
Robust FCS Parsing: Exploring 211,359 Public Files

Anne E. Bras, Vincent H. J. van der Velden*

� Abstract
When it comes to data storage, the field of flow cytometry is fairly standardized,
thanks to the flow cytometry standard (FCS) file format. The structure of FCS files is
described in the FCS specification. Software that strictly complies with the FCS specifi-
cation is guaranteed to be interoperable (in terms of exchange via FCS files). Nowa-
days, software interoperability is crucial for eco system, as FCS files are frequently
shared, and workflows rely on more than one piece of software (e.g., acquisition and
analysis software). Ideally, software developers strictly follow the FCS specification.
Unfortunately, this is not always the case, which resulted in various nonconformant
FCS files being generated over time. Therefore, robust FCS parsers must be developed,
which can handle a wide variety of nonconformant FCS files, from different resources.
Development of robust FCS parsers would greatly benefit from a fully fledged set of
testing files. In this study, readability of 211,359 public FCS files was evaluated. Each
FCS file was checked for conformance with the FCS specification. For each data set,
within each FCS file, validated parse results were obtained for the TEXT segment.
Highly space efficient testing files were generated. FlowCore was benchmarked in
depth, by using the validated parse results, the generated testing files, and the original
FCS files. Robustness of FlowCore (as measured by testing against 211,359 files) was
improved by re-implementing the TEXT segment parser. Altogether, this study pro-
vides a comprehensive resource for FCS parser development, an in-depth benchmark
of FlowCore, and a concrete proposal for improving FlowCore. © 2020 The Authors.

Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of

Cytometry.

� Key terms
flow cytometry; FCS standard; file format; file parser; bioinformatics

WHEN it comes to data storage, the field of flow cytometry is fairly well standard-
ized. The flow cytometry standard (FCS) file format was introduced in 1984 and is
currently the de facto standard. The structure of FCS files (summarized in the
Supporting Information Sup. 1) is described in detail in the FCS specification (1–3),
a document published by the International Society for Advancement for Cytometry
(ISAC) Data Standards Task Force (DSTF).

Software that strictly complies with the FCS specification is guaranteed to be
interoperable (in terms of data exchange via FCS files). Nowadays, interoperability is
crucial for the flow cytometry eco system, as FCS files are frequently shared
(e.g., public repositories and multicenter studies) and modern workflows rely on
more than one piece of software (e.g., different acquisition and analysis software).

Given the complexity of software development, unintentional noncompliances
are pretty much inevitable and found their way into well-established flow cytometry
software. Unfortunately, these noncompliances resulted into numerous non-
compliant FCS being generated over time (4) and added seriously to the complexity
of building robust FCS parsers (algorithms being able to interpret any FCS file from
any resource). Notably, even seemingly small noncompliances might introduce sig-
nificant complexity (example in the Supporting Information Sup. 2).

Laboratory Medical immunology,
Department of Immunology, Erasmus
MC, University Medical Center
Rotterdam, Rotterdam, the Netherlands

Received 24 January 2020; Revised 24
June 2020; Accepted 29 June 2020

Additional Supporting Information may
be found in the online version of this
article.
*Correspondence to: *Dr. Vincent H.
J. van der Velden, Laboratory Medical
immunology, Department of Immunol-
ogy, Erasmus MC, Dr. Molewaterplein
40, 3015 GD, Rotterdam, the Netherlands
Email: v.h.j.vandervelden@erasmusmc.nl

Published online 15 July 2020 in Wiley
Online Library (wileyonlinelibrary.com)

DOI: 10.1002/cyto.a.24187

© 2020 The Authors. Cytometry Part A
published by Wiley Periodicals LLC on
behalf of International Society for
Advancement of Cytometry.

This is an open access article under the
terms of the Creative Commons
Attribution-NonCommercial-NoDerivs
License, which permits use and distribu-
tion in any medium, provided the origi-
nal work is properly cited, the use is
non-commercial and no modifications or
adaptations are made.

Cytometry Part A � 97A: 1180–1186, 2020

TECHNICAL NOTE

https://orcid.org/0000-0001-5094-7700
https://orcid.org/0000-0001-9457-3763
mailto:
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Essentially, there are two approaches to this problem:
preventing nonconformant FCS writers from reaching produc-
tion environments (e.g., by using FCS conformance testing
tools, like FlowIO, during development), and improving robust-
ness of FCS parsers (e.g., by testing against nonconformant FCS
files during development).

Most FCS parsers gained some degree of robustness over
time, due to being exposed to countless FCS files, and being
optimized for numerous edge cases that occurred over time.
Presumably, most software developers build their own collec-
tion of nonconformant FCS files along the way. However, to
our best knowledge, only a small collection of testing files is
publicly available.

Development of robust FCS parsers would greatly benefit
from a fully fledged set of testing files, consisting of represen-
tative FCS files, along with fully validated parse results. In this
study, the readability of 211,359 public FCS files was evalu-
ated. Each FCS file was checked for conformance with the
FCS specification. For each data set, within each FCS file, fully
validated parse results were obtained for the TEXT segment,
by aggregating results from two well-established FCS parsers
(FlowCore and FlowJo). Highly space efficient testing files
were generated, which truly reflect the heterogeneity in FCS
files, as seen nowadays. Finally, based on these testing files,
FlowCore was benchmarked in depth, and its robustness
(as measured by testing against 211,359 files) was improved.

MATERIALS AND METHODS

The workflow of this study is summarized in Figure 1A and all
details are provided in the Supporting Information Sup. 3–24.

Software

Reference results were obtained by aggregating results from
FlowJo (general-purpose analysis software, actively developed
since 1996) and FlowCore (foundation of the Bioconductor
eco system, actively developed since 2002). Presumably, these
parsers gained robustness over time, being exposed to many
files from many resources. Detailed benchmarks were per-
formed for FlowCore and FlowIO (both open-source, all-
owing insight in their inner workings). General data handling
was performed in R base (version 3.4.1)

Data Collection and Conformity Checks

Public data sets (up to July 2017) were obtained from Cyto-
bank, FlowRepository, and ImmPort (5-7) (Supporting Infor-
mation Sup. 3). Duplicate files were removed based on MD5
and SHA1 hashes. Remaining files (n = 238,581) were
assigned unique identifiers (based on repository name, data
set name, and MD5 hash). First, FCS files (n = 211,359) were
distinguished from non-FCS files (n = 27,222) (Supporting
Information Sup. 4). Next, single data set FCS files (SD-FCS,
n = 206,620) were distinguished from multi data set FCS files
(MD-FCS, n = 4,739), and absolute offsets were obtained for
each data set (n = 9,724) within each MD-FCS (Supporting
Information Sup. 5). In total, 216,344 data sets were found
among the 211,359 downloaded FCS files (RAW-FCS). Of

note, these RAW-FCS were also used in another study (8).
Finally, each RAW-FCS was evaluated by FlowIO (4) to check
conformance with the FCS specification (Supporting
Information Sup. 6).

HEADER Evaluation

HEADER formatting was evaluated, and byte offsets
(as stored within each HEADER) were obtained via two
methods (Supporting Information Sup. 7). Byte offsets were
checked for validity (Supporting Information Sup. 8) and
accuracy (Supporting Information Sup. 9), and corrected
wherever appropriate, to make sure that each TEXT segment
was accurately referenced (the delimiter enclosed portion).

DATALESS-FCS

Four different types of DATALESS-FCS were created
(Supporting Information Sup. 10). SLICED-FCS mimic
RAW-SD-FCS, as they are identical to RAW-SD-FCS, except
for the bytes after the TEXT segment (e.g., the DATA seg-
ment) being removed (Fig. 1B). BLANKED-FCS mimic
RAW-MD-FCS, as they are identical to RAW-MD-FCS,
except for the bytes from the DATA and ANALYSIS segment
being replaced by 0x20 bytes (Fig. 1C). INIT-FCS are newly
created FCS files, which contain the initial TEXT segment
from RAW-FCS, preceded by a HEADER with accurate byte
offsets (Fig. 1B). ADD-FCS are similar to INIT-FCS but con-
tain the additional TEXT segment(s) from RAW-MD-FCS
(Fig. 1C).

TEXT Segment Parsing

All RAW-FCS and DATALESS-FCS were parsed by FlowCore
(1.43.2) and FlowJo (10.0.7, 10.3.0, and 10.4.0), and parse
results were stored in terms of key-value tables (Supporting
Information Sup. 11). Whether SLICED-FCS and BLANKED-
FCS mimicked their RAW-FCS counterparts was evaluated
based on the FlowCore and FlowJo results (Supporting Infor-
mation Sup. 12). FlowJo and FlowCore handled MD-FCS dif-
ferently, however, by using INIT-FCS and ADD-FCS, instead
of RAW-MD-FCS, both parser were forced to return uni-
formly formatted results, namely one key-value table for each
data set (Supporting Information Sup. 13).

TEXT Segment Reference

The parse results were systematically evaluated, and edge cases
were documented along the way (Supporting Informa-
tion Sup. 14). First, the FlowCore and FlowJo results were com-
pared among themselves (version differences), and for each
FCS file, the optimal FlowCore and FlowJo result was selected
(Supporting Information Sup. 15). Next, the sanitization as
applied by FlowJo, was mimicked in the FlowCore results
(Supporting Information Sup. 16), allowing a direct comparison
between FlowJo and FlowCore (Supporting Information Sup. 17).
In case FlowJo and FlowCore returned discrepant results, they
were manually reviewed and corrected wherever appropriate.
Next, one unambiguous reference file (REF-FCS) was created
for each data set (Supporting Information Sup. 18). Finally,

Cytometry Part A � 97A: 1180–1186, 2020 1181

TECHNICAL NOTE

each REF-FCS was validated against its RAW-FCS counterpart
(Supporting Information Sup. 19).

TEST-FCS Creation

DATA offsets, as stored in the HEADER and TEXT segment,
were checked for validity (Supporting Information Sup. 20).
For each primary data set, within each RAW-FCS, one TEST-
FCS was created (Supporting Information Sup. 21). Essen-
tially, TEST-FCS contain the original TEXT segment (except
for eight key-value pairs being modified), part of the original
DATA segment (the first 20 events), and a new HEADER

with accurate offsets (Fig. 1B). Validity of the modifications
was checked by FlowIO.

FlowCore Improvements and Benchmarks

Two branches of FlowCore were created (Supporting Infor-
mation sup. 22); one where the existing TEXT segment parser
was improved (to automatically handle escapes and empty
values), and one where the TEXT segment parser was re-
implemented (to improve robustness). FlowCore developers
can easily merge either branch. Performance of both branches
was evaluated in depth (Supporting Information sup. 23). For

(A) (B)

(C)

Figure 1. A. In total, 211,359 publicly available FCS files were downloaded (RAW-FCS), consisting of 206,620 single data set files (RAW-

SD-FCS) and 4,739 multi data set files (RAW-MD-FCS). Each RAW-FCS was checked for conformance with the FCS specification. For each

RAW-FCS, multiple artificial FCS files were created (details in B and C), allowing in depth evaluation of various aspects of RAW-FCS, in a

highly space efficient manner. For each data set, within each RAW-FCS, validated parse results were obtained for the TEXT segment, by

aggregating FlowCore and FlowJo parse results. The metadata of 211,359 public FCS files can now be easily explored. Together, the

validated parse results and artificial FCS files form a fully fledged testing set for FCS parser development. Performance of FlowCore was

benchmarked in-depth. B. SLICED-FCS mimic RAW-SD-FCS, as they are identical to RAW-SD-FCS, except for the bytes after the TEXT

segment being removed. INIT-FCS are newly created FCS files, which contain the initial TEXT segment from RAW-FCS, preceded by a

HEADER with accurate offsets. TEST-FCS contain the first 20 events of the original DATA segment, and a slightly modified version of the

original TEXT segment (reflecting the new DATA segment size). C. BLANKED-FCS mimic RAW-MD-FCS, as they are identical to RAW-MD-

FCS, except for the bytes from the DATA and ANALYSIS segment being replaced by 0x20 bytes (space character in ASCII). ADD-FCS are

similar to INIT-FCS, but contain the additional TEXT segment(s) from RAW-MD-FCS.

1182 Robust FCS Parsing

TECHNICAL NOTE

each exception (error or warning), an exemplary case was
described in detail.

DATA Segment

FlowCore (with the re-implemented TEXT segment parser) was
used to obtain raw DATA segment values, which were subse-
quently checked for validity (Supporting Information sup. 24).
The cyclic redundancy checks (CRC = “digital fingerprint”)
were checked for validity, and keywords relevant to the DATA
segment were explored (Supporting Information sup. 24).

Data Availability and Reproducibility

The appendixes (Supporting Information Sup. 25) include an
overview of the enrolled RAW-FCS, an overview of the
FlowIO results, the DATALESS-FCS (SLICED-FCS,
BLANKED-FCS, INIT-FCS and ADD-FCS), the validated
parse results (REF-FCS), the testing files (TEST-FCS), and the
newly created FlowCore branches. RAW-FCS can be easily
obtained from their original resources, based on their identi-
fiers (Supporting Information Sup. 3).

RESULTS

Conformance Testing

First, for each RAW-FCS, conformance with the FCS specifi-
cation was checked by FlowIO (Supporting Informa-
tion Sup. 6). FlowIO exited unexpectedly in 925 files
(e.g., files without the $DATATYPE keyword) and exited
gracefully in 15,483 files where integrity of the TEXT segment
could not be confirmed (a conservative approach to FCS pars-
ing). For the other files (n = 194,951), FlowIO returned
results for nine conformance tests. Interestingly, only 1,481
files passed all tests (0.7%), and only 3,765 files failed at most
one test (1.8%). Next, the FCS files were grouped by their test
results. The largest group (117,228 files, 55%) failed the
numeric formatting test and keyword compliance test. The
second largest group (53,595 files, 25%) failed the same two
tests, and three additional tests. Thus, strictly speaking, con-
formance with the FCS specification was poor; however, it
should be stressed that most noncompliances do not result in
FCS files being unreadable.

DATALESS-FCS

For each RAW-FCS (n = 211,359, circa 1.47 terabyte), multi-
ple DATALESS-FCS (n = 432,442, circa 42 megabytes) were
created (Fig. 1B,C). FlowCore and FlowJo returned identical
key-value tables for DATALESS-FCS and their RAW-FCS
counterparts (Supporting Information Sup. 12). Thus,
DATALESS-FCS perfectly mimic RAW-FCS when it comes
to HEADER and TEXT segment parsing and do this in a
space efficient manner. Nevertheless, it should be empha-
sized that these DATALESS-FCS are corrupt FCS files
(e.g., the DATA offsets refer to nonexistent locations).
Therefore, TEST-FCS were created in a later stage, which
closely resemble RAW-FCS, without the disadvantage of
being corrupt.

HEADER Variability

The HEADER contains offsets for the TEXT, DATA and
ANALYSIS segment. First, offset formatting was evaluated
(Fig. 2A and Supporting Information Sup. 8). Offsets were
always right aligned, either with leading spaces or zeros.
Absence of ANALYSIS segments was either indicated by
empty offsets, negative offsets or both offsets being set to
zero. Nevertheless, FlowCore parsed each HEADER
successfully.

Besides being well formatted, byte offsets must also be
valid (e.g., reference readable bytes) and accurate (e.g., precisely
reference a specific segment). Various invalid offsets were
found (Fig. 2B and Supporting Information Sup. 9), including
invalid ranges (start > end), ranges out-of-range (end > size) or
overlapping ranges (segments having bytes in common). Inac-
curate TEXT offsets always referenced the entire TEXT seg-
ment, plus some trailing bytes (Fig. 2C), which were either
padding bytes (e.g., spaces) and/or bytes from the adjacent
DATA segment (Fig. 2D).

TEXT Segment Variability

In essence, the TEXT segment is generated by alternately
concatenating keys (e.g., “$k1” and “$k2”) and values
(e.g., “v1” and “v2”) and by using a delimiter (e.g., “/”) for
delimitation. The TEXT segment (e.g., “/$k1/v1/$k2/v2/”) is
essentially parsed by splitting at each delimiter occurrence
(e.g., “$k1,” “v1,” “$k2,” and “v2”) and associating the keys
and values (e.g., “$k1” = “v1” and “$k2” = “v2”). In case the
delimiter of choice occurs within any value, it must be
escaped prior to TEXT segment generation (e.g., “CD4/CD8”
to “CD4//CD8”), guaranteeing that single delimiters (e.g., “/”)
represent delimiters, and consecutive delimiters (e.g., “//”)
represent escapes. Importantly, because concatenation of
empty values also result in consecutive delimiters
(e.g., “$k4” = “” results in “/$k4//”), empty values are strictly
prohibited by the FCS specification, thereby preventing ambi-
guity (details in Supporting Information Sup. 2).

Different delimiters were used, including printable
(Fig. 2E) and nonprintable characters (e.g., tabs and returns).
Despite strict definitions in the FCS specification, various
noncompliances were identified, including TEXT segments
with double closing delimiters (Fig. 2F) and TEXT segments
without any closing delimiters (Fig. 2G). Consecutive delim-
iters occurred frequently, and either represented empty values
(Fig. 2H) or escaped delimiters (Fig. 2I). Remarkably, the vast
majority of consecutive delimiters represented empty values,
despite being strictly prohibited by the FCS specification.

TEXT Segment Parsing

All TEXT segments (n = 216,344), as stored across all FCS
files (n = 211,359), were parsed by three FlowJo versions
(10.0.07, 10.3, and 10.4), and parsed twice by FlowCore (ver-
sion 1.42.2, either with the “assume empty values” setting
enabled or disabled). Multiple parsers were used, because nei-
ther parsed all TEXT segments successfully. FlowJo and
FlowCore exited occasionally, however, at least one parse
result was obtained for each TEXT segment.

Cytometry Part A � 97A: 1180–1186, 2020 1183

TECHNICAL NOTE

First, the discrepancies within FlowJo and within FlowCore
were evaluated (Supporting Information Sup. 15). For each
TEXT segment, each FlowJo version returned identical results,
except for 897 cases (0.4%), where FlowJo 10.0.7 misinterpreted
the TIMESTEP keyword. The “assume empty values” setting
(FlowCore) affected results in 1,617 cases (0.7%); for these, the
optimal parse result was manually selected.

Next, the discrepancies between FlowJo and FlowCore
were manually evaluated (Supporting Information Sup. 17).
Parse results were discrepant in 1,530 cases (0.7%). These dis-
crepancies were either caused by misinterpretation of consecu-
tive delimiters (escapes vs. empty values) or by differences in
data wrangling (e.g., FlowJo added sequential numbers to
duplicate channels). Notably, FlowCore and FlowJo alternately
misinterpreted consecutive delimiters (Fig. 2J), thus neither of
them handled consecutive delimiters flawlessly. Except for
three TEXT segments with double closing delimiters (Fig. 2E),
either FlowJo or FlowCore or FlowJo returned correct results.

Concordant parse results (FlowJo vs. FlowCore) were
assumed to be correct (and proven to be correct at a later

stage, see below). Discrepant parse results were manually
evaluated, and involved decisions (in terms of selecting the
correct parse results) were obvious (various representative
examples in the Supporting Information Sup. 17).

Reference Results

By aggregating the FlowJo and FlowCore parse results, and
manually fixing three edge cases, solid parse results were
obtained for each data set. Interestingly, the vertical bar (“|”)
never occurred within any key or value, and the tilde (“�”)
never occurred as value. Therefore, by using vertical bars as
delimiters, and tildes as placeholders for empty values, unam-
biguous reference FCS files (REF-FCS) could be created. In
other words, for each data set (n = 216,344), as stored across
each RAW-FCS (n = 211,359), one REF-FCS was created,
which is easy to parse (no ambiguity), and contains fully vali-
dated parse results (Supporting Information Sup. 18).

Validity of each REF-FCS was confirmed by escaping the
original delimiter (e.g., replacing “/” by “//” in case “/” was
used in the RAW-FCS counterpart), removing the

(A)

(B)

(C)

(D)

(H)

(J)

(G)

(F)(E)

(I)

Figure 2. HEADER and TEXT segments were checked against the FCS specification. A. Offsets were always right aligned either with

leading spaces or leading zeros. Absence of ANALYSIS segments was indicated by empty offsets, negative offsets (incorrect) or both

offsets being zero. B. Various invalid offset pairs were found, including invalid ranges (start > end), ranges out-of-range (end > size) and

overlapping ranges (segments having bytes in common). C. Inaccurate TEXT offsets always resulted in additional bytes being included. D.

These were mostly padding bytes and/or bytes from the adjacent segment. E. Various delimiters were used. F. Some TEXT segments

featured double closing delimiters. G. Others featured no closing delimiter at all. H. Many empty values were identified, despite being

strictly prohibited by the FCS specification. I. Escapes were less frequently found, as compared to empty values. J. FlowCore and FlowJo

alternately misinterpreted the consecutive delimiters (empty values vs. escapes).

1184 Robust FCS Parsing

TECHNICAL NOTE

placeholders for empty values (“�”), inserting the original
delimiter (e.g., replacing “|” by “/”), and making sure the final
result matched (byte by byte) with the RAW-FCS counterpart
(Supporting Information Sup. 19). This way, validity of the
parse results themselves, was confirmed as well.

Test-FCS

Essentially, TEST-FCS contain the first 20 events of the origi-
nal DATA segment, and a slightly modified version of the
original TEXT segment. In order to successfully extract the
first 20 events from RAW-FCS, the DATA offsets as stored in
the HEADER and TEXT segment of RAW-FCS, were vali-
dated (Supporting Information Sup. 20). Some irregularities
were identified, including DATA offsets being inaccurate
(e.g., of by one byte), and discrepancies between the DATA
offsets as stored in the HEADER and the TEXT segment. In
the end, valid DATA offsets were identified for 211,350
RAW-FCS, allowing 211,350 TEST-FCS to be generated,
which passed the relevant checks by FlowIO as well
(Supporting Information Sup. 21).

FlowCore Improvements and Benchmarks

Two branches of FlowCore were created (Supporting Infor-
mation Sup. 22). The first branch improved user-friendliness,
by automatically optimizing the “assume empty values” set-
ting. Thus, this branch reflects FlowCore performance, as
experienced by users who always optimize the “assume empty
values” setting by hand. The second branch features a new
TEXT segment parser, which was implemented based on the
lessons learned in this study. Both branches were
benchmarked, in terms of TEXT and DATA segment parsing,
based on RAW-FCS and TEST-FCS (Supporting
Information Sup. 23).

Within RAW-FCS, the first branch returned invalid
TEXT results for 29 cases, and no TEXT results for 941 cases
(due to invalid offsets). Within TEST-FCS, the first branch
returned invalid TEXT results for the same 29 cases and
succeeded in the aforementioned 941 cases (because offsets
were corrected). The second branch always returned valid
TEXT results and provided informative warnings (e.g., empty
values and/or trailing bytes). The TEXT segment parser by
FlowIO was also evaluated; and returned invalid TEXT results
for 1,522 RAW/TEST-FCS with empty values.

Within RAW-FCS, the first branch failed to return
DATA results for 965 cases, mostly due to discrepant DATA
offsets in the HEADER and TEXT segment. The second
branch, succeeded in approximately two-thirds of these cases
(where either the HEADER or TEXT segment contained
valid DATA offsets) and failed in the remainder as well
(where neither contained valid DATA offsets, with respect
to file size). Within TEST-FCS, both branches always
succeeded, and always threw valid warnings (e.g., absence of
required keywords, or duplicate channel names). Altogether,
the FlowCore DATA segment parser performed well
(as long the HEADER and TEXT segment parser provided
accurate information).

DATA Segment

For each RAW-FCS which could be parsed by FlowCore, the
raw DATA values were checked for validity, by checking
against the $PnR keywords (which specify the maximum
range for each parameter) (Supporting Information Sup. 24).
The majority of RAW-FCS contained values in line with the
$PnR keywords. The remainder mostly consisted of RAW-
FCS from specific data sets (e.g., data set I-0091, where the
$PnR for fluorescent parameters were incorrect), and RAW-
FCS where the $PnR for the time parameter was incorrect.
Rarely, a subset of fluorescent channels exceeded the $PnR
range. The majority of RAW-FCS featured identical $PnR for
each channel, and the remainder mostly consisted of files with
different $PnR for each channel type (e.g., different $PnR for
scatter and florescent data). Notably, integrity of DATA seg-
ments could not be confirmed, as none of the RAW-FCS fea-
tured a CRC checksum.

DISCUSSION

Public repositories facilitate reproducible research (re-analyze
data for original purpose) and secondary analysis (analyze
data for other purpose). Strictly speaking, reproducibility does
not depend on software interoperability. However, in practical
terms, reproducibility heavily depends on software interopera-
bility, due to scarcity of legacy software platforms (e.g., fairly
hard to obtain a PowerMac with CellQuest). Software inter-
operability is also crucial for secondary analysis (e.g., being
able to use state-of-the-art software) and the repositories
themselves (e.g., being able to extract metadata for indexing).
Altogether, robust FCS parsers are key to public repositories.

Nonconformant FCS files are certainly not a thing of the
past. First, cytometrists keep using legacy software, either
because upgrades are expensive, or software cannot be
upgraded anymore (e.g., acquisition software). Second,
nonconformant FCS files were not only generated by legacy
software, but also by recent versions of actively developed
software (e.g., CyTOF Software). Third, most cytometrists are
not aware of the problem. Thus, the need for robust FCS
parsers will persist into the foreseeable future.

This study provides a comprehensive resource for parser
development, including a fully fledged set of testing files:
DATALESS-FCS are identical to RAW-FCS when it comes to
HEADER and TEXT segment parsing, but corrupt when it
comes to DATA segment parsing. TEST-FCS closely resemble
RAW-FCS when it comes to TEXT segment and DATA seg-
ment parsing, but fail to represent offset-related non-compli-
ances. REF-FCS are unambiguous FCS files, to be used as
reference for TEXT segment parsing, but also corrupt when it
comes to DATA segment parsing. Thus, DATALESS-FCS,
TEST-FCS, and REF-FCS serve different purposes, and
together, reflect the heterogeneity as found in 211,359 public
FCS files, within a footprint of 223 megabytes. Also, for each
file as discussed in the supplement, the RAW-FCS is pro-
vided, thereby providing a small series (n = 248) of well-
described representative files (Supporting Information Sup. 25).
Of note, these FCS files may serve other purposes as well, for

Cytometry Part A � 97A: 1180–1186, 2020 1185

TECHNICAL NOTE

example, serve as test cases for FCS indexing systems, or serve
as a solid starting point for studies on naming conventions
(Supporting Information Sup. 26).

Obviously, these testing files cannot be taken as principle
safeguard for FCS parser development. Theoretically, creativ-
ity in FCS file generation is limitless. However, in practice,
the variety in nonconformities is fairly limited. Most noncon-
formities are understandable from technical point of view
(e.g., offsets being off by one byte) and occurred in indepen-
dently developed software (e.g., acquisition software from
Fluidigm and Beckman Coulter). Therefore, the same non-
conformities might occur in future software as well, if only
because they go unnoticed (existing FCS parsers handle them
silently). Other nonconformities, that truly break existing FCS
parsers, are more likely to be noticed in time and therefore
less likely to reach production environments.

FlowCore succeeded in the vast majority of RAW-FCS,
as long the “assume empty values” setting was optimized. In
this study, two modifications to FlowCore were proposed,
namely improving the existing TEXT segment parser
(by adding the ability to automatically optimize the “assume
empty values” setting), and replacing the existing TEXT
segment parser (thereby improving robustness, and descrip-
tiveness of exceptions). FlowCore, together with the re-
implemented TEXT segment parser, successfully parsed each
RAW-FCS.

In principle, the nature of consecutive delimiters (escapes
vs. empty values) cannot be resolved without context
(e.g., “/A//B//C/D/” is ambiguous, while “/$BTIM//$ETIM//
$CYT/CYTOF/” is obvious), therefore parsers must build
upon assumptions. FlowIO assumes that consecutive delim-
iters represent escapes (in line with the specification) while
FlowCore (by default) assumes that they represent empty
values (in line with reality, being more frequent). By defini-
tion, this causes FlowIO to misinterpret empty values, and
FlowCore to misinterpret escapes; regularly without warning
(Supporting Information Sup. 22). In contrast, our code
resolves the nature of consecutive delimiters, by assuming
that escapes never occur in keys, which yielded better perfor-
mance, at least in 211,359 public FCS files. Thus, resolving
the nature of consecutive delimiters (by default), and allowing
users to override (in case of failure), seems optimal.

FlowIO and FlowJo handle anomalies differently. FlowIO
errs on the side of caution (always informing users), while
FlowJo errs on the side of usability (rarely informing users).
FlowCore, together with our TEXT segment parser, provides

a middle ground, by continuing in case of minor anomalies
(e.g., trailing spaces), and halting in case of major anomalies
(e.g., odd number of tokens).

Thus, strictly speaking, the majority of FCS files are non-
compliant, according to FlowIO. Fortunately, cytometrists are
rarely affected by these noncompliances, because existing FCS
parsers (e.g., FlowCore and FlowJo) handle them well. Alto-
gether, this study provides a comprehensive resource for FCS
parser development, an in-depth benchmark of FlowCore,
and a concrete proposal for improving FlowCore.

ACKNOWLEDGMENTS

The authors gratefully acknowledge Cytobank, Flow-
Repository, and ImmPort for maintaining the public data-
bases. The authors gratefully acknowledge everyone who
contributed to these database. The research for this manu-
script was performed within the framework of the Erasmus
Postgraduate School Molecular Medicine.

AUTHOR CONTRIBUTIONS

Anne Bras: Conceptualization; data curation; formal analysis;
investigation; methodology; project administration; validation;
writing-original draft; writing-review and editing. Vincent
van der Velden: Funding acquisition; resources; validation;
writing-original draft; writing-review and editing.

CONFLICTS OF INTEREST

None were disclosed by the authors.

LITERATURE CITED

1. Murphy RF, Chused TM. A proposal for a flow cytometric data file standard. Cyto-
metry 1984;5(5):553–555.

2. Seamer LC, Bagwell CB, Barden L, Redelman D, Salzman GC, Wood JC, Murphy RF.
Proposed new data file standard for flow cytometry, version FCS 3.0. Cytometry
1997;28(2):118–122.

3. Spidlen J, Moore W, Parks D, Goldberg M, Bray C, Bierre P, Gorombey P, Hyun B,
Hubbard M, Lange S, et al. Data file standard for flow Cytometry, version FCS 3.1.
Cytometry Part A 2010;77A(1):97–100.

4. Koblizek M, Lebedeva A, flowIO FK. Flow cytometry standard conformance testing,
editing, and export tool. Cytometry Part A 2018;93A(8):848–853.

5. Bhattacharya S, Dunn P, Thomas CG, Smith B, Schaefer H, Chen J, Hu Z,
Zalocusky KA, Shankar RD, Shen-Orr SS, et al. ImmPort, toward repurposing of
open access immunological assay data for translational and clinical research. Sci Data
2018;5:180015.

6. Spidlen J, Breuer K, Rosenberg C, Kotecha N, Brinkman RR. FlowRepository: A
resource of annotated flow cytometry datasets associated with peer-reviewed publica-
tions. Cytometry Part 2012;81A(9):727–731.

7. Chen TJ, Kotecha N. Cytobank: Providing an analytics platform for community cyto-
metry data analysis and collaboration. Curr Top Microbiol Immunol 2014;377:
127–157.

8. Bras AE, van der Velden VHJ. Lossless compression of Cytometric data. Cytometry
Part A 2019;95A(10):1108–1112.

1186 Robust FCS Parsing

TECHNICAL NOTE

	 Robust FCS Parsing: Exploring 211,359 Public Files
	Materials and Methods
	Software
	Data Collection and Conformity Checks
	HEADER Evaluation
	DATALESS-FCS
	TEXT Segment Parsing
	TEXT Segment Reference
	TEST-FCS Creation
	FlowCore Improvements and Benchmarks
	DATA Segment
	Data Availability and Reproducibility

	Results
	Conformance Testing
	DATALESS-FCS
	HEADER Variability
	TEXT Segment Variability
	TEXT Segment Parsing
	Reference Results
	Test-FCS
	FlowCore Improvements and Benchmarks
	DATA Segment

	Discussion
	Acknowledgments
	Author Contributions
	Conflicts of Interest
	Literature Cited

