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Abstract

The anterior cingulate cortex (ACC) is important for cognitive and sensory functions including
memory and chronic pain. Glutamatergic excitatory synaptic transmission undergo long-term
potentiation in ACC pyramidal cells after peripheral injury. Less information is available for the
possible long-term changes in neuronal action potentials or intrinsic properties. In the present
study, we characterized cingulate pyramidal cells in the layer II/lll of the ACC in adult mice. We
then examined possible long-term changes in intrinsic properties of the ACC pyramidal cells after
peripheral nerve injury. In the control mice, we found that there are three major types of pyramidal
cells according to their action potential firing pattern: (i) regular spiking (RS) cells (24.7%), intrinsic
bursting (IB) cells (30.9%), and intermediate (IM) cells (44.4%). In a state of neuropathic pain, the
population distribution (RS: 21.3%; IB: 31.2%; IM: 47.5%) and the single action potential properties
of these three groups were indistinguishable from those in control mice. However, for repetitive
action potentials, IM cells from neuropathic pain animals showed higher initial firing frequency with
no change for the properties of RS and IB neurons from neuropathic pain mice. The present results
provide the first evidence that, in addition to synaptic potentiation reported previously, peripheral
nerve injury produces long-term plastic changes in the action potentials of cingulate pyramidal
neurons in a cell type-specific manner.

Background

The anterior cingulate cortex (ACC) is important for the
affective and emotional component of physiological and
pathological pain [1-5]. Brain imaging and electrophysio-
logical studies have shown that the ACC responds to pain-
ful stimuli in humans [4,6,7] and nociceptive stimuli in
animals as well [8-10]. Activation of neurons in the ACC
produced pain-like aversive behaviors or fear memory,
while inhibition of excitatory transmission produced the

blockade of pain-aversive learning or analgesic effects
[1,5,11,12]. Moreover, there are long-term changes in syn-
aptic plasticity and transmitter release in the ACC in
chronic pain conditions: amputation causes long-term
facilitation of local stimulation-induced ACC synaptic
responses and specific loss of long-term synaptic depres-
sion [13,14]; peripheral inflammation of the hind paw
with complete Freund's adjuvant in adult mice causes the
upregulation of the postsynaptic NMDA receptor NR2B
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subunit [15]. Furthermore, increased presynaptic gluta-
mate releases were found in ACC neurons after inflamma-
tion [16] or nerve injury [17].

Neuropathic pain occurs as a consequence of the injury to
peripheral or central nervous system. Symptoms include
spontaneous pain, abnormal hypersensitivity to innocu-
ous touch (allodynia) and to noxious mechanical or ther-
mal stimulation (hyperalgesia) [18,19]. Clinical
neuropathic pain can arise from a variety of different dis-
ease states (e.g., diabetic neuropathy, trigeminal neural-
gia, postherpetic neuralgia, AIDS) or traumatic injuries,
nerve compression, or chemotherapy [20]. Long-term
plastic changes along the sensory pathways are suggested
to contribute to the neuropathic pain, including the
peripheral nociceptors, spinal dorsal horn, subcortical
areas and cortical areas [21-23]. Of particular interest here
is that the ACC is undergoing dramatic changes under
chronic pain conditions [21,22]. However, little is known
about the intrinsic electrophysiological properties of ACC
neurons and possible changes in intrinsic properties after
nerve injury. One major hypothesis is that altered neuro-
nal excitability after peripheral nerve injury may contrib-
ute to the plastic changes of ACC neurons under chronic
pain conditions. To test the idea, by using the whole-cell
patch-clamp recordings in slices under current clamp
mode, we examined the firing activity of ACC neurons in
a mouse model of neuropathic pain reported previously
[24].

Results

We performed whole-cell patch-clamp recordings for the
layer II/III neurons in the ACC of adult mice (Fig 1A, B).
We decided to focus on Layer II-III cells, because that (i)
neurons in this regions receive sensory inputs from thala-
mus [25,26]; (ii) our previous studies showed that syn-
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apses in Layer II-III undergo plastic changes after LTP
induction [15,16,21,22,27] or peripheral nerve injury
[17]. After a stable recording was obtained, these neurons
were electrophysiologically characterized and simultane-
ously injected with biocytin for histochemical processing
and morphological analysis (Fig. 1C). All neurons
included in the present study are pyramidal cells, of which
61 pyramidal cells were from slices of neuropathic pain
mice (n = 12 mice) and 81 pyramidal cells were from
slices of non-operated (n = 10 mice) and sham-operated
mice (n = 6 mice).

General characteristics of pyramidal cells in layer I/l of
ACC

In many excitable cells, action potentials are followed by
after-potentials that regulate the excitability of the cell for
periods ranging from a few milliseconds to several sec-
onds [28,29]. In the ACC neurons, we found different pat-
terns of afterhyperpolarization (AHPs), with or without
afterdepolarization (ADP), followed individual action
potentials. Three distinct groups of pyramidal neurons in
layers II/III of the ACC were classified based on their
evoked firing patterns in response to depolarizing pulses
and characteristics of the AHPs followed the action poten-
tials (see Figs. 2, 3 and 4 for examples). They have been
called regular spiking (RS), AHPs without ADP; interme-
diate (IM), AHPs with ADP; and intrinsic bursting (IB)
cells, AHPs with both ADP and the burst activity triggered
by the ADP. For morphological properties of these cells
(Fig. 2B, 3B and 4B for examples), we found that all
pyramidal cells had a prominent apical dendrite, which
ascended toward the superficial layers, gave off some
branches usually within layer I and formed apical tufts.
Their basal dendrites were mainly located within the same
layer as the soma. In most cases, the main axon was
directed toward the deeper layers, such as V and VI.

C

iviee

Whole cell patch clamp recordings were made in the anterior cingulate cortex (ACC). A, Representative coronal
section showing the placement of a whole-cell patch recording in a cingulate slice; B, Diagram representation of the location of
the recorded neurons in layer ll/lll; C, Photomicrograph of a representative biocytin--labeled layer Il/lll ACC pyramidal neuron
as visualized with confocal laser scanning microscopy.
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Figure 2

Characteristics of the typical RS neurons in the ACC. A, Schematic representation of the location of the recorded neu-
rons (a and b); B, Biocytin profiles of two representative ACC RS pyramidal neurons as visualized with confocal laser scanning
microscopy. Scale bar = 50 um. C, Superimposed current-clamp traces in response to a series of intracellular current pulses
(1000 ms, 80 pA per step). The neurons exhibited an AHP with a slow component. Note that an obvious deflection was
observed during the hyperpolarizing phase; D, |-V plots constructed from the values of traces shown in (C) displayed linearity
in the membrane voltage range between -65 and -90 mV; E, Traces evoked by the same current injections (400 ms, 100 pA) as
the neurons was depolarized from -85 to -50 mV. The more the cells were depolarized, the more the action potentials were
elicited by the same depolarizing pulse. Each spike was followed by a sSAHP that lasted for tens of milliseconds. Note that the
black traces were for cell (a) and gray traces for cell (b); F, Action potential trains were evoked by 400 ms current injection of
160, 180 and 200 pA from the holding potential of -70 mV. Note the increase in the frequency of action potential discharge
with increasing current injections. Note that the black traces were fro cell (a) and gray traces for cell (b).
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Regular Spiking (RS) neuron

Twenty ACC neurons (24.7%) were classified as RS cells.
The averaged resting potential of RS cells was -74.4 + 2.3
mV and their averaged action potential threshold was -
33.4 + 1.0 mV (see Table 1). The voltage-current relation-
ships of these typical RS neurons were linear at membrane
potentials between -65 and -90 mV (Fig. 2D), yielding a
mean slope resistance of 120.1 + 13.6 MQ. In response to
an injection of a suprathreshold depolarizing current
pulse, RS neurons typically fired single spikes followed by
a slow component and an obvious deflection of fAHP and
ADP (<0.5 mV) during the hyperpolarizing phase (Fig.
2C). The mean amplitude for the sAHP was -12.5 + 0.7
mV (from -6.8 mV to -16.2 mV) and the time to peak of
the sAHP was 73.3 + 7.4 ms (from 43.3 to 125.7 ms). In
RS cells, a just suprathreshold depolarizing current could
only evoke single action potentials and no spike bursting
complex could be evoked even with carefully grading of
injected current intensity near the threshold. Gradually
holding the cell to more positive potentials, RS cells fired
more spikes in response to the same depolarizing pulses
with longer interspike interval between subsequent spikes
(Fig. 2E). At the resting membrane potential (RMP),
stronger depolarization also triggered a train of single
spikes with marked spike frequency adaptation (Fig. 2F).

Intrinsic bursting (IB) neuron

Twenty five ACC neurons (30.9%) were classified as IB
cells. The passive membrane properties of bursting cells
were similar to those of the RS and IM cells (Table 1). IB
neurons had a mean RMP of -74.7 + 1.1 mV, a mean
action potential threshold of -36.0 + 0.7 mV and a linear
voltage-current relationship between -60 and -85 mV with
a mean slope resistance of 129.5 + 8.0 MQ (Table 1).
When activated from the resting membrane potential by
an intracellular current pulse, the action potential was fol-
lowed by an AHP with a big ADP (n = 14, 3.4 + 0.4 mV),
which can facilitate an action potential and therefore,
form a burst response (Fig. 3C, F). The ability of IB cells to
generate bursting is the primary physiological properties
that distinguish bursting cells from the two other types.
The character of the burst was not always all or none.
Some cells (n = 14), in response to a just superthreshold
current injection, displayed single spikes with prominent
ADP. However, a burst can always be evoked by slightly
increasing the current intensity. When the membrane
potential was gradually depolarized, pulses of current
could only elicit regular spaced spike (Fig. 3E), suggesting
that, in IB cells, the generation of burst during a stimulus
was dependent upon the previous voltage of the mem-
brane. At the constant membrane potential of -70 mV,
lower current intensity elicited initial doublet of action
potentials, while higher current evoked an initial burst
followed by a train of current potential (Fig. 3F).

http://www.molecularpain.com/content/5/1/73

Intermediate (IM) neuron

By far the most frequently recorded type of neurons in lay-
ers II/1II of the ACC (n = 36, 44.4%) was classified as IM.
The reason why these cells are called intermediate is that
their electrophysiological characteristics were intermedi-
ate between RS and IB cells (Fig. 4). For the intrinsic mem-
brane properties of IM cells, there was no significant
difference from that of typical RS cells (Table 1). The aver-
aged RMP of IM cells was -70.8 + 1.8 mV. The mean input
resistance was 122.1 + 12.1 MQ and the mean action
potential threshold was -35.2 + 0.6 mV. In response to a
just superthreshold current, the action potential of these
neurons was followed by a fAHP which was subsequently
followed by a small ADP (Fig. 5E; n = 36, 1.5 + 0.2 mV)
and a subsequent sSAHP (Fig. 4C), a key facture that distin-
guish the IM cells from RS cells. The presence of ADP is
considered to indicate a tendency for a cell to fire in
bursts. However, IM cells did not generate spike bursts
when RMP was manipulated over a wide range (from -85
mV to -55 mV) with tonic current injection. At more depo-
larized potentials (> -60 mV), the fAHP and the ADP
diminished and the spike trains showed a progressive
adaptation in frequency, which was indistinguishable
from RS cells (Fig. 4E). At the RMP, in response to differ-
ent intensities of current pulses, cells fired trains of spikes
with the first spike followed by the postspike fAHP, ADP,
and sAHP (Fig. 4F).

Differential electrophysiological properties among RS, IM

and IB pyramidal cells

Although RS, IM and IB pyramidal cells showed similari-
ties in many prospects of electrophysiological properties,
such as resting membrane potential, membrane resist-
ance, current threshold and action potential amplitude,
these neurons exhibited significant differences in some of
the intrinsic properties. In general, those cells had the low-
est membrane excitability for RS cells and the highest
membrane excitability for IB cells with IM cells in
between. To evoke action potential, RS cells needed signif-
icantly higher mean intensity of current injection (112.3 +
8.5 pA) as compared with IB cells (75.8 + 3.7 pA; P< 0.01,
one way ANOVA) and a trend toward a lower mean inten-
sity of current injection than IM cells (97.4 + 7.6 pA; P =
0.08, one way ANOVA; Fig. 5F). In response to the same
intensities of current pulses, RS cells generated the small-
est number of spikes with the lowest frequency in both
initial and steady state spike firing (Fig. 5A, D) as com-
pared with IM (Fig. 5B, D) and IB (Fig. 5C, D) cells. IB
cells exhibit the larger ADP (Fig. 5E; P < 0.001, one way
ANOVA) as compared with IM cells and RS cells, which
facilitated IB cells in generation of an initial doublet of
action potentials with high initial frequency (Fig. 5C, D).
At the same current injection, IB cells also showed the
highest frequency in steady state spike firing and gener-
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Figure 3

Electrophysiological characteristics of typical IB ACC neurons. A, Schematic representation of the location of the
recorded neurons (a and b); B, Biocytin profiles of two representative IB ACC pyramidal neurons as visualized with confocal
laser scanning microscopy. Scale bar = 50 um; C, Superimposed current-clamp traces in response to a series of intracellular
current pulses (1000 ms, 80 pA per step). The neurons exhibited an AHP with a big afterdepolarization (ADP), which could
facilitate an action potential and therefore, formed a burst response; D, |-V plots constructed from the values of traces shown
in (C) displayed a linear response in the voltage range between -60 and -85 mV; E, Traces evoked by the same current injec-
tions (400 ms, 100 pA) as the neurons were depolarized from -85 to -50 mV. When held at a hyperpolarized membrane poten-
tial, the burst response was evoked in response to the depolarizing current injections. By contrast, with gradual depolarization
(Vi 2 -65 mV) (left to right), a train of single spikes was evoked in response to the same current pulse and the burst was inac-
tivated. The dotted line denotes the resting membrane potential. Note that the black traces were for cell (a) and gray traces
for cell (b); F, Action potential trains were evoked by 400 ms current injection of 60, 80 and 100 pA from the holding potential
of -70 mV. Note that a lower current intensity evoked an initial doublet of action potentials while higher current evoked an ini-
tial doublet of action potentials followed by a regular discharge. Note that the black traces were for cell (a) and gray traces for

cell (b).
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ated highest number of spikes among those three groups
of cells (Fig. 5A-D).

For properties of single action potential, the half width of
the action potential of RS cells (Fig. 5G, 1.66 + 0.07 ms)
was significantly wider than that in IB neurons (Fig. 5G,
1.43 + 0.04 ms, P < 0.05, one way ANOVA) and in IM cells
(Fig. 5G, 1.46 = 0.05 ms, P < 0.01, one way ANOVA). IB
cells (see Table 1) also showed faster kinetics with decay
time (1.53 + 0.08 ms) shorter than either RS (2.09 + 1.12
ms, P < 0.001, one way ANOVA) cells or IM cells (1.63 +
0.06 ms, P < 0.01, one way ANOVA).

Intrinsic properties of ACC pyramidal neurons after
neuropathic pain

To investigate whether or not the intrinsic properties of
ACC pyramidal neurons are altered after nerve injury, we
studied the firing patterns and action potentials in mice
after undergoing neuropathic pain. Animals with the
sham surgery were used as the control. Recordings were
performed between 7-14 days after the nerve injury, a
time when the maximal behavioral sensitization can be
observed [24]. Before electrophysiological experiments,
behavioral allodynic responses were always evaluated.
First, we found that there was no significant change the in
proportion of cell types in the ACC of neuropathic pain
mice as compared with control mice. Similar percentages
were found among IM cells (neuropathic: 47.5% V.S. con-
trol: 44.4%), IB cells (neuropathic: 31.2% V.S. control:
30.9%) and RS cells (neuropathic: 21.3% V.S. control:
24.7%).

Next, we compared the passive membrane and the single
action potential properties. Figure 6A-C show representa-
tive recordings of APs elicited in RS, IM, and IB neurons
by a 400 ms depolarizing current. There were no signifi-
cant differences in parameters tested, such as RMP, mem-
brane resistance, current threshold, action potential
amplitude, half width, rise time and decay time (Fig. 6D-
E, see Table 1). Finally, we compared the firing pattern of
these three types of pyramidal cells in neuropathic and
control animals (Fig. 7). Membrane excitability of RS and
IB neurons from neuropathic or control animals was
indistinguishable (Fig. 7B, D, F). For IM cells, however,
with the same current injection, neuropathic pain cells (n
=29 cells) showed higher initial frequency compared with
control cells (n = 36, p < 0.05, two-way ANOVA; Fig. 7A).
No difference was found for the steady state frequency of
IM cells between neuropathic and control mice (Fig. 7C).
Moreover, neuropathic pain cells (n = 29) produced more
spikes for the same current injection compared with con-
trol cells (n = 36, p < 0.05, two-way ANOVA; Fig. 7E).

Discussion
The present study is the first to systematically characterize
the action potential properties of ACC pyramidal cells and

http://www.molecularpain.com/content/5/1/73

their alterations after nerve injury in adult mice. Consid-
ering the cumulative reports of studies using transgenic
and gene knockout mice [27,30], the current study pro-
vides important information of intrinsic properties for
mouse ACC neurons. Three main electrophysiological
classes of ACC cells were distinguished according to their
firing pattern: (i) RS cells; (ii) IM cells; and (iii) IB cells.
From single labeled cell morphological analyses, we
found that these cells send its branches or terminals to
layer 1 as well as layer V/VI, suggesting that they form
broad neuronal connections with neurons in superficial
and deeper layers within the ACC. Finally, after neuro-
pathic pain, we found that the firing rates in IM neurons
were increased compared with control IM cells. Our work
provides the basic map for future investigations of molec-
ular mechanism for long-term plastic changes in neuronal
properties after nerve injury.

ACC, synaptic transmission, plasticity and spike

Previous spike studies were recorded from PFC neurons in
youngrats [31,32] and pyramidal neurons located in layer
V, major cortical output neurons to other cortical and sub-
cortical areas. For example, Yang et al. [31] reported that
there are four major pyramidal cells found in the Layer V
of the rat PFC, regular spiking, intrinsic bursting, repeti-
tive oscillatory bursting and intermediate cells. To our
knowledge, the present report is the first systemic studies
of pyramidal neurons in the layer II/IIl of ACC areas.
Although the PFC in previous reports often contains some
of rostral part of ACC neurons, most of current recordings
are performed from neurons located caudal ACC to the
typical PFC area. Although many anatomic and functions
of the PFC-ACC are similar between rats and mice, we feel
that it is necessary to study the adult mouse ACC in a sys-
temic manner. Taking advantage of transgenic and gene
knockout mice, recent studies reveal novel molecular and
synaptic mechanisms for synaptic transmission and plas-
ticity in the ACC [13,15,27,33,34] For example, using
genetic deletion of GluR5, Glur6, or GluR5&6, Wu et al
(2005a) demonstrated that glutamate kainate receptor
GluR5 and 6 contribute to excitatory synaptic transmis-
sion in the synapses of layer II/III ACC. By using AC1 and
ACS8 gene knockout mice, Zhao et al (2006) and Xu et al
(2008) showed that calcium-stimulated AC1 contribute
to long-lasting synaptic changes within the ACC after
peripheral inflammation or nerve injury. These studies
would be impossible using traditional pharmacological
methods, since there is no selective inhibitor for these tar-
get proteins. Unlike synaptic transmission and plasticity
in the ACC, little work has been done on spike analyses in
the ACC. In the present studies we focused on layer I1/111,
because (i) our previous work has mostly focused on syn-
aptic transmission and plasticity of ACC layer II and III;
(ii) most of cells located in layer I1/1II are pyramidal cells;
(iii) neurons in layer II/III receive sensory inputs [27,34];
and finally, (iv) neurons in the layer II/III are activated by
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Figure 4

Electrophysiological characteristics of the IM cells. A, Schematic representation of the location of the recorded neu-
rons (a and b); B, Biocytin profiles of those two representative IM ACC pyramidal neurons as visualized with confocal laser
scanning microscopy. Scale bar = 50 um. C, Superimposed current-clamp traces in response to a series of intracellular current
pulses (1000 ms, 80 pA per step). The neurons exhibited an AHP with an early fast and a delayed slow component. Fast and
slow components were intercalated by an afterdepolarization (ADP). D, |-V plots constructed from the values of traces shown
in (C) showed a linear response in the voltage range between -65 and -85 mV. E, Traces evoked by the same current injections
(400 ms, 100 pA) as the neurons were depolarized from -85 to -50 mV. Note that on no occasion did the IM neurons fire in
bursts. The black traces were for cell (a) and gray traces for cell (b); F, Action potential trains were evoked by 400 ms current
injection of 120, 140, 160 and 180 pA from the holding potential of -70 mV. Note that only the first spike was followed by an
ADP. Traces reflect spike frequency adaptation in evoked action potential trains. The black traces were for cell (a) and gray
traces for cell (b).
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peripheral sensory stimuli and injury [14,35]. Our current
spike work is the first study in adult mouse ACC, and pro-
vides basic information about the intrinsic properties of
cingulate pyramidal cells. We are currently studying inhib-
itory neurons in the layer II/III as well as neurons located
in other layers of the ACC in adult mice.

Classification of three types of ACC pyramidal cells

This study has identified three main types of pyramidal
cells in adult mouse ACC, based on their specific dis-
charge patterns in response to depolarizing current pulses.
To our knowledge, this is the first report in the ACC
region. The classification of the different electrophysio-
logical types of ACC pyramidal cells proposed in the
present study has taken into account the previously
reported classifications of cortical pyramidal cells. The
three types of cells are mainly classified by whether they
can generate burst and whether there is ADP following
their first action potential. In young rat PFC, previous
studies have revealed four classes of pyramidal neurons,
mainly on the basis of their response to application of
prolonged intracellular current pulses and the shape of
their action potentials [31]. As compared with rat PFC, we
have found mostly similar results in adult mouse ACC.
There are three major classes of pyramidal cells found in
rats and mice, RS, IB and IM. In rat PFC region, Yang et al
(1996) identified repetitive oscillatory bursting cells
(ROB) at about 13% of the total cells recorded. However,
we did not detect any ROB cell in mouse ACC so far. One

http://www.molecularpain.com/content/5/1/73

possible explanation is the region and animal difference,
since previous reports were from layer VI of the rat PFC. It
will be important to investigate if ROB cell may be found
in the layer VI of the mouse ACC in future studies.

Synaptic and nonsynaptic plasticity

Recent studies have indicated that sensitization at differ-
ent levels along somatosesnory pathways are likely con-
tributing to chronic pain including neuropathic pain;
these include sensitization at peripheral, spinal cord, amy-
gdala and cortex such as ACC [27,34,36,37]. At sensory
synapses between afferent fibers and dorsal horn neurons,
it has been believed that LTP as well as heterosynaptic
facilitation are triggered by peripheral injury [38,39]. Sim-
ilar LTP were proposed in the amygdala and ACC. In the
amygdala, it has been reported that peripheral inflamma-
tion or nerve injury triggered long-lasting changes in exci-
tatory synaptic transmission in the central nucleus of the
amygdala [37]. In the ACC, Zhao et al (2006) and Xu et al
(2008) reported that peripheral nerve injury or inflamma-
tion caused long-lasting, LTP-like synaptic changes in the
ACC layer II/III synapses [16,17]; and both presynaptic
increases of glutamate releases and enhancement of post-
synaptic AMPA receptor mediated responses are thought
to contribute to the injury-triggered potentiation.

In addition to synaptic plasticity, it has been noted that
nonsynaptic plasticity may also play important roles in
learning, memory and other brain functions [40-43]. Typ-

Table I: Summary of basic electrophysiological and morphological parameters of ACC layer Il/lll pyramidal neurons in control and

neuropathic pain mice.

RS cells IM cells IB cells

control Neuropathic pain control Neuropathic pain control Neuropathic pain

(n=20) (n=13) (n=36) (n=29) (n=25) (n=19)
RMP, mV -744 +£23 <724 %22 -708 + 1.8 -70.7 £ 3.0 -74.7 £ 1.1 -705 + 1.4
AP threshold, mV -344+ 1.0 -375+ 1.0 -352 £ 0.6 -33.3+038 -36.0£0.7 -354 |1
Input Resistance, mQ 120.1 £ 13.6 146.8 £ 13.6 122.1 £ 12.1 1333 £ 16.6 129.5 + 8.02 1302 £9.8
Spike Height, mV 940 £2.7 883 £ 3.6 929+ 14 93619 93313 89.4+ 4.0
Spike Half Width, ms 1.66 + 0.07 1.87 £ 0.17 1.46 £ 0.052 1.57 £ 0.02 1.43 + 0.04° 1.40 £ 0.07
fAHP Amplitude, mV =~ == e -70+£0.6 -82+0.7 -6.8 £ 0.4 -64+0.8
Time of fAHP, (ms) ~ —=----- e 50+£02 53+04 4.0 £ 0.3 3905
sAHP Amplitude, mV -125+0.7 -11.5+08 9.6+ 1.6 -11.6+0.8 -12.1£0.8 98+ 1.0
Time of SAHP, ms 733+74 708 +82 700 +39 565+ 11.8 89.4+76 712+54
ADP,mV e e [.5 £0.2¢ 1.3+02 3.43 £ 0.40<¢ 24+04
Rise Time, ms 0.60 + 0.03 0.66 + 0.04 0.57 £ 0.02 0.54 £ 0.0l 0.58 £ 0.02 0.56 + 0.02
Rise Slope, mV/ms 1324 +73 113.6+114 137.0+6.2 141.0 £ 3.5 136.9 + 48 1394 +78
Decay Time, ms 209 £ 1.12 201 £0.18 1.63 + 0.06° 1.96 £ 0.12 1.53 + 0.08¢ 1.44 + 0.09
Decay Slope, mV/ms -36.6 £2.9 -37.3+49 -45.7 £ 1.9 -379 £ 3.1 -50.9 £3.22 -529 %45
Rheobase, nA 1123 £85 106.9 £ 29.0 97476 80.3 +21.1 75.8 £ 3.70 77.5 £ 195

Values are means + SEM; n is number of cells. ACC, anterior cingulate cortex; RMP, resting membrane potential; fAHP, fast afterhyperpolarization;

sAHP, slow afterhyperpolarization; ADP, afterdepolarization.
aSignificantly different from RS cells at P < 0.05.

bSignificantly different from RS cells at P < 0.01.

<Significantly different from RS cells at P < 0.001.
dSignificantly different from IM cells at P < 0.01.

eSignificantly different from IM cells at P < 0.001.
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Figure 5

Differential intrinsic membrane properties between RS, IM and IB pyramidal cells. A-C, Plots of spike discharge
frequencies for each interspike interval during the current injection illustrated in Figures 2F, 3F, 4F for RS, IM and IB cells. After
the stimulating current reached spike threshold in each of the 3 representative cells, 3-4 current steps, each of 40 pA were
applied. Note that at just above the rheobase, IB cell fired an initial burst with two APs at up to 50 Hz, whereas RS cell and IM
cells fired APs regularly at ~5 Hz; D, Plots of the mean spike discharge frequencies, measured from the Istinterspike interval
(left) and the last interspike interval (right) for RS (n = 20), IM (n = 36) and IB (n = 25) cells, at different stimulation intensities
of depolarizing current (100--350 pA, 400 ms). In response to the same intensities of current RS generated spikes at the lowest
frequency and degree of initial frequency moderately increased with increase in current intensity. IB generated an initial dou-
blet of action potentials with highest frequency, which increased with increase in current intensity. The initial frequency of the
spikes for IM was in between. Values are given as the mean + S.E.M. *P < 0.05, significantly different from RS cells; **P < 0.01,
significantly different from RS cells; ***P < 0.001, significantly different from RS cells; #P < 0.05, significantly different from IM
cells; ###P < 0.001, significantly different from IM cells; two-way ANOVA. E, Histogram showing the distribution of the ampli-
tude of the ADP. Black bars indicate the ADP of IB neurons (n = 14). Gray and white bars indicate the ADP of IM (n = 36) and
RS (n = 20) neurons respectively. F, Histogram reflects the rheobase for RS (n = 20), IM (n = 36) and IB (n = 25) cells (**P <
0.0l based on one way ANOVA). Values are given as the mean + SEM. (G) Histogram summary data of the half widths of the
RS (n =20), IM (n = 36) and IB (n = 25) cells (*P < 0.05 and **P < 0.0] based on one way ANOVA).
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ically, such nonsynaptic plasticity contains the changes in
spike threshold, spike accommodation, amplitude of
burst-evoked after hyperpolarization. It has been reported
that learning produced long-lasting changes in the intrin-
sic excitability of central neurons that are known to con-
tribute to the behavioral learning tasks such as cortical,
hippocampal and cerebellum neurons [40]. A recent study
nicely showed that different neurotransmitter receptors
and intracellular signaling pathways are contributing to
synaptic potentiation and nonsynaptic plasticity in the
subicular pyramidal neurons, respectively [43]. In sensory
or nociceptive system, it has been known for many years
that peripheral tissue or nerve injury triggered enduring
changes in neuronal spike responses to sensory stimula-
tion [44-46]. However, most of previous studied did not
distinguish the contribution of synaptic plasticity (e.g.,
LTP) and/or intrinsic plasticity [40] to such increases, in
part, due to the limit of recording technique (i.e., extracel-
lualr recordings in vivo).

However, some important findings have been reported in
the DRG cells, first sensory neurons in the CNS. It has
been reported that rat nerve injury tended to reduce rheo-
base and increase the number of APs in response to the
same depolarizing currents injection, the AP amplitude
and spike width [47-49], many of which mimic those
nonsynaptic plasticity found in learning models [40]. In
amygdala, the neurons from both visceral pain model and
arthritis pain model showed an increased action potential
firing rate compared with control neurons [50,51]. In the
present study, we have found that nerve injury induced an
increased firing rate in IM cells, suggesting that not all
neurons are involved in processing the injury information
by changes in intrinsic properties. The alterations of the
expressions and/or properties of ion channels underlying
the action potentials may account for the changes of firing
rates. In summary, the results of this study suggest that the
plastic change of intrinsic plasticity of ACC neurons is
involved in the central processing of neuropathic pain.

Methods

Animal preparation

Adult (6-8 weeks old) male C57BL/6 mice were purchased
from Charles River. Mice were maintained on a 12 h light/
dark cycle. Food and water were provided ad libitum.
Experiments were performed under protocols approved
by the University of Toronto Animal Care Committee. A
model of neuropathic pain was induced by the ligation of
the common peroneal nerve (CPN) as previously
described [24]. Briefly, mice were anaesthetized by intra-
peritoneal injection of a mixture saline of ketamine (0.16
mg/kg, Bimeda MTC, Cambridge, Ontario) and xylazine
(0.01 mg/kg, Bayer, Toronto, Canada). 1 cm skin incision
was made in the left hind leg to expose the CPN. The CPN
was ligated with chromic gut suture (5-0, Ethicon, Somer-
ville, New Jersey) slowly until contraction of the dorsiflex-
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ors of the foot was visible as twitching of the digits. Sham
surgery was conducted in the same manner but the nerve
was not ligated. The mechanical allodynia was tested on
post-surgical day 7 and the mice were used for electro-
physiological studies on post-surgical days 7-14.

Whole-cell patch-clamp recording

The animals were decapitated and the brain was quickly
removed and immersed in oxygenated (95% O,-5% CO,)
cooled (4~6°C) artificial cerebrospinal fluid (ACSF) for 2-
3 minutes. ACSF contained (in mM): 124 NacCl, 2.5 K(Cl,
2 CaCl,, 2 MgSO,, 25 NaHCO;, 1 NaH,PO,, 10 glucose,
pH 7.4, 300-310 mOsm. A block of brain tissue contain-
ing the ACC was dissected, glued to a small stage (LOC-
TITE 404 cyanoacrylate glue) and covered with ACSF.
Coronal slices 300 microns thick containing ACC were
made with a vibratome (Series 1000) and preincubated in
oxygenated ACSF at room temperature (22~26°C) for at
least 1 hour, then transferred to a submerged chamber
and superfused (2~3 ml/min) with oxygenated ACSF at
room temperature. Experiments were performed in a
recording chamber on the stage of a BX51W1 microscope
equipped with infrared DIC optics for visualization. Using
the whole-cell patch-clamp technique, recordings were
obtained from layer II/IIl neurons with an Axon 200B
amplifier (Axon Instruments, CA). Patch pipettes with
resistances of 3~5 MQ. were filled with the following solu-
tion (in mM): 120 K-gluconate, 5 NaCl, 1 MgCl,, 0.2
EGTA, 10 HEPES, 2 Mg-ATP, 0.1 Na,;-GTP and 10 phos-
phocreatine disodium (adjusted to pH 7.2 with KOH).
Biocytin (0.2%) was included in the pipette solution to
label recorded neurons. Access resistance <30 MQ was
considered acceptable. Usually, only one neuron per slice
was recorded. Data were discarded if access resistance
changed more than 15% during an experiment. Data were
filtered at 1 kHz, and digitized at 10 kHz.

Behavioral allodynic responses

Mice were placed in a plexi-glass restrainer and allowed to
acclimate for 30 minutes prior to behavioral testing.
Mechanical allodynia was assessed based on the respon-
siveness of the hind paw to the application of von Frey fil-
aments (Stoelting, Wood Dale, Illinois) to the point of
bending. Positive responses include licking, biting and
sudden withdrawal of the hind paw. Experiments were
carried out to characterize the threshold stimulus.
Mechanical pressure from a 1.65 filament (force 0.008 g)
was found to be innocuous in control mice. This filament
was then used to test the mechanical allodynia after neu-
ropathic pain. Ten trials were carried out each time at an
interval of 5 minutes and the results are expressed as per-
centage of positive responses.

Passive membrane properties
Off-line analysis was performed using Clampfit version 9
(Axon Instruments). Resting membrane potential (RMP)
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Changes of action potential properties of IM pyramidal neurons in the ACC after neuropathic pain. A-C, Exam-
ples of APs generated from RS, IM, and IB neurons. All responses elicited in response to a 400 ms depolarizing current pulse of
appropriate suprathreshold magnitude. Current records omitted for clarity. A, APs of neurons from non-operated mice; B,
APs of neurons from sham-operated mice; C, APs of neurons from neuropathic pain mice; D-F, Histograms for data from RS
(control, n = 20; neuropathic, n = 13), IM (control, n = 36; neuropathic, n = 29), and IB (control, n = 25; neuropathic, n = 19)
neurons reflect rheobase, AP threshold and half width from control mice (non-operated and sham-operated) and neuropathic

pain mice (P > 0.05, Student t-test). All values are given as the mean + SEM.

was the low-pass readout of the electrode amplifier and
was not corrected for liquid junction potential (~12 mV)
after terminating the recording. The membrane potential
was measured immediately after establishing the whole-
cell configuration. Only neurons that had a resting mem-
brane potential more negative than -60 mV were further
investigated. Conductance was determined from the lin-
ear slope (between -60 mV to -80 mV) of the current-volt-
age (I-V; Vg = -70 mV) relationships.

Active membrane properties and firing patterns

Action potentials (APs) were detected in response to
suprathreshold current injections from a holding poten-
tial around -70 mV. Depolarizing currents of 5~200 pA
(400-ms duration) were delivered in increments of 5 pA
until an AP was evoked. The rheobase was defined as the
minimum current required to evoke an action potential.
The AP voltage threshold (Vi eshoiq) Was defined as the
first point on the rising phase of the spike at which the
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Figure 7

Summary of alterations seen in firing patterns in
ACC pyramidal neurons after neuropathic pain. A-B,
Plot of the initial discharge frequency measured from the |st
interspike interval at different stimulation intensities of depo-
larizing current (100--350 pA, 400 ms). C-D, Plot of the
steady-state discharge frequency measured from the last
interspike interval at different stimulation intensities of depo-
larizing current (100--350 pA, 400 ms). E-F, Plot of the
number of APs at different stimulation intensities of depolar-
izing current (100--350 pA, 400 ms); (A), (C) and (E) show
relationships for IM neurons; (B), (D) and (F) for RS and 1B
neurons. Note that in IM cells, the initial discharge frequen-
cies (*P < 0.05, F, 359 = 23.34, two-way ANOVA) and the
number of APs (*P < 0.05, F, 359 = 13.47, two-way ANOVA)
attained in neuropathic pain cells are greater than those seen
in controls. Error bars represent S.E.M. Control data was
collected from 20 RS, 36 IM and 25 IB neurons. Neuropathic
pain data was collected from 13 RS, 29 IM and|9 IB cells,
respectively.

change in voltage exceeded 50 mV/ms. The spike ampli-
tude was quantified as the difference between the Vi, .qh014
and the peak voltage. The duration of the AP was meas-
ured at the threshold voltage. The spike width was meas-
ured at 1/2 of the total spike amplitude (measured from
the Vi reshorg 1€vel). The time to the peak of fast component
of the afterhyperpolarization (fAHP) was estimated as the
time from the peak of the action potential to the most
negative voltage reached during the fAHP (defined as the
peak of fAHP). The amplitude of fAHP was estimated as
the difference between the V., and the peak of fAHP.
If an afterdepolarization (ADP) was present, its amplitude
was determined as a distance between the peak of fAHP to
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the peak of ADP. Amplitude of slow component of the
afterhyperpolarization (sAHP) was measured from the
Vihreshold t0 the peak of sAHP. The time to the peak of
sAHP was estimated as the time from the peak of the
action potential to the peak of sSAHP. The waveform char-
acteristics of the action potentials recorded from neurons
of control and neuropathic pain mice, i.e., maximum rise
slope, maximum decay slope, rise time, rise slope, decay
time and decay slope, were determined using Clampfit 9.2
software (Axon Instruments). The properties of firing pat-
terns and hyperpolarizing responses were analyzed from
voltage responses to injected current pulses. Instantane-
ous firing frequency was calculated as the reciprocal of the
interspike interval (ISI). The spike firing frequencies were
plotted against the interval number since train onset.

Histology and immunohistochemistry

After electrophysiological recordings, slices containing
biocytin-filled ACC neurons were fixed overnight in a cold
solution containing 4% paraformaldehyde. The slices
were then collected in 1% stock Tris buffered saline for 1
hour and washed twice (10 minutes each time) in Tris
buffered saline. Slices were then incubated in PBS with
0.1% Triton X-100 (JT Baker; Phillipsburg, NJ) for a
period of 2 hours to enhance the penetration of the sub-
sequent streptavidin. The biocytin filled cells were ren-
dered fluorescent by incubating overnight in a Cy3-
conjugated streptavidin (Jackson ImmunoResearch Labs;
West Grove, PA) solution (1 mg/ml of PBS) at 4°C. The
following day, slices were equilibrated in 1% Tris buffered
saline and mounted on glass slides.

Confocal microscopy

Labeled neurons were imaged by a confocal microscope
(Fluoview FV 1000, Olumpus, Tokyo, Japan). Optical sec-
tions, usually at consecutive intervals of 1-2 pum, were
imaged through the depth of the labeled neurons and
saved as image stacks. Collapsing this stack using z projec-
tion on the confocal software onto a single plane gener-
ated a two-dimensional reconstruction of the labeled
neuron. The image stack was also reconstructed in 3-D
with appropriate software, to define areas of interest in the
neuron. Although the effects of laser illumination on fixed
tissue are not known, to prevent possible ultrastructural
damage we tried to minimize both the scanning time and
the laser intensity. The horizontal extent of axons was
measured as the average distance between the three most
distal axonal endings on each side from the soma of indi-
vidual pyramidal neurons. The photomicrograph (Fig.
1C) was assembled by using Adobe Photoshope. Only
brightness and contrast were adjusted.

Data analysis

Results are expressed as means + SEM. Statistical compar-
isons were performed using ANOVA, the Student t-test
and y2 test. The level of significance was set at P < 0.05.
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