similar
results (Table S2).

3.1.2 | Scenario 1B: One homogenous
ancestry group, case–mother dyads and
case–parent trios combined

All methods performed similar to the corresponding gold
standard methods (Figure 1). Specifically, the TDT‐like
methods were slightly inflated at nominal levels and
slightly conservative at more stringent levels (Table S1).
HAPLIN showed better type I error control at more
stringent levels compared to nominal levels. These results
were robust to varying MAFs of the null SNPs (Table S2).

3.1.3 | Scenario 1C: One homogenous
ancestry group, case‐mother/control‐mother
dyads

The QQ plots of HAPLIN, the only applicable method in
this scenario, showed well‐controlled type I error
(Figure 2). For the corresponding case‐parent/control‐
parent trio data, both HAPLIN and the TDT‐like
methods maintained correct type I error. Type I error
estimates and corresponding 95% CIs, however, indicate
the TDT‐like methods were slightly conservative at all
levels while HAPLIN was slightly inflated at nominal
levels (Table S3). Results were robust to varying SNP
allele frequencies (Table S4).
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3.1.4 | Scenario 2A: Two distinct ancestry
groups, case–mother dyads

All TDT‐like methods maintained appropriate type I
error as indicated by their QQ plots lying within the 95%
CI for the expected distribution of p values (Figure 1 and
Table S1). HAPLIN showed inflated type I error even
at nominal significance levels (λ = 1.34HAPLIN‐2df and
λ = 1.60HAPLIN‐4df ). Inflation in HAPLIN was exacerbated
in the presence of varying SNP allele frequencies
(Table S2). These observations were reflected for the
gold standards as well. When HAPLIN was applied to
each ancestry group separately and then meta‐
analyzed, type I error was well‐controlled at nominal
(λ = 1.02HAPLIN‐2df and λ = 1.00HAPLIN‐4df ) as well as
stringent levels (Figure 1). However, for the corre-
sponding gold standard, the QQ plots indicated type I
error was well‐controlled for the 4‐df test but was
inflated at stringent levels for the 2‐df test.

3.1.5 | Scenario 2B: Two distinct ancestry
groups, case–mother dyads and case–parent
trios combined

As before, all TDT‐like methods exhibited well‐
controlled type I error rate while HAPLIN showed
significant type I error inflation (Figure 1 and Table S1)
particularly for varying SNP allele frequencies (Table S2).
Meta‐analysis of HAPLIN applied to ancestry‐stratified
data gave well‐controlled type I error for both tests

(Figure 1). We also simulated a skewed distribution of
dyads and trios within each ancestral group; results
indicated robustness of TDT‐like methods to population
substructure while HAPLIN showed even greater infla-
tion if data are not stratified and meta‐analyzed
(Figure S1). It is worth noting that with real data sets
one may not have clearly distinct groups to stratify and
then meta‐analyze.

3.1.6 | Scenario 2C: Two distinct ancestry
groups, case–mother/control–mother dyads

HAPLIN is the only method that could be evaluated
here, and it showed considerable type I error inflation
when applied to the pooled sample (Figure 2 and
Table S3), particularly for varying SNP allele frequen-
cies (Table S4). Meta‐analysis of HAPLIN applied to
ancestry‐stratified data gave well‐controlled type I error;
no different from the corresponding gold standard
(Figure 2). On the other hand, the TDT‐like methods
applicable only for the case–parent/control–parent
design were slightly conservative. Note, we also
simulated a skewed distribution of case and control
offspring within each ancestral group, with all 500 case
families coming from one ancestry group and all 500
control families from the other. Our results indicated
robustness of TDT‐like methods to extremely skewed
distribution of case‐ and control‐families across ances-
tral groups while HAPLIN showed extreme type I error
inflation (Figure S2).

FIGURE 1 Type I error performance of the different combinations of methods and nuclear‐family designs at stringent significance
levels. Results are based on simulated data on 1,000 families from either one or two homogenous racial/ethnic groups with 1 million null
SNPs. For one homogenous sample, a common disease prevalence of 30% and MAF 10% was simulated. For biethnic data, the second
homogenous group had a disease prevalence of 15% and MAF 3%. All offspring were affected, and all parents were unaffected. Observed
(−log10 p values) are plotted on the y‐axis and Expected(−log10 p values) on the x‐axis of these QQ plots. The gray shaded region in each QQ
plot represents a conservative 95% confidence interval for the expected distribution of p values. GDT, generalized disequilibrium test; gTDT,
genotypic TDT; MAF, minor allele frequency; SNP, single nucleotide polymorphism; TDT, transmission disequilibrium test
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3.2 | Simulation experiments: Power

3.2.1 | Scenario 1A: One homogenous
ancestry group, case–mother dyads

All the TDT‐like methods had the similar statistical power
to detect phenotype–genotype association (Figure 3a).
HAPLIN was more powerful and, depending on the
inheritance model, the 4‐df test of offspring/maternal
effects showed improved power over the 2‐df test of
offspring effects alone. The relative power of these
methods was qualitatively similar across different MAFs
and underlying inheritance model (Figure S3). For
case–parent trios, the power estimates of these methods
were not qualitatively very different at a given MAF and
inheritance model; however, the relative behavior of these
power curves showed slight variation with the inheritance
model. All methods had reduced power for case–mother
dyads compared to those for case–parent trios, as
expected.

3.2.2 | Scenario 1B: One homogenous
ancestry group, case–mother dyads, and
case–parent trios combined

For a fixed number of families, all methods had
improved power over‐analyzing case–mother dyads
alone (Figure 3a and S3), again as expected. Further,
discarding any type of family from a mixed family
design like this resulted in substantial loss of statistical
power (Figure 3b).

3.2.3 | Scenario 1C: One homogenous
ancestry group, case–mother/control–mother
dyads

HAPLIN, the only applicable method, was nearly as
powerful in the dyad design as in the full trio design
(Figure 4). As the proportion of cases among offspring
decreases, HAPLIN's power also decreases. The 4‐df test

FIGURE 2 Type I error performance of the different combinations of methods and hybrid‐family designs at stringent significance
levels. Results are based on simulated data on 1,000 families from either one or two homogenous racial/ethnic groups with 1 million
null SNPs. For one homogenous group, a common disease prevalence of 30% and MAF 10% was simulated. For biethnic data, the
second homogenous group had a disease prevalence of 15% and MAF 3%. Case‐to‐control ratio among offspring was 50:50, and all
parents were unaffected. Observed (−log10 p values) are plotted on the y‐axis and Expected (−log10 p values) on the x‐axis of these QQ
plots. The gray shaded region in each QQ plot represents a conservative 95% confidence interval for the expected distribution of p
values. GDT, generalized disequilibrium test; gTDT, genotypic TDT; MAF, minor allele frequency; SNP, single nucleotide
polymorphism; TDT, transmission disequilibrium test
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for offspring/maternal effect was unexpectedly more
powerful than the 2‐df test of offspring genotypic effect
for a multiplicative inheritance model despite the larger
df. Additionally, HAPLIN unexpectedly achieved better
power for case–mother/control–mother dyads than
case–parent/control–parent trios when the case–control
ratio among offspring is low. These are, however,
artifacts arising from this simulation experiment not
satisfying the rare disease assumption (Figure S4). For
the corresponding gold‐standard design (i.e., case–
parent/control–parent design), there are competing
methods although they provided less power than
HAPLIN. These findings were qualitatively similar across
a range of MAFs (Figure S5). Between the two TDT‐like
methods, TDTD+C was uniformly more powerful than
TDTDC across different MAFs regardless of the inheri-
tance model and the case–control distribution among
offspring, despite the higher df of TDTD+C. In fact, the
power difference between TDTD+C and TDTDC increased
substantially with decreasing prevalence (Figure S4) and
increasing MAF (Figure S5) across different inheritance
models when the number of case families is at least as
large as the number of control families. This relative
behavior of TDTD+C and TDTDC power curves

contradicts what Deng and Chen (2001) found likely
because their conclusion was based on a high disease
prevalence, equal numbers of case‐ and control‐families
only, dominant effects only, an MAF of 50% (which, from
an evolutionary genetics perspective, rarely happens for a
disease allele), and at a nominal significance level of 5%.

3.3 | Application to GENEVA data on
orofacial clefts

3.3.1 | Case–parent trios

To establish a gold standard, we first analyzed the
complete case–parent trio data (pooled sample) using
several TDT‐like methods (TDT, gTDT, and GDT‐PO). As
expected, the TDT and the gTDT gave nearly identical
results with both replicating known signals for CL/P
(Beaty et al., 2016, Dixon et al., 2011, Ray et al., 2021) at
the conventional genome‐wide threshold (p<5 × 10−8):
1p22.1 (ABCA4/ARHGAP29), 1q32.2 (IRF6), 8q24 (gene
desert), 17p13.1 (NTN1), 18q12.1 (TTR, not a known
cleft‐associated region and could be spurious), and 20q12
(MAFB) (Figure 5). Further, 3p11.1 (EPHA3), 8q21.3

(a) (b)

FIGURE 3 Statistical power for the different combinations of methods and nuclear‐family designs at genome‐wide significance level
(5 × 10−8). Results are based on simulated data on 1,000 families from one homogenous racial/ethnic group with 10,000 nonnull SNPs at
MAF 10% at the casual SNP, and a common disease prevalence of 30%. Results for data simulated using the recessive inheritance model are
not shown due to nearly zero power of these methods at the chosen parameter values. All offspring were affected, and all parents were
unaffected. (a) Comparison of designs with the same number of families of different compositions. (b) Comparison of the combined analysis
of 750 case–mother dyads and 250 case–parent trios against the scenarios when either all dyads or all trios are removed from analysis. GDT,
generalized disequilibrium test; gTDT, genotypic TDT; MAF, minor allele frequency; SNP, single nucleotide polymorphism; TDT,
transmission disequilibrium test
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(DCAF4L2), and 10q25.3 (SHTN1) yielded suggestive
significance (p<10−6). The GDT‐PO signals were some-
what attenuated compared to those from TDT/gTDT, and
it failed to replicate the signals at/near genes TTR,
DCAF4L2, and SHTN1. This may be due to the reduced
sample sizes when only phenotypically discordant
parent–child pairs contributed to the test statistic since
some parents had more subtle “microforms” or missing
phenotype information.

We additionally analyzed the complete trios using
HAPLIN. Unlike TDT‐like methods, HAPLIN was not
immune to type I error inflation due to population
stratification (Figure S6). So, we analyzed Asian and
European groups separately using HAPLIN and then
meta‐analyzed the results from the 2‐df test for offspring
effects (Figure 5). HAPLIN detected a new signal at
6p22.1 (TRIM26, p = 2.1 × 10−8), which has no known
relevance to CL/P and could be spurious. It failed to

FIGURE 4 Statistical power for different combinations of methods and hybrid‐family designs at genome‐wide significance level
(5 × 10−8). Results are based on simulated data on 1,000 families from one homogenous racial/ethnic group with 10,000 nonnull SNPs at
MAF 10% at the causal SNP, and a common disease prevalence of 30%. Results for data simulated using the recessive inheritance model are
not shown due to nearly zero power of these methods at the chosen parameter values. Case‐to‐control ratio among offspring is either 70:30,
50:50 or 30:70. All parents are unaffected. GDT, generalized disequilibrium test; gTDT, genotypic TDT; MAF, minor allele frequency; SNP,
single nucleotide polymorphism; TDT, transmission disequilibrium test
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detect the EPHA3 signal, which could be due to reduced
sample size for the meta‐analysis compared to the pooled
analysis.

3.3.2 | Case–mother dyads

The 1‐TDT and the GDT‐PO showed considerably
reduced power to detect genetic associations compared
to the case–parent trio analysis, as expected (Figure 5). At
genome‐wide significance, 1‐TDT identified only the
ABCA4/ARHGAP29, IRF6 and 8q24 signals compared to

TDT/gTDT on complete trios. GDT‐PO failed to identify
any genome‐wide significant signals. This lack of power
for GDT‐PO compared to 1‐TDT is presumably in part
due to smaller sample sizes and missing phenotype
information in some mothers. HAPLIN, when meta‐
analyzed over Asian and European groups, detected only
the IRF6 and 8q24 signals. It also detected an intergenic
region at 4p14 (p = 4.2 × 10−8), which may be spurious
as it was not detected by the HAPLIN meta‐analysis of
complete trios and has not been previously reported in
the cleft literature. It is possible our HAPLIN meta‐
analysis results were still inflated due to population

FIGURE 5 Manhattan plots for the different combinations of methods and nuclear family designs from the multiethnic GENEVA study
on CL/P. The gTDT and the TDT are applicable to case–parent trio design (n = 1487) only. The 1‐TDT (a generalization of TDT) is
applicable to both case–mother dyad design (n = 1487) and the combined case–mother dyad case–parent trio design (n = 3711 trios,
n = 11162 dyads). The GDT‐PO and HAPLIN methods are applicable to all three designs. Here, HAPLIN (2‐df test of offspring genotypic
effect) was applied on each racial/ethnic group separately and then meta‐analyzed. The red and blue horizontal lines in each plot
correspond to the genome‐wide (5 × 10−8) and a suggestive (10−6) significance levels, respectively. The genome‐wide significant loci for each
method‐design pair are annotated in dark gray and the suggestively significant loci in light gray. The gene names provided are labels for the
genetic loci based on nearest gene mapping approach and do not necessarily represent causal genes. GDT, generalized disequilibrium test;
gTDT, genotypic TDT; TDT, transmission disequilibrium test
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stratification because each racial/ethnic group was not
completely homogenous (participants were sampled
from various countries). At the suggestive significance
level, a few additional regions were detected, some of
which may be spurious since they were not found in the
corresponding analysis of the complete trios: 11p13 by
1‐TDT; IRF6 and 3q29 by GDT‐PO; 2p16.1, 6p22.1 and
17q22 by HAPLIN.

3.3.3 | Case–mother dyads and case–parent
trios combined

The 1‐TDT and the GDT‐PO showed improved power
over‐analyzing the same number of families consisting
of case–mother dyads alone (Figure 5). At the genome‐
wide significance level, 1‐TDT identified only the
ABCA4/ARHGAP29, IRF6 and 8q24 signals while
GDT‐PO identified only the IRF6 signal when compared
to TDT/gTDT signals for complete trios. HAPLIN, when
meta‐analyzed over Asian and European groups,
detected only the IRF6 and 8q24 signals. Interestingly,
HAPLIN did not detect the possibly spurious signal at
4p14 at the genome‐wide threshold that it identified
from case–mother dyads alone. At the suggestive
significance level, 1‐TDT detected the EPHA3,
DCAF4L2, 11p13 (possibly spurious), NTN1 and MAFB
signals; the GDT‐PO detected the ABCA4/ARHGAP29,
EPHA3, 6p21.31 (possibly spurious), 8q24, 11p13
(possibly spurious) and MAFB signals; and finally,
HAPLIN detected the EPHA3, 4p14 (possibly spurious),
6p22.1 (possibly spurious), NTN1, 17q22 (possibly
spurious) and the MAFB signals.

3.4 | Comparison of compute times

We use genetic data on 8,015 SNPs in the region
8q24:128344410‐132105518, which includes the known
gene desert region strongly associated with risk to
CL/P. Figure 6 shows the compute times on an Oracle
Virtual Machine 6.1.24 (64 bit) with Intel® Xeon® CPU
E3‐1270 v6 @3.80 GHz processor and 8 GB of RAM.
Across all three designs, the TDT‐like methods had
comparable compute times of <1 minute, which
included loading and necessary formatting of data.
HAPLIN, when applied on the pooled sample, took at
least 90 minutes to run for the case–parent trio design
and took 2‐3 fold more time for study designs with at
most one missing parent. For multiethnic samples,
application of HAPLIN on ancestry‐stratified data and
subsequent meta‐analysis using Fisher's method
required nearly 1.5‐fold increased time compared to
HAPLIN applied on the pooled sample. For genome‐
wide scans, one can reduce HAPLIN's compute time by
using its built‐in parallel implementation if multiple
cores are available.

4 | DISCUSSION

In this article, we reviewed and benchmarked existing
open‐source statistical methods for the genome‐wide
analysis of parent–child dyads against those available for
case–parent trios. We considered case–mother dyads
alone, a combination of case–mother dyads and case–
parent trios, and combinations of case–mother/control–
mother dyads. We compared these study designs against

FIGURE 6 Compute times for the different combinations of methods and nuclear family designs from the multiethnic GENEVA study
on CL/P. Results are based on a subset of the genetic data: 8,015 genotyped/imputed SNPs in the region chr8:128344410‐132105518 that
includes the known cleft locus 8q24. GDT, generalized disequilibrium test; gTDT, genotypic TDT; SNP, single nucleotide polymorphism;
TDT, transmission disequilibrium test
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their corresponding gold standards: either case–parent
trios alone or case–parent/control–parent trios. We used
extensive simulation experiments, and array‐based
genetic data on trios ascertained through a child affected
by CL/P from the GENEVA study with parental
phenotypes when available. Although we used the
methods for parent–child dyads exclusively on mother–
child dyads, one could use them on father–child dyads,
and theoretically on some combination of father–child
and mother–child dyads assuming only direct effects of
offspring genotypes are of interest and there is no mating
asymmetry in the population.

This study was partly motivated by the Environ-
mental influences on Child Health Outcomes (ECHO)
study, a cohort collaboration that seeks to identify
environmental and genetic exposures relevant to child
development and disease. Genetic array data will be
paired with a catalog of early childhood or maternal
outcomes on more than 30,000 individuals in the United
States comprising mother–child–father trios and
mother–child pairs across these multiethnic ECHO
cohorts. Given the expected genetic diversity of these
cohorts, it is imperative to evaluate methods that can be
applied individually to dyads or trios (or some combina-
tion) while taking maximal advantage of the family‐
based structure and information whenever possible.
Similarly, it is essential to define the analytical approach
best suited for each family‐based design, especially since
dyads are easier to recruit. Recommendations from this
study will not only help identify the best strategies to use
in diverse studies like the ECHO study, but also provide
guidelines for other dyad design‐based studies.

4.1 | Recommendations

For case–parent trios, the TDT‐like approaches (e.g.,
TDT, gTDT, and GDT‐PO) inherently circumvent
the confounding due to population stratification by
distinguishing between transmitted and nontransmitted
parental alleles either in a contingency table framework
or in a conditional regression framework. The non-
transmitted parental alleles in a case–parent trio
design—also referred to as the case–parental control
design (Sun et al., 1998)—serve as matched genetic
controls even when random mating and HWE assump-
tions are not met (Weinberg et al., 1998). Consequently,
generalizations of these methods to accommodate a
missing parent in the case–mother dyad design (e.g.,
1‐TDT, GDT‐PO) or to accommodate control–parent
families (e.g., TDTD+C, TDTDC) also protect against
confounding due to population stratification.

For multiancestry data consisting of either case–
mother dyads alone or a combination of case–mother
dyads and case–parent trios, both 1‐TDT and GDT‐PO
are useful. We recommend GDT‐PO since it can model
covariates in a regression framework. If there are many
affected parents or parents with missing phenotypes, we
recommend 1‐TDT since, in this scenario, GDT‐PO
considers only phenotypically discordant relative pairs
and hence less powerful than 1‐TDT. If the data set
consists of one homogeneous genetic ancestry group, we
recommend a log‐linear approach (e.g., HAPLIN) as it is
often more powerful than 1‐TDT and GDT‐PO. In
particular, the 2‐df test for offspring genotype effects
alone under a log‐linear model using LRT tends to be
more powerful than the 1‐df TDT under a dominant or a
recessive genetic model since LRT uses information
about the joint transmission from pairs of parents, rather
than accounting for the parental transmissions of
individual alleles (Weinberg, 1999; Weinberg et al., 1998).
If the data set is multiancestry but consists of identifiable
genetic ancestry groups, we recommend using a log‐
linear approach on each homogeneous subgroup and
then meta‐analyzing the results. However, caution
should be exercised in interpreting findings from these
log‐linear approaches on multiethnic data since it is often
impossible to ensure each racial/ethnic group in any real
data set is truly homogenous. It is important to highlight
that we did not include covariates to adjust for
heterogeneity within each group or in the analysis of
pooled sample.

For multiancestry data consisting of case–parent/
control–parent trios, either TDTDC or TDTD+C may be
used when there are many more control–families than
case–families and the disease prevalence is not rare.
Otherwise, we recommend using TDTD+C since it
showed improved power over TDTDC in our experiments
regardless of disease prevalence, disease allele frequency
and inheritance model. Both these methods control type
I error even when case– and control–parent trios come
from different ancestral populations. Unfortunately, we
do not have any recommendation if the data consist of
multiancestry case–mother/control–mother dyads. A
meta‐analysis of results from a log‐linear approach like
HAPLIN can be used if the case–mother/control–mother
dyads (or the case–parent/control–parent trios) come
from one or more identifiable homogenous genetic
ancestry groups. In this case, HAPLIN is usually
considerably more powerful than TDT‐like approaches;
however, few populations are truly homogeneous and for
rare diseases, it is often necessary to draw case‐families
from multiple racial/ethnic groups. We provide a
summary of our recommendations in Table 1.
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4.2 | Study limitations

We only considered methods from an extensive literature
search with open‐source implementation and an availa-
ble manual. Other general classes of methods that could
be used in one or more of our designs are family‐based
association test (FBAT), linear mixed models (LMM),
and models based on generalized estimating equations
(GEE). The FBAT approach generalizes the TDT non‐
parametrically to incorporate non‐inbred pedigrees and
can additionally handle missing parents (more generally
missing founders), complex phenotypes, multiallelic
markers, and arbitrary geneticmodels (Hecker et al., 2019,
Laird & Lange, 2006). It is exactly the TDT test when
considering biallelic markers under an additive model
from case–parent trios, and in the case of a missing
parent 1‐TDT is the non‐parametric generalization of
TDT. We did not use FBAT in our analyses since we did
not consider any of the other generalizations implemen-
ted in FBAT. Variance component models, and more
generally LMM, incorporate phenotypic information of
parents unlike most TDT‐like methods, and incorporate
familial relationships through a covariance matrix
reflecting kinship between pairs of individuals (Chen &
Abecasis, 2007; Eu‐Ahsunthornwattana et al., 2014).
Chen et al. (2011) was one of the first to recommend
the use of GEE over variance component strategy in
family‐based studies of dichotomous phenotypes. To our

knowledge, both the LMM and the GEE approaches are
more commonly used in GWAS of secondary phenotypes
from extended pedigree data (Ngwa et al., 2022,
Suktitipat et al., 2012). The focus of this study is on a
dichotomous trait—the case–control status used to
ascertain probands—and common markers. We have
not considered methods for secondary phenotypes,
particularly quantitative traits (Ewens et al., 2008, Laird
& Lange, 2008), or methods tailored to rare variants,
which are increasingly becoming available via high‐
throughput whole exome or whole genome sequencing
techniques (Hecker et al., 2020).

We did not assess any indirect effects (e.g.,
maternal effect, parent‐of‐origin effect, imprinting) or
any interaction effect (e.g., maternal–fetal genotype
interactions, gene–environment interaction, epistasis)
(Ainsworth et al., 2011). In this context, EMIM, a tool to
estimate the afore‐mentioned indirect and interaction
effects using multinomial modeling of case–parent
trios, case–mother dyads, and/or monads (Howey &
Cordell, 2012) could be considered. We used the TDT‐
like methods exclusively as association tests (Laird &
Lange, 2006), and did not explore their type I error rates
separately for the other possible null hypothesis
scenarios under the original “no linkage or no associa-
tion” composite null hypothesis (Hecker et al., 2019,
Laird & Lange, 2008). We also did not consider monads
(Fan et al., 2013) or any other pedigree structure (Chen

TABLE 1 Recommended methods for testing direct effects of offspring genotypes on risk of a disease in different nuclear‐family related
study designs.

Type of nuclear family/
hybrid design Applicable method (s)

Recommendation

Type of analysis Method

Case–parent trios TDT, gTDT,1‐TDT, GDT‐PO,
HAPLIN

1 genetic ancestry group HAPLIN

Multiple genetic ancestry groups gTDT

Case–mother dyads 1‐TDT, GDT‐PO, HAPLIN 1 genetic ancestry group HAPLIN

Multiple genetic ancestry groups GDT‐PO, if there are covariates;
1‐TDT, if there are many

parents affected or with
missing disease status

Case–mother
dyads + case–parent
trios

1‐TDT, GDT‐PO, HAPLIN 1 genetic ancestry group HAPLIN

Multiple genetic ancestry groups GDT‐PO, if there are covariates;
1‐TDT, if there are many

parents affected or with
missing disease status

Case–parent/
control–parent trios

TDTDC, TDTD+C, HAPLIN 1 genetic ancestry group HAPLIN

Multiple genetic ancestry groups TDTD+C

Case–mother/
control–mother dyads

HAPLIN 1 genetic ancestry group HAPLIN

Multiple genetic ancestry groups No recommendation

Abbreviations: GDT, generalized disequilibrium test; gTDT, genotypic TDT; TDT, transmission disequilibrium test.
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et al., 2009, Hecker et al., 2019). We explored three
different mother–child pair designs and their corre-
sponding trio designs; other hybrid designs are certainly
possible (Gjerdevik et al., 2020, Vermeulen et al., 2009)
but are beyond the scope of this paper. We considered
biallelic SNPs only (not considering multiallelic or
haplotype effects; Cordell et al., 2004, Gjessing &
Lie, 2006). Our simulation framework is simple and
do not reflect the usual complex genetic architecture
underlying many disorders; however, we used a similar
framework and parameter choices as used by many
others (Chen et al., 2009, Deng & Chen, 2001, Hecker
et al., 2019). Our simulations did not involve any
confounders since most TDT‐like methods cannot
accommodate covariate effects. We focused on either
one or two homogenous genetic ancestry groups to
consider effects of population substructure but did not
consider the full range of admixture.

Nonetheless, it is important to bear in mind that we
have undertaken the first attempt at benchmarking these
popular methods at more stringent levels across both
dyad and trio designs, across a multitude of modeling
approaches and under different data types and structure.
Here we provide some practical guidelines for an
appropriate selection of methods to use in different
potential scenarios present in consortium studies such as
ECHO, or any other nuclear family‐based study designs.

WEB RESOURCES

gTDT: https://www.bioconductor.org/packages/release/
bioc/html/trio.html

TDT, 1‐TDT, GDT‐PO: https://www.chen.kingrelated
ness.com/software/GDT/index.shtml

TDTD+C, TDTDC: https://github.com/RayDebashree/
TDT-like-tests

HAPLIN: https://cran.r-project.org/web/packages/Ha
plin/index.html
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