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Epidemic obesity is contributing to increases in the prevalence of obesity-

related metabolic diseases and has, therefore, become an important public

health problem. Adipose tissue is a vital energy storage organ that regulates

whole-body energy metabolism. Triglyceride degradation in adipocytes is

called lipolysis. It is closely tied to obesity and the metabolic disorders

associated with it. Various natural products such as flavonoids, alkaloids, and

terpenoids regulate lipolysis and can promote weight loss or improve obesity-

related metabolic conditions. It is important to identify the specific secondary

metabolites that are most effective at reducing weight and the health risks

associated with obesity and lipolysis regulation. The aims of this review were to

identify, categorize, and clarify the modes of action of a wide diversity of plant

secondary metabolites that have demonstrated prophylactic and therapeutic

efficacy against obesity by regulating lipolysis. The present review explores the

regulatory mechanisms of lipolysis and summarizes the effects and modes of

action of various natural products on this process. We propose that the

discovery and development of natural product-based lipolysis regulators

could diminish the r isks associated with obes i ty and cer ta in

metabolic conditions.
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1 Introduction

Obesity is excessive lipid accumulation in adipose tissue. It is

caused by an imbalance between energy intake and energy

consumption. According to the World Health Organization

(WHO), more than 650 million adults over 18 years of age

were obese as of 2016 (1). Obesity is a risk factor for

cardiovascular disease (CVD), insulin resistance (IR), type 2

diabetes mellitus (T2DM), hypertension, dyslipidemia, and

certain cancers (2). Increased adipocyte number (hyperplasia)

and size (hypertrophy) are morphological manifestations of

obesity (3). Adipose tissue is classified into three distinct types:

white (WAT), brown (BAT), and beige (4). WAT stores excess

energy in the form of triglycerides (TG), whereas BAT and beige

adipose tissues catabolize TG into heat (5). Adipose tissue also

functions as an endocrine organ and filler tissue and cushions,

supports, and insulates the body (6).

WAT is generally considered a ‘troublesome and excessive

tissue’. Body weight may be lost via intermittent fasting,

medication, exercise, or surgery (7). However, it is uncertain

whether these approaches maintain weight loss or have

unacceptable side effects in the long term. Exercise appears to

be an effective weight loss method, although its efficacy depends

largely on its duration, frequency, and intensity (8). The

administration of certain drugs is promising for obesity

prevention and treatment. Intermittent fasting, drugs, and

exercise decompose TG faster than they are synthesized in the

adipocytes. Hence, pharmacological and nutritional

enhancements of this process are potential strategies for

weight loss and the prevent ion of obesity-re lated

metabolic syndrome.

The reservoir effect of WAT protects other tissues against the

toxic effects of glycolipids associated with excess energy storage.

Adipocytes have limited lipid storage capacity and can hold no

additional TG when their volume expands beyond a critical

point. At this stage, the adipose tissue becomes dysfunctional.

This condition is observed in patients with insulin resistance,

T2DM, and obesity and is manifested by decreased TG synthesis

and excess free fatty acid (FFA) release (9). In cases of adipose

tissue dysfunction, certain compounds improve whole-body

energy metabolism by inhibiting lipolysis.

Natural products are vital sources of lead compounds and

are important in drug discovery. Several natural products are

widely used in obesity treatment (10). Various natural products

(11–14), including flavonoids, alkaloids, and terpenoids control

obesity by stimulating lipolysis, inhibiting adipogenesis and

lipogenesis, and promoting energy expenditure. However, the

activities and mechanisms of natural products in modulating

lipolytic activity have not yet been systematically summarized. In

the present review, from a lipolysis perspective, we describe the

biosynthesis and metabolism of TG in adipose tissue and review

the regulatory mechanisms of lipolysis. Furthermore, we
Frontiers in Endocrinology 02
summarize a wide diversity of plant secondary metabolites

that have demonstrated anti-obesity effects via the promotion

of lipolysis. We also focus on the progress of research on

inhibitors of lipolysis with different mechanisms of action in

adipose tissue dysfunction. This review provides insight into the

precise biochemical and molecular mechanisms by which plant

secondary metabolites inhibit the onset and/or progression of

obesity and, by extension, its related co-morbidities. In addition,

it highlights the potential of lipolysis as a therapeutic target for

obesity and its complications.
2 Triglyceride biosynthesis and
metabolism

Adipose tissue, the liver, and skeletal muscle are the mains

organs responsible for the regulation of lipid metabolism. TG

biosynthesis and decomposition (lipolysis) in WAT equilibrate

lipid metabolism. After feeding, glucose and lipids from food are

absorbed in the intestine in the form of chylomicrons and enter

the bloodstream. The chylomicrons are then hydrolyzed into

FFAs by lipoprotein lipase and absorbed and utilized by

adipocytes and liver and muscle tissue. Insulin is secreted by

b-cells in the pancreas and promotes FFA and glucose uptake,

while insulin inhibits lipolysis via lipase inhibition. Adipocytes

absorb excess FFA and glucose and produce TG as an energy

storage form (15). During this process, adipogenesis and

lipogenesis increase, while lipolysis, thermogenesis, and

browning decrease. De novo lipogenesis involves TG

biosynthesis and occurs in the adipocytes and liver. To

maintain normal blood glucose levels, the liver converts excess

glucose into glycogen and stores it in liver cells, or hepatocytes,

which can also synthesize TG through the de novo TG synthesis

pathway. TG subsequently is transported from the liver to

adipose tissue by very low-density lipid (VLDL) (16). An

important contributor to hepatic fat accumulation is the

insufficient hepatic export of TG in the form of VLDL

particles. TG synthesis and metabolism are illustrated

in Figure 1.

During fasting and starvation, TG is decomposed into

glycerol and FFA (17). Adipose triglyceride lipase (ATGL),

hormone-sensitive lipase (HSL), and monoacylglycerol lipase

(MAGL) hydrolyze TG to FFAs and glycerol. The glycerol is

used to make glucose in gluconeogenesis. FFAs are then released

into circulation, where they are utilized by the peripheral tissues

and/or re-esterified into TG in the adipocytes. Skeletal muscle

and the liver are the most important organs involved in FFA

metabolism via b-oxidation and subsequent ATP generation.

Mitochondrial-rich beige adipose tissue or BAT are the major

sites responsible for non-shivering thermogenesis in mammals.

Cold exposure, b-adrenergic receptor (b-AR) agonists,

peroxisome proliferator-activated receptor-g, and exercise can
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induce the browning of WAT. FFA produced by

l ipo ly s i s i s a l so absorbed and ut i l i z ed by be ige

adipocytes or BAT through UCP-1-dependent shiver-

independent thermogenesis.
3 Lipolysis and its mechanisms

Lipolysis is a finely regulated process mediated by the

consecutive actions of ATGL, HSL, and MAGL. ATGL or HSL

first hydrolyzes TG to diglycerides and FFA. HSL then

hydrolyzes diglycerides to monoglycerides and FFA. MAGL

then hydrolyzes monoglycerides to glycerol and FFA (18).

Lipid droplet autophagy or lipophagy is a complementary

cellular lipid breakdown pathway (19). Sex, age, physical

activity, fat deposit location, and genetic variation regulate

basal lipolytic activity in adipocytes (20). The proinflammatory

cytokines TNF-a (21), IL-6 (22), and IL-1b (23) as well as

lipopolysaccharide (LPS) (24) and hypoxia (25) may induce TG

lipolysis. Lipid droplet-associated proteins (LDAPs) (26), cyclic

guanosine monophosphate dependent-protein kinase G (cGMP-

PKG) (8), mitogen-activated protein kinase (MAPK) (27), and

adenosine 5’-monophosphate (AMP)-activated protein kinase

(AMPK) (28) are also implicated in TG lipolysis.
3.1 LDAPs

Lipid droplets (LD) are dynamic lipid storage organelles

surrounded by single layers of polar and amphipathic

phospholipids and structural proteins. They are now

considered major fat storage, lipid secretion, and lipolysis
Frontiers in Endocrinology 03
regulators (29). The perilipins, including perilipin1, perilipin2,

and perilipin5, as well as the cell death-inducing DNA

fragmentation factor alpha (DFFA)-like effector (CIDE) family

proteins, including Cidea, Cideb, and Cidec/Fsp27, have

emerged as key lipolysis regulators (30, 31). Perilipin1 is a

scaffold for organized protein-protein interactions on LD

surfaces. It binds CGI-58 and suppresses HSL translocation to

LD under basal conditions. During stimulatory conditions,

however, phosphorylation causes perilipin to dissociate from

CGI-58. The free CGI-58 then binds phosphorylated ATGL and

co-activates TG hydrolysis (32). Perilipin phosphorylation

recruits HSL from the cytosols to the surfaces of the LDs, and

diglycerides are then hydrolyzed (26). FSP27-deficient cells

exhibite increased basal lipolysis and reduced lipid storage

capacity (33). The mechanisms by which perilipin1 regulates

lipolysis are generally understood. However, the roles and

mechanism of perilipin2, perilipin5, and the CIDE family in

lipolysis remain to be elucidated.
3.2 cAMP-PKA pathway

In vivo, dynamic lipolysis processes are mainly regulated by

hormones, such as catecholamines, ghrelin, adiponectin, and

insulin. Under conditions of fasting, cold stress, and other

compound treatment, norepinephrine is released from

sympathetic nerve terminals. b-AR agonists, such as

epinephrine, norepinephrine, and dopamine, upregulate cyclic

AMP (cAMP) by linking various AR subtypes to the G-protein

receptor complex that controls adenylate cyclase in the cell

membrane. Thereafter, protein kinase A (PKA) is activated by

cAMP (34). PKA phosphorylates both HSLs at Ser563, Ser659,
FIGURE 1

TG synthesis and metabolism.
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and Ser660, thereby activating them and promoting their

translocation from the cytoplasm to the surfaces of LDs (35).

cAMP degradation is mediated by phosphodiesterase (PDE).

Insul in inhibits l ipolysis mainly by activating the

phosphoinositide 3-kinase/protein kinase B/PDE 3B (PDE3B)

pa thway , wh i ch l eads to p-HSL and p-pe r i l i p in

dephosphorylation (36). In addition, ligands of Gi protein-

coupled receptors, such as succinic acid, nicotinic acid, beta-

hydroxybutyric acid, and neuropeptide Y, inhibit the formation

of cAMP by binding to their receptors, thereby exerting an anti-

lipolytic effect.
3.3 cGMP-PKG

Cyclic guanosine 3’5’-monophosphate (cGMP) is an

important intracellular secondary messenger of hormone-

induced lipolysis. Atrial and b-type natriuretic peptides are

nitric oxide (NO) donors that stimulate lipolysis in adipocytes

via the cGMP/PKG pathway (8). PKG phosphorylates proteins

associated with lipolysis, including HSL and perilipin, thereby

promoting TG breakdown (37). The cGMP is also involved in

TNF-a (iNOS/NO/GC/cGMP-dependent pathway)- and

endothelin-1 (GC/cGMP/Ca2+/ERK/CaMKIII signaling

pathway)-induced lipolysis in adipocytes (38–40). Few studies

have reported on the involvement of cGMP/PKG in lipolysis

regulation. Moreover, the roles of cGMP/PKG in lipolytic

enzymes regulation and LDAPs remain to be clarified.
3.4 Mitogen-activated protein kinase

The mitogen-activated protein kinase (MAPK) family,

which including extracellular signal-regulated kinases (ERKs),

jun aminoterminal kinase (JNK), and p38 mitogen-activated

protein kinases (p38) plays vital roles in adipogenesis and

lipolysis. (b−AR) stimulation by catecholamine activates

ERK1/2, which is sufficient to induce lipolysis by direct HSL

phosphorylation at Ser600. JNK regulates lipolysis. JNK1/2

deficiency accelerates basal lipolysis in mouse adipocytes (41).

The MEK1/2-ERK1/2 pathway controls TNF-a-stimulated

lipolysis in human adipocytes (42).
3.5 AMPK pathway

AMPK is a Ser/Thr protein and an important regulatory

sensor of cellular energy metabolism. Activated AMPK inhibits

sterol regulatory element binding protein-1, CCAAT/enhancer

binding protein alpha, peroxisome proliferator activated

receptor gamma, and acetyl-CoA carboxylase (ACC). Hence,

AMPK suppresses adipocyte differentiation (43). AMPK also

phosphorylates ATGL Ser406, which promotes TG
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decomposition (44). However, the roles of AMPK in

regulating TG lipolysis in adipocytes are controversial. AMPK

may phosphorylate HSL at Ser565 to inhibit phosphorylation at

HSL Ser660 and Ser563. In this manner, it reduces HSL activity

and suppresses lipolysis (45). AMPK is implicated in chaperone-

mediated autophagy which selectively degrades perilipins and

initiates lipolysis (46). Therefore, proteins and signaling

pathways that modulate AMPK expression and activity, such

as SIRT (47) and SIRT3 (48), mobilize TG in adipocytes.

Protein kinase C (49), Ca2+ (50), inositol hexakisphosphate

kinase-1 (51), transient receptor potential vanilloid channels (38,

52), and endoplasmic reticulum (ER) stress (53) regulate

lipolysis in adipocytes either alone or by interacting with the

aforementioned signaling pathways (Figure 2).
4 Natural products involved in
lipolysis

The structural diversity of natural products determines their

wide range of pharmacological activity. Natural products may be

used to treat obesity and its associated metabolic diseases.

Traditional and complementary medicines including various

herbs and extracts have been widely used to prevent and treat

metabolic disorders (54, 55). Flavonoids (56), alkaloids (57),

terpenoids (58), and polyphenols (59) stimulate lipolysis in

adipocytes, thereby causing weight loss and improving

metabolic status. Their modes of action involve the PKA-HSL,

PKC, AMPK, MAPK, and other signaling pathways.
4.1 Natural products promote lipolysis

4.1.1 Flavonoids
Flavonoids comprise a large family of natural substances

sharing a molecular structure characterized by at least one

phenolic ring. Flavonoids are reputed for their health benefits.

Epigallocatechin-3-gallate (EGCG) is a polyphenolic catechin in

green tea that improves the lipid prolife and reduces body weight

(60). EGCG inhibits adipogenesis and adipocyte differentiation,

reduces energy intake, and increases energy expenditure and

lipolysis (61, 62). EGCG-stimulated lipolysis is mediated by

activating HSL (63), ERK1/2 (64), and p-AMPK (65).

Lipophagy is also associated with EGCG-induced lipolysis.

Rab7 knockdown attenuates EGCG-dependent lipid reduction

(65). However, a clinical trial demonstrated no effect of EGCG

on obesity reduction, lipolysis, or white adipocyte browning in

humans (66).

Kaempferol (67), apigenin (68), genistein (69), morusin (70),

medicarpin (71), and myricetin (72) commonly occur in fruits,

vegetables, and tea. These flavonoids have anti-obesity and pro-

lipolysis efficacy. Elevated lipolysis upregulates thermogenic
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genes and increases mitochondrial biogenesis by supplying FFAs

for mitochondrial b-oxidation. Apigenin activates lipolysis via

the ATGL/FOXO1/SIRT1 pathway and increases FFA

consumption by upregulating fatty acid oxidation (FAO)

(AMPK/ACC), thermogenesis, and browning (UCP-1, PGC-

1a) (68). Lipolysis is also associated with activated BAT or

beiging which is regarded as an alternative strategy against diet-

induced obesity. Xanthohumol (73), apigenin (68), and EGCG
Frontiers in Endocrinology 05
(65) inhibit adipogenesis, stimulate adipocyte lipolysis, and may

act as browning or beiging agents because they upregulate the

thermogenic protein UCP1 (Table 1).

4.1.2 Alkaloids
Consumption of coffee, ephedrine, or capsaicin increases

lipolytic responses, raise metabolic rates, and increase energy

expenditure and weight loss (74, 75). Caffeine is the main
frontiersin.org
FIGURE 2

Signaling pathways regulating lipolysis in adipocytes.
TABLE 1 Lipolytic effects and modes of action of flavonoids.

Compound Model Concentration Effect Mechanism Reference

EGCG 3T3-L1 adipocytes;
C3H10T1/2 cells

10 µM Adipogenesis inhibition
Lipophagy activation and adipocyte
browning

Increasing p-AMPK
Lipophagy mediates EGCG-induced
lipolysis

Kim et al. (65)

3T3-L1 adipocytes 10 µM Lipolysis promotion Increasing HSL Lee et al. (63)

Rat primary adipocytes 2.79 µM Lipolysis promotion Increasing p-ERK1/2 Ogasawara et al.
(64)

Kaempferol 3T3-L1 adipocytes 60 mM Lipolysis promotion
Adipogenesis inhibition

Increasing ATGL and HSL Torres-Villarreal
et al. (67)

Apigenin HFD-Fed mice 0.04% Increasing lipolysis, thermogenesis,
and browning

Increasing ATGL, SIRT1, and p-
AMPK

Sun et al. (68)

Myricetin 3T3-L1 adipocytes 50 and 100 mM Increasing lipolysis Decreasing perilipin1
Increasing p-p38 and p-JNK

Wang et al. (72)

Genistein Primary rat adipocytes 0.1 and 1 mM Increasing lipolysis PKA-mediates, genistein-induced
lipolysis

Szkudelska et al.
(69)

Morusin 3T3-L1 and primary
adipocytes

5, 10 and 20 mM Lipolysis promotion
Adipogenesis inhibition

Increasing HSL, ATGL, and p-
perilipin expression

Lee et al. (70)

Medicarpin BAT cells (10 mM) Lipolysis promotion PKA-mediates, medicarpin-induced
lipolysis

Imran et al. (71)

Xanthohumol 3T3-L1 and primary human
adipocytes.

25 mM Adipogenesis suppression
Increasing lipolysis and white
adipocyte beiging

AMPK signaling pathway mediates
lipolysis

Samuels et al. (73)
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alkaloid in tea, coffee, and cacao. It decreases body fat, improves

glucose tolerance and insulin sensitivity (76), and increases

lipolysis by raising cAMP levels and upregulating lipolytic

enzymes (77). Ephedrine is an a- and b-adrenergic receptor

agonist with efficacy as a bronchodilator. It also activates the b-
adrenergic receptors, contributing to lipolysis (78). Capsaicin

analogs significantly increase cAMP levels and PKA activity in

BAT (79). While ephedrine, caffeine, capsaicin, and synephrine

strongly induce lipolysis, they are also associated with various

cardiovascular and gastrointestinal side effects when they are

administered for weight loss (80). Therefore, novel lipolytic

compounds with minimal adverse react ions meri t

further investigation.

Berberine (BBR) is an isoquinoline alkaloid derived from the

Chinese herb Coptis chinensis. It has anti-obesity, anti-diabetic,

and anti-hyperlipidemic efficacy. BBR stimulates basal lipolysis

in 3T3−L1 adipocytes by upregulating ATGL via the AMPK

pathway (81, 82). However, Zhou et al. found that BBR

attenuates isoprenaline-stimulated lipolysis in 3T3−L1

adipocytes by reducing phosphodiesterase-3B and -4

inhibition, thereby decreasing cAMP production and

inhibiting HSL activation (83). Trigonelline (N-methylnicotinic

acid) is a pyridine derivative that increases brown and beige fat-

specific markers as well as mitochondrial biogenesis in 3T3-L1

adipocytes (57). Trigonelline as well as cordycepin from

Cordyceps militaris promotes white adipocytes beiging and

browning and increases lipolysis by various mechanisms (57,

84) (Table 2).
Frontiers in Endocrinology 06
4.1.3 Terpenoids
Terpenoids comprise five-carbon isoprene units and have

diverse effects on obesity and its associated metabolic diseases.

Triterpenoids include 18b-glycyrrhetinic acid (18b-GA) (88),

ursolic acid (89), acetyl-keto-b-boswellic acid (AKBA) (90),

alisol A 24-acetate (AA-24-a) (91), celastrol (92), and betulinic

acid (93). All of these reduce neutral lipids in the cytosol and

increase FFA release. Madecassoside (94), tanshinone 1 (95),

triptolide (58), crocin (96), guggulsterone (97), bilobalide

(98), a-cubebenoate (99, 100), betulinic acid (93),

fucoxanthinol (101), widdrol (102), ginkgolide C (103), and

illudins C2 and C3 (104) could all potentially treat obesity

either by inhibiting adipocyte differentiation and lipogenesis or

by increasing lipolysis. The LDAP (88–90), PKA (89, 90),

AMPK (96, 98), and PKC-MEK-ERK (102) pathways are

involved in the lipolytic mechanisms induced by these

compounds (Table 3).

Celastrol and triptolide are the main bioactive constituents

in the root of Tripterygium wilfordii. The administration of

celastrol and triptolide reduces body and fat weight, suppresses

lipogenesis (58, 92), increases heat production in BAT, and

enhances lipolysis (58). Celastrol rapidly lowers body weight by

covalently inhibiting GRP78 chaperone activity and

disconnecting ER stress signal transduction (92). Elevated

lipolysis induced by triptolide is mediated by p53 which

directly binds and promotes the transcription of the ATGL

promoter (58). Although triptolide and celastrol have good

anti-obesity efficacy, their potential toxicity must be established.
TABLE 2 Lipolytic effects and modes of action of alkaloids.

Compound Animal or cell model Concentration Effect Mechanism Reference

BBR Differentiated porcine adipocytes 10-40 mM Lipolysis and FFA oxidation
promotion

Increasing p-ATGL
Decreasing perilipin
AMPK mediates BBR-induced
lipolysis

Yang et al.
(82)

Trigonelline 3T3-L1 cells 75 mM Promoting lipolysis, browning, and
FFA oxidation
Decreasing adipogenesis and
lipogenesis

b3-AR/PKA activation
PDE4 inactivation

Choi et al.
(57)

Capsaicin 3T3-L1 cells 10 mM Promoting lipolysis Increasing HSL and UCP2 Lee, et al. (85)

HFD-Fed transient receptor potential
vanilloid 1 deficient (TRPV1-/-) mice
3T3-L1 cells

Animal: chow plus
0.01% capsaicin
Cell: 1 mmol/L

Promoting lipolysis TRPV1 mediates capsaicin-induced
lipolysis

Chen, et al.
(86)

Caffeine SD rats 5 mg/kg Promoting lipolysis N.A. Kobayashi-
Hattori et al.
(87)

Cordycepin Animal: S-D rats
Cell: 3T3-L1 cells

Animal: 12.5, 25,
and 50 mg/kg
Cell: 1.563-25 mg/
mL

White adipocyte beiging and
browning
Blocking lipid droplet formation
and promoting lipid droplet
degradation

Decreasing Fsp27, perilipin 3,
perilipin 2, Rab5, Rab11, CGI-58 and
perilipin 1
Increasing ATGL

Xu et al. (84)
f

HFD, high-fat diet; N.A., not available.
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TABLE 3 Lipolytic effects and modes of action of terpenoids.

Compound Animal or cell model Concentration Effect Mechanism Reference

18b-GA 3T3-L1 cells 40 mM Inhibiting adipogenic
differentiation
Increasing lipolysis

Increasing HSL, ATGL, perilipin and
p-HSL expression

Moon et al.
(88)

Ursolic acid Primary rat adipocytes 25 and 50 mM Increasing lipolysis Increasing HSL translocation and
ATGL expression
Decreasing perilipin1
PKA participates in lipolytic action of
UA

Li et al. (89).

AKBA 3T3-L1 adipocytes 30 mM Increasing lipolysis Increasing ATGL and HSL
Decreasing perilipin

Liu et al.
(90)

Betulinic acid Rat adipocytes 10 and 25 mM Increasing lipolysis Decreasing PDE activity Kim et al.
(93)

AA-24-a 3 T3-L1 cells 30, 40 and 50 mM Increasing lipolysis PKA- and ERK- mediated AA-24-A-
promote lipolysis

Lou et al.
(91)

Celastrol C57BL/6N mice fed HFD 7.5 mg/kg/d for 21 d Inhibiting lipogenesis
Increasing lipolysis and
thermogenesis

Inhibiting endoplasmic reticulum (ER)
stress

Luo et al.
(92)

3T3-L1 adipocytes 400 nM Inhibiting adipocyte
differentiation and
adipogenesis

N.A. Choi et al.
(105)

Tanshinone 1 Immortalized brown adipocytes (iBAs)
and differentiated C3H10T1/2 cells

15 mM Reducing HFD-induced
obesity
Activating brown adipocytes
Increasing lipolysis and
browning

Increasing HSL and p-AMPK Jung et al.
(95)

Cis-Guggul-
sterone

3T3-L1 adipocytes 25 and 50 mM Inhibiting lipid content
Increasing lipolysis

Increasing p-ERK1/2 Yang et al.
(97)

Madecas-
soside

KKay/TaJcl obese diabetic mice 40 mg/kg/d Inhibiting lipogenesis.
Promoting lipolysis and
thermogenesis

Increasing p-HSL, p-AMPK Sun et al.
(94)

Triptolide Cell: 3T3-L1 and porcine adipocytes
Animal: C57BL/6J fed HFD

Cell: 10 nM Animal:
0.2 mg/kg for 7 wks

Reducing fat tissue
accumulation
Increasing heat production
Increasing lipolysis

P53-mediated ATGL transcription
responsible for triptolide-induced
lipolysis

Wang et al.
(58)

Crocin Cell: 3T3-L1 adipocytes Animal: db/db
mice

Cell: 20 mM
Animal: 20 mg/kg/d

Increasing lipolysis
Inhibiting preadipocyte
differentiation and
adipogenesis

AMPK mediates crocin-trigged
lipolysis

Gu et al.
(96)

Bilobalide 3T3-L1 adipocytes 25 and 100 mM Inhibiting preadipocyte
differentiation and
adipogenesis
Increasing lipolysis

Increasing ATGL, pHSL, pACC1/
ACC1, and pAMPK/AMPK

Bu et al.
(98)

a-Cubebe-
noate

Primary adipocytes and 3T3-L1
adipocytes

10, 20, and 30 mg/mL Inhibiting adipogenesis and
lipogenesis
Increasing lipolysis

Increasing pHSL, ATGL, and p-
perilipin

Bae et al.
(99)

a-Cubebenol 3T3-L1 adipocytes 7.5, 15, and 30 mg/mL Inhibiting adipogenesis
Increasing lipolysis

Increasing cAMP, ATGL, p-perilipin,
and p-HSL
Decreasing perilipins and PDE4

Lee et al.
(100)

Illudins C2
and C3

3T3-L1 adipocytes 5 and 10 mM Suppressing adipogenesis
Increasing lipolysis

PKA and ERK mediate illudins C2 and
C3-stimulated lipolysis

Kim et al.
(104)

Fuco-
xanthinol

3T3-L1 adipocytes 5 and 10 mM Decreasing TG content
Increasing lipolysis

Increasing ATGL, pHSL, pACC1/
ACC1, and pAMPK/AMPK
Decreasing CGI-58, ATGL, p-HSL, and
perilipin

Yoshikawa
et al. (101)

Widdrol 3T3-L1 adipocytes 10-25 mg/mL Increasing lipolysis PKC and MEK/ERK pathway mediated
Widdrol-induced lipolysis

Jeong et al.
(102)

Ginkgolide C 3T3-L1 adipocytes 10, 30 and 100 mM Suppressing adipogenesis and
promoting lipolysis

Increasing ATGL, p-HSL, and p-
AMPK

Liou et al.
(103)
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4.1.4 Other compounds
Resveratrol (RSV) (106), 2,4,5-trimethoxybenzaldehyde

(2 ,4 ,5-TMBA) (11) , raspberry ketone (RK) (107) ,

cinnamaldehyde (108), lipoic acid (109), syringic acid (110),

6’-O-acetyl mangiferin (111), ferulic acid (112), and magnolol

(113) have all demonstrated potential prophylactic and

therapeutic efficacy against obesity. RSV directly affectes

isoprenaline-stimulated lipolysis in vitro in fac cells from

overweight humans (114). It also increases FFA and glycerol

content in high-fat diet (HFD)-fed mice or 3T3-L1 adipocytes

(106). Arrate et al. showed ATGL-mediated, RSV-induced

lipolysis in vivo (115). However, a randomized, double-blind,

crossover study revealed that RSV improved adipose tissue

lipolysis and decreased plasma FFA and glycerol levels (116).

This apparent contradiction in the anti-obesity effects of RSV in
Frontiers in Endocrinology 08
rodents and humans necessitates the re-evaluation of RSV as a

putative anti-obesity drug.

RK has a structure resembling those of capsaicin and

synephrine and can prevent HFD-induced obesity (117). 3T3-

L1 adipocytes treated with 10 µM RK presented with elevated

FAO and inhibition of lipid accumulation (118). Magnolol is the

main bioactive compound in Magnolia officinalis. Its lipolytic

effect is mediated by the calcium/calmodulin-dependent protein

kinase (CaMK)/ERK1/2 signaling pathway and not by PKA

(119). Magnolol may cause browning in white adipocytes and

augment thermogenesis (113) (Table 4). Further research in the

form of animal models is required to validate the lipolytic

potential and clinical value of the foregoing compounds.

The lipolytic effects of the compounds above have already

been established in in vivo or in vitro experiments. For
TABLE 4 Lipolytic effects and modes of action of other compounds.

Compound Animal or cell model Concentration Effect Mechanism Reference

2,4,5-TMBA 3T3-L1 adipocytes 100 mg/mL Suppressing differentiation and
adipogenesis
Increasing lipolysis

Reducing perilipin
Increasing HSL

Wu et al. (11)

Raspberry
ketone

Animal: ICR mice +HFD
Cell: Primary adipocytes

Animal: 1) HFD
including 0.5, 1, or 2%
RK
2) HFD containing 1%
RK
Cell: 10−3 mM and 10-4

mM

Preventing obesity
Increasing norepinephrine-induced
lipolysis

Increasing HSL protein
translocation

Morimoto (117).

3T3-L1 adipocytes 10 mM Increasing FAO and lipolysis
Suppressing lipid accumulation

N.A. Park et al. (118)

3T3-L1 adipocytes 10, 20, and 50 mM Inhibiting adipogenic and lipogenesis
Increasing lipolysis

Increasing ATGL and HSL Park et al. (120)

RSV Human adipocytes 100 mM Increasing isoprenaline-induced lipolysis
Impairing insulin-mediated anti-lipolysis

N.A. Gomez-Zorita
et al. (114)

Animal: C57BL/6J mice +HFD
Cell: 3T3-L1 adipocytes

Animal: 15 mg/kg
Cell: 20 mM

Promoting lipolysis
Improving metabolic abnormalities

N.A. Gong et al.
(106)

Cell: 3T3-L1 adipocytes, human
SGBS adipocytes
Tissue: fat pads from wild-type,
ATGL-/- and HSL-/- mice

100 mM Increasing basal-, isoproterenol-, and
isoproterenol-stimulated lipolysis

ATGL mediates RVS-
induced lipolysis

Lasa et al. (115)

Lipoic acid 3T3-L1 adipocytes 250 mM Increasing lipolysis cAMP-PKA mediates LA-
induced lipolysis

Fernández-
Galilea et al.
(109)

Cinnamal-
dehyde

Animal: Swiss albino mice fed
HFD.
Cell: 3T3-L1 adipocytes

Animal: 10 mg/kg/d for
14 wks
Cells: 20 mM and 40 mM

Inhibiting preadipocyte differentiation and
lipid accumulation in adipocytes
Increasing lipolysis and browning

Increasing HSL
Decreasing Plin1

Khare et al.
(108)

Magnolol Sterol ester (SE)-loaded 3T3-L1
preadipocytes

5-60 mM Promoting lipolysis CaMK/ERK mediate
magnolol-induced lipolysis

Huang et al.
(119)

3T3-L1 adipocytes Promoting lipolysis, browning, and
thermogenesis

Increasing p-HSL, PKA, p-
AMPK, Plin1

Parray, et al.
(113)

Syringic acid 3T3-L1 adipocytes 1000 mmol/mL Promoting lipolysis N.A. John et al. (110)

6’-O-acetyl
mangiferin

3T3-L1 adipocytes 12.5, 25, and 50 mM Promoting lipolysis Increasing p-HSL, ATGL,
and p-AMPK

Sim et al. (111)

Ferulic acid 3T3-L1 adipocytes 10 mM Inhibiting lipogenesis and promoting
lipolysis

Increasing p-perilipin, p-
HSL

Kuppusamy
et al. (112)
N.A., not available.
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compounds with pro-lipolytic activity tested only in vivo,

preclinical pharmacodynamics and safety evaluations are

required. In pharmacodynamics experiments, primary

outcome measures, such as change in body weight, food

intake, resting metabolic rate, blood lipids, and biochemistry,

need to be tested. In addition to general and specific toxicities of

drugs, the safety evaluation should pay special attention to liver

and kidney toxicity caused by long-term use of lipolysis agonists,

as well as pancreatic damage, insulin resistance, and

cardiovascular events that may be caused by elevated FFA.
Frontiers in Endocrinology 09
4.2 Natural products that inhibit lipolysis

Adipose tissue dysfunction increases circulating FFA levels.

Elevated FFAs are often observed in patients with IR and T2DM

(9). Impaired lipogenic capacity driven by insulin signaling and

re-esterification of FFA with adipocytes results in impaired

buffering capacity for FFA and high concentrations of

circulating FFA (26). Long-term over-activation of lipolysis

may promote lipid ‘overflow ’ into the muscle, liver,

endothelium, heart, and b-cells, thereby causing muscular/
TABLE 5 Anti-lipolytic effects and mechanisms of various compounds.

Compound Animal or cell model Concentration Effect Mechanism Reference

RA 3T3-L1 adipocytes 50 mM Inhibiting adipogenesis and
lipolysis

Decreasing p-HSL-ser660 and p-perilipin A Rui et al.
(136)

AS-IV Animal: ICR mice fed HFD Animal: 50 and
100 mg/kg

Inhibiting lipolysis and hepatic
lipid deposition
Improving glucose tolerance

Decreasing cAMP
Increasing PDE3B, AMP, and Akt

Du et al.
(126)

3T3-L1 adipocytes 50, 100, and 200
mM

Inhibiting TNF-a-induced
lipolysis and improving IR

Increasing perilipin
Decreasing p-ERK1/2

Jiang et al.
(131)

Curcumin Adipose tissue
Cells: 3T3-L1 adipocytes

0.1, 1, and 10 mM Inhibiting lipolysis
Reducing lipid deposition and
IR in liver

Decreasing cAMP, p-HSL and ER stress
Increasing AMP and PDE3B

Wang et al.
(125)

3T3-L1 adipocytes 20 mM Inhibiting TNF-a or
catecholamine-induced lipolysis

Decreasing p-ERK1/2, p-perilipin, and HSL
translocation

Xie et al.
(132)

Ilexgenin A Adipose tissue 20 or 50 mg/kg Inhibiting lipolysis and hepatic
IR

Decreasing cAMP, pSer-660-HSL and ER
stress
Increasing AMP, PDE3B, pSer-565-HSL,
and p-AMPK

Li et al. (127)

BBR 3T3-L1 adipocytes 10 mM BBR-decreased isoprenaline-
and noradrenaline-induced
lipolysis

Reducing PDE inhibition Zhou et al.
(83)

RSV Obese human 150 mg/d for 30 d Inhibiting lipolysis
Increasing muscle and
decreasing hepatic lipid content

N.A. Timmers
et al. (116)

Piceatannol 3T3-L1 adipocytes, brown
adipocyte, and WAT

25 and 50 mM Inhibiting basal and
isoprenaline-stimulated lipolysis

Autophagy mediated ATGL, CGI-58, and
perilipin1 downregulation induced by
piceatannol

Kwon et al.
(140)

EPA Primary rat adipocytes, 3T3-L1
adipocytes, and rat adipose tissue

100 and 200 mM Inhibiting IL-6- and TNF-a-
induced lipolysis

Increasing pSer565 HSL
Decreasing ATGL

Lorente-
Cebrián et al.
(134)

C3G 3T3-L1 adipocytes 50 mM Inhibiting high glucose-induced
lipolysis

Increasing AMPK activity
Decreasing FoxO1-mediated ATGL
transcription

Guo et al.
(138)

Emodin 3T3-L1 adipocytes 50 mM Increasing glucose metabolism
Decreasing TNF-a-induced
lipolysis

Decreasing p-perilipin and p-ERK1/2 Zhang et al.
(133)

DDE 3T3-L1 adipocytes or human
subcutaneous adipocytes

1 and 10 mM Inhibiting basal- and TNF-a-
induced lipolysis

N.A. Nehrenheim
et al. (139)

Phillyrin 3T3-L1 adipocytes 20, 40, 80 mM Increase in glucose uptake and
decrease in TNF-a-induced
lipolysis

Decreasing p-ERK1/2
Increasing perilipin

Kong et al.
(135)

Rg5 Animal: ICR mice fed HFD
Cells: 3T3-L1 adipocytes

Animal: 50 mg/kg
Cells: 0.1, 1, 10
mM

Inhibiting lipolysis in adipocytes
and IR in muscle

Decreasing cAMP and p-PKA
Increasing PDE3B and AMP

Xiao et al.
(128)

Carnosic acid Human multipotent, adipose-
derived stem cells

10 mM Inhibiting isoprenaline-induced
lipolysis

N.A. Colson et al.
(137)
f

N.A., not available.
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hepatic IR, CVD, and impaired insulin secretion (121). For

example, adipocyte-derived FFA is involved in regulating

hepatic energy metabolism (122). FFA impairs the insulin

signaling pathway by forming diacylglycerol and ceramides

and increases gluconeogenesis via the hepatic acetyl-CoA

pathway in liver during diseased states (26, 123), which leads

to TG accumulation in the liver. In patients with adipose tissue

dysfunction, then, the inhibition of lipolysis may ameliorate IR-

and obesity-associated metabolic diseases. Thiazolidinedione

antidiabetic drugs improve insulin sensitivity and reduce

circulating FFA levels by attenuating lipolysis and FFA

release (124).

Curcumin (125), astragaloside IV (AS-IV) (126), and ilexgenin

A (127) attenuate lipolysis by modulating the cAMP/PKA/HSL

pathway. The inhibition of lipolysis in adipose tissue may improve

hepatic insulin sensitivity (125, 126). Ginsenoside Rg5 (Rg5)

suppresses lipolysis and inhibited IR in muscle (128). The

foregoing findings suggest that a decrease in adipose tissue

lipolysis mediated by natural bioactive components is a

potentially efficacious therapy for hepatic IR and related disorders.

TNF-a is a proinflammatory cytokine expressed in adipose

tissue that might link obesity and IR (129) and increases plasma

FFA levels in obesity and T2DM (130). AS-IV (131), curcumin

(132), emodin (133), eicosapentaenoic acid (EPA) (134), and

phillyrin (135) attenuates TNF-a-induced lipolysis by

suppressing p-ERK1/2 and reversing perilipin or p-perilipin

downregulation. Rosmarinic acid (RA) (136, 137), RSV (116),

BBR (83) , cyanidin-3-O-b-g lucos ide (C3G) (138) ,

dihydrodehydrodiisoeugenol (DDE) (139), carnosic acid (137),
Frontiers in Endocrinology 10
and piceatannol (140) may also inhibit lipolysis. The effects

and mechanisms of these compounds are summarized

in Table 5.
5 Conclusions and perspectives

In the present review, we summarized the effect and modes

of action of a wide range of natural products on lipolysis.

Overall, these compounds individually or synergistically affect

lipolytic enzymes, LDAPs, ER stress, and the cAMP-PKA,

MAPK, AMPK, and PKC signaling pathways (Figure 3). The

lipolytic effects of certain compounds have already been

established. Nevertheless, their influences and mechanisms in

fat synthesis and metabolism, their toxicity, and their effects on

whole-body phenotypes, appetite, energy expenditure, and

thermogenesis remain to be determined. About half the

compounds evaluated herein affect lipolytic enzyme

expression. However, in vitro enzyme activity assay and

compound-enzyme interaction data were lacking for them.

These experiments may help identify novel lipolysis inhibitors

and agonists.

Our understanding of adipocyte lipolysis has progressed

from basic knowledge of its associated enzymatic processes to

elucidtation of the dynamic and complex regulatory

mechanisms involved. Lipolysis interacts with other related

processes, including thermogenesis, adipocyte browning, and

lipogenesis. Clarification of the mechanisms of lipolysis and the

changes it causes in whole-body energy metabolism has positive
FIGURE 3

Network analysis of natural products and lipolytic pathways.
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clinical value and socioeconomic benefits in that it may help

develop modalities to prevent and treat obesity and its associated

metabolic disorders. Lipolysis regulates TG metabolism and

weight loss. Certain compounds with lipolytic activity, such

as celastrol (141), apigenin (142), cordycepin (84), and BBR

(143), have demonstrated anti-obesity efficacy. Theoretically,

activating lipolysis may be a rational therapeutic approach

for obesity. Thus far, however, no anti-obesity drugs

targeting lipolytic enzymes or its related targets have

been marketed.

The pathologies of obesity and its related metabolic

conditions are highly complex. Simply targeting lipolysis can

achieve weight loss. From the perspective of energy metabolism,

however, weight loss is the result of multiple factors, including

dietary restrictions and increases in lipolysis and energy

utilization. It remains to be established whether lipolysis

triggered by lipolytic agonists may damage certain cells,

tissues, and organs or cause complications. The ideal anti-

obesity drug should safely suppress appetite, increase lipolysis,

and activate energy expenditure. Finally, the physiological

functions of adipocytes should be rationally exploited, and

their roles during metabolic disease should be identified. For

patients with adipose dysfunction, the dynamic regulation of

lipolysis and the amelioration of adipocyte dysfunction could

improve obesity-associated metabolic conditions. For

example, AS-IV and curcumin inhibit adipose lipolysis and

thus prevent hepatic IR, which demonstrates their potential

as treatments for metabolic-associated fatty liver disease

through the regulation of lipolysis in adipose tissue during

diseased states.
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