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Background: Statistics show that each year more than 100,000 patients pass away from brain 
tumors. Due to the diverse morphology, hazy boundaries, or unbalanced categories of medical 
data lesions, segmentation prediction of brain tumors has significant challenges.

Purpose: In this thesis, we highlight EAV-UNet, a system designed to accurately detect lesion 
regions. Optimizing feature extraction, utilizing automatic segmentation techniques to detect 
anomalous regions, and strengthening the structure. We prioritize the segmentation problem of 
lesion regions, especially in cases where the margins of the tumor are more hazy.

Methods: The VGG-19 network structure is incorporated into the coding stage of the U-Net, 
resulting in a deeper network structure, and an attention mechanism module is introduced 
to augment the feature information. Additionally, an edge detection module is added to the 
encoder to extract edge information in the image, which is then passed to the decoder to aid 
in reconstructing the original image. Our method uses the VGG-19 in place of the U-Net encoder. 
To strengthen feature details, we integrate a CBAM (Channel and Spatial Attention Mechanism) 
module into the decoder to enhance it. To extract vital edge details from the data, we incorporate 
an edge recognition section into the encoder.

Results: All evaluation metrics show major improvements with our recommended EAV-UNet 
technique, which is based on a thorough analysis of experimental data. Specifically, for low 
contrast and blurry lesion edge images, the EAV-Unet method consistently produces forecasts 
that are very similar to the initial images. This technique reduced the Hausdorff distance to 1.82, 
achieved an F1 score of 96.1%, and attained a precision of 93.2% on Dataset 1. It obtained an F1 
score of 76.8%, a Precision of 85.3%, and a Hausdorff distance reduction to 1.31 on Dataset 2. 
Dataset 3 displayed a Hausdorff distance cut in 2.30, an F1 score of 86.9%, and Precision of 
95.3%.

Conclusions: We conducted extensive segmentation experiments using various datasets related to 
brain tumors. We refined the network architecture by employing smaller convolutional kernels in 
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our strategy. To further improve segmentation accuracy, we integrated attention modules and an 
edge enhancement module to reinforce edge information and boost attention scores.

1. Introduction

In the realm of neurological conditions, brain lesions stand out as a significant pathological entity. The World Health Organization 
(WHO) reports that there are about 260,000 cases of brain cancer worldwide each year. Remarkably, brain tumors rank among the 
leading causes of death in developed countries. If not provided with appropriate medical intervention, this condition may result in 
severe outcomes, such as visual impairment, speech impairment, and sometimes even paralysis. In medical image analysis, accurately 
identifying and classifying brain tumors is a critical task for clinical diagnosis, developing treatment plans, and tracking the course 
of the disease. The arrival of automated segmentation techniques has greatly advanced the understanding of medical professionals 
regarding tumor volumetric properties and space distribution. This development has therefore made it easier to provide more accurate 
and customized medical treatments. Nevertheless, it is crucial to emphasize the inherent complexities involved in distinguishing the 
boundaries between normal tissues that surround pathological tumor areas.

Conventional methods for segmenting imaging data have depended on human experts feature extraction and threshold setting, 
introducing intrinsic obstacles in capturing the complex features of tumor boundaries. In recent times, the field of medical segmenta-

tion has witnessed notable advancements in performance, owing to the substantial contributions of deep learning techniques. These 
cutting-edge approaches have become essential instruments for conducting thorough case analyses and research projects, which 
have resulted in ground-breaking discoveries. Ongoing study and development are necessary to further investigate and enhance the 
refinement of marginal information within the domain of brain tumor segmentation.

(1) Picture Quality: Inherent factors like noise, artifacts, and variations in scanning parameters can impair the clarity of CT scans 
and MRI. These factors reduce edge-based precision, which makes it difficult for the model to identify tumorous regions spatially, as 
shown graphically in Fig. 1.

(2) Structural Ambiguity: Determining the exact borders of tumors poses a challenge owing to the subtle features of the brain’s 
soft tissue. As seen graphically in Fig. 2, these intricacies result in hazy lesion borders, which create morphological variances and 
size uncertainties among various kinds of brain tumors.

(3) Annotation Inclination: Manual annotations require the subjective assessment of individual experts, potentially resulting in 
biased labels. Previous research suggests that this kind of bias in annotations during training can have a significant impact on 
segmentation algorithms’ performance [1].

(4) Data imbalance: A notable category imbalance is a fundamental issue with medical datasets, which can cause a bias in 
favor of categories with large sample counts during training. For instance, in cases where the oedema region is disproportionately 
represented in comparison to the tumor region, the learning model may potentially amplify the morphological characteristics of the 
oedema, resulting in misclassification of the oedema as tumor tissue. [2–4]

A higher degree of complexity is present in the segmentation of brain tumors in the clinical setting [5]. The goal of this work 
is to examine the effectiveness of different approaches in obtaining accurate tumor edge data. We provide an improved U-Net 
variation, called EAV-UNet, whose goal is to maximize target picture feature discrimination. An edge detection module that is 
specially tuned to lesion borders is incorporated into the segmentation network framework to handle problems (1) and (2). This 
combination leverages the complementary strengths of attention processes and convolutional neural networks to enable the reliable 
and sophisticated extraction of complex tumor edge information. During the encoding phase, we leverage the large perceptual field 
that the convolutional layers provide to improve the extraction of subtle picture information, which increases the sensitivity of edge 
detection. We use the Focal Tversky Loss function, which has been carefully tuned to reduce problems with data imbalance by 
modifying hyperparameters, for difficulties (3) and (4). Through thorough experimentation, we systematically evaluate this model’s 
performance advantages over traditional approaches in brain tumor segmentation with the goal of promoting the adoption of more 
accurate and effective clinical techniques.

The significance of precision in image processing is emphasized in the existing body of literature. The utilization of stacked 
hybrid blocks including different kernel sizes presents a flexible and adaptable approach that can effectively meet a wide range of 
needs. The RepLKNet architecture, which incorporates a wide convolutional kernel, was introduced by Ding et al. [6]This design 
innovation incorporates sophisticated methodologies such as structural reparameterization and complicated deep convolutional lay-

ers. Consequently, there is a heightened acquisition of worldwide characteristics, significantly augmenting the accuracy of brain 
tumor identification in imaging investigations. Zong et al. [7] conducted a prominent study that emphasized the effectiveness of 
mega-convolution in the context of specific image datasets. The study showcased the model’s impressive performance, achieving a 
top-1 accuracy of 87.8% and a mIoU measure of 56% on the ADE20K dataset. With the goal to reach global information capture, 
Zhou et al. [8] conducted an assessment of four pooling approaches and devised two strategies, namely “variable” and “invariant”, 
to enhance the scope of sensory fields. Ding et al. [9] incorporated the principles of ACNet into the underlying framework of VGG 
in the RepVGG design. The objective of this merger was to tackle the difficulties related to the training accuracy of VGG [10], while 
still retaining the advantages of using small convolutional kernels. This approach prioritized the capture of local information. In 
2

contrast to ResNet50 [11], a harmonious balance between accuracy and runtime speed was achieved, registering a top-1 accuracy 
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Fig. 1. This picture shows a low-grade glioma from a low-contrast MRI.

Fig. 2. This MRI shows an unclearly marginated low-grade glioma.

exceeding 80% on the ImageNet dataset and realizing an enhancement in runtime speed to 83%. As the network layers become more 
complex, the challenges of gradient explosion and vanishing become critical to address. Deshpande et al. [12] employed ResNet for 
distinguishing brain tumor types, accomplishing super-resolution, and further evolving the concept by extending residual links to 
encompass dense connections.

The investigation conducted by Zhou et al. [13] explored several GAN network, emphasizing their significance within the domain 
of medical image fusion, a critical component in the diagnosis of medical diseases. The segmentation impact is influenced by the clar-

ity of the image. Argus et al. [14] highlighted the capability of MRI (magnetic resonance imaging) to acquire high-resolution pictures 
by the manipulation of the surrounding tissue in the region of interest [15,16]. In a subsequent study, Zhao et al. [17] integrated the 
UNet [18] with full convolutional networks (FCN) [19] to create a novel segmentation approach. They also introduced a partially 
constructed codec as part of their end-to-end solution. The RMCA U-Net was developed by incorporating unique adaptations to the 
traditional U-Net framework in a later improvement [20]. The present iteration employed a residual technique in conjunction with 
a channel attention mechanism, so establishing a foundation for intricate retinal diagnosis pertaining to diabetes. R et al. [21] pro-

posed the utilization of reversible blocks as a means to alleviate memory constraints and facilitate the storage of activation functions. 
Hao et al. [22] presented a novel approach NPC for segmenting using a combination of pixel edge and region-level collaborative 
loss. Li et al. [23] proposed an innovative method aimed at improving the clarity of focus information in medical pictures, with 
the ultimate goal of achieving more precise lesion segmentation. In addition, the ANU-Net, which incorporates attention gates into 
the skip connections of the U-Net, represents a considerable advancement in the field. Furthermore, Zhou et al. [24] made modifi-

cations to the jump connection inside the U-Net architecture and built a novel network called UNet++. This modification involves 
aggregating data from several layers through feature stacking, hence enhancing the model’s representation capabilities. The UNet++ 
architecture incorporates a deeply supervised network approach, which leverages intermediate monitoring signals to streamline the 
training process.

Medical images possess inherent characteristics that result in concerns of privacy, imbalanced data distribution, and uncertainty 
in the morphology of lesions. Moreover, the complexity of neural network topologies amplifies the susceptibility of medical data. 
The utilization of multi-task learning paradigms has been shown to effectively leverage latent knowledge [25–27]. Woo et al. [28]

combine spatial and channel attention techniques in order to enhance important characteristics. It’s noteworthy to mention that 
the delineation of adjacent tissue plays a consequential role in influencing segmentation precision. In order to tackle this issue, 
Shen et al. [29] proposed an edge detection module that effectively disseminates information via an encoder. In continuation of 
this research trajectory, Sun et al. [30] introduced the AS-UNet model to address the difficulties associated with segmenting lesion 
edges. They enhanced their model by incorporating edge feature mapping in the decoding phase. Although these investigations 
have provided useful insights, the complexities associated with brain tumor segmentation continue to be an ongoing problem. 
Brain tumors exhibit complex shapes, low MRI contrast, diverse tissue properties, and ill-defined edges, all of which hinder the 
accuracy of training. This study aims to enhance the U-Net framework by deepening the network structure using small convolutional 
kernels. Through meticulous analysis of experimental parameters, we propose the integration of the CBAM attention mechanism 
module in the decoding phase to optimize the scoring of critical feature information and extract more valuable insights. An edge 
enhancement module is incorporated during the encoding stage to mitigate information gaps within regions and accentuate lesion 
3

edge contours.
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Fig. 3. The EAV-UNet network follows a structured architectural design.

2. Materials and methods

2.1. Network structure

The article presents the introduction of a novel medical image segmentation network called EAV-UNet. EAV-UNet is an improved 
version of the U-Net design, as illustrated in Fig. 3. Its architecture comprises three key components: an edge detection convolutional 
layer (E), an attention mechanism (A), and a deepening VGG19 network structure (V). In this study, we employ the encoding-

decoding structure of the U-Net, with the encoding part replaced by the VGG19 network to significantly deepen the network layers 
and extract feature information at a profound level. The utilization of jump connections allows the transfer of feature information 
extracted from higher layers to lower layers within the network. Notably, the feature maps of each layer in the encoding are 
channeled into the edge detection convolution module, leading to the generation of edge feature maps. These edge feature maps, 
acting as an additional source of edge details, are conveyed to the corresponding decoder layers at the same hierarchical level via 
jump connections. Additionally, we introduce the CBAM attention mechanism module into the decoder path to refine the output 
results. To address data imbalances in brain tumor images, we incorporate the Focal Tversky loss function into the training model. 
This addition serves to reduce classification complexity and enhance lesion prediction accuracy.

2.2. Fusion of VGG19 and U-Net

The encoder is to obtain high-level features from the input medical picture, which are subsequently utilized by the decoder mod-

ules for generating predictions or segmenting the image. In practice, additional computational tasks are often integrated to enhance 
segmentation predictions. However, this augmentation increases the model’s complexity. Consequently, some researchers prefer the 
utilization of 3x3 convolutional kernels over larger counterparts, aiming to mitigate parameter and computational overhead. This 
preference is particularly relevant for network architectures handling multi-channel datasets. The employment of multiple smaller 
convolutional kernels offers several advantages. Firstly, it reduces the number of activation layers, emphasizing the nonlinear repre-

sentations within the model. Secondly, it enhances information capture through diverse feature extraction. In our proposed model, 
we leverage the VGG19 architecture for the encoder. This strategic choice deepens the network’s architecture and enhances the effi-

ciency of information extraction. Furthermore, to augment the model’s generalization capacity and overall robustness, the encoder 
leverages pre-trained weights derived from the VGG19 network.

While U-Net has demonstrated effectiveness in small-sample image segmentation, it exhibits limitations in capturing intricate 
features. In contrast, VGG19 employs a multi-layer architecture designed for progressive feature extraction, particularly well-suited 
for large-scale image categorization or segmentation. Given the strong feature extraction performance of the U-Net’s encoding mod-

ule, which bears structural resemblance to VGG-19, we have chosen to replace the U-Net encoder with VGG19 while preserving the 
fundamental U-Net framework. Our evaluation metrics reveal a notable 5.3% improvement in the accuracy of the predicted images.

2.3. Attention mechanism module

When processing feature maps with an excessive number of image features, computers may produce outputs that lack focus and 
4

are inadequate in representing the target region. The attention mechanism in computer vision seeks to identify correlations among the 
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Fig. 4. CBAM structure diagram.

Fig. 5. Structure of the edge enhancement module.

original data while highlighting important features. This paper introduces the Convolutional Block Attention Module (CBAM [28]) 
in decoder stage. During the encoding step, the feature information is passed through the channel (CA) and spatial (SA) attention 
mechanism consecutively. The former focuses on the content of the feature information, while the latter emphasizes the location of 
the feature information. The configuration of the CBAM is illustrated in Fig. 4.

The feature map outputted by the convolutional layer initially enters the channel attention module, where the feature map is 
compressed into a one-dimensional vector along the spatial dimension. Following maximum pooling and average pooling, it is fed 
into the shared neural network (MLP). The resulting feature maps are element-wise summed and merged after expanding along the 
spatial dimension, yielding output1. The resulting feature map, denoted as channel attention feature map, is obtained by multiplying 
output1 with the input feature map. Subsequently, the result is input into the SA module, undergoing maximum pooling and average 
pooling, which are then concatenated into a feature map. After applying a 7x7 convolutional kernel for dimensionality reduction, 
output2 is obtained. Finally, the generated feature is acquired by the process of multiplying the created feature with the initial input 
feature map, denoted as “Input”.

In this paper, our model employs both the CA and SA mechanism sequentially to extract meaningful and relevant features, 
thereby enhancing the model’s training accuracy. This enables the model to disregard irrelevant noise information and concentrate 
on extracting key information.

2.4. Convolutional layer for edge detection

The most significant challenge in medical image processing is accurately delineating lesion edges. Due to the variable shapes of 
tumor borders and the relatively smooth nature of surrounding tissues, models often struggle to capture edge details, resulting in 
inaccurate segmentation outcomes. To tackle this challenge, this paper introduces an edge detection convolutional layer after each 
layer in the encoding stage of the model, effectively utilizing the Sobel operator [31] for image edge detection, as depicted in Fig. 5. 
The Sobel operator employs a 3x3 convolution kernel containing two matrices, 𝑆𝑥 and 𝑆𝑦. A grayscale weighting algorithm is applied 
to the 3x3 neighborhood around each pixel to compute gradient values in both horizontal and vertical directions. These gradients 
are then combined and processed, as described in equation (3), to emphasize edge points, leading to enhanced edge detection. The 
resultant edge detection feature maps are subsequently integrated into the decoder stage through jump connections. The convolution 
factors 𝑆𝑥 and 𝑆𝑦 of the Sobel operator are defined in equation (1).

𝑆𝑥 =
⎡⎢⎢⎣
−1 0 1
−2 0 2
−1 0 1

⎤⎥⎥⎦ , 𝑆𝑦 =
⎡⎢⎢⎣

1 2 1
0 0 0
−1 −2 −1

⎤⎥⎥⎦ (1)

𝐼 represents the original image, where 𝐺𝑥, 𝐺𝑦 represent the gradients in the vertical and horizontal directions, as illustrated in 
5

equation (2).
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𝐺𝑥 = 𝑆𝑥 × 𝐼,𝐺𝑦 = 𝑆𝑦 × 𝐼 (2)

The grayscale values of each pixel in both the vertical and horizontal axes are combined.

𝐺 =
√

𝐺𝑥
2 +𝐺𝑦

2 (3)

2.5. Focal Tversky loss function

The commonly used loss function in image processing, known as the generalized cross-entropy loss (GCE) [32], is computed 
on a per-pixel basis. However, the field of medical imaging frequently encounters the obstacle of data imbalance. Data imbalances 
can lead to a biased class-led learning process, making it difficult for classes with fewer pixels to extract meaningful features. 
Additionally, in medical images, the small regions of interest (ROIs) in lesions often lead to heavily biased high-precision but low-

recall predictions, which can diminish the model’s effectiveness. To address the issue of significant classification errors caused by the 
disproportion of positive and negative samples during training, we focus our attention on samples with limited data. We incorporate 
a hyperparameter, denoted as ‘𝛼’, into the Tversky Loss function [33], which is a modified version of the binary cross-entropy loss, 
as shown in equation (4).

𝑇 𝑣𝑒𝑟𝑠𝑘𝑦 =
∑𝑁

𝑖=1 𝑝𝑖𝑐𝑜𝑖𝑐 + 𝑠∑𝑁

𝑖=1 𝑝𝑖𝑐𝑜𝑖𝑐 + 𝛼
∑𝑁

𝑖=1 𝑝𝑖𝑐𝑜𝑖𝑐 + (1 − 𝛼)
∑𝑁

𝑖=1 𝑝𝑖𝑐𝑜𝑖𝑐 + 𝑠
(4)

Where 𝑝𝑖𝑐 is the probability that pixel 𝑖 is predicted to belong to category 𝑐, 𝑝𝑖𝑐 is the probability that pixel 𝑖 is predicted to belong 
to category 𝑐, 𝑜𝑖𝑐 is the probability that pixel 𝑖 actually belongs to category 𝑐, 𝑜𝑖𝑐 is the probability that pixel 𝑖 actually belongs to 
category 𝑐, 𝛼 is a hyperparameter that shifts the focus of attention by adjusting the hyperparameter, and 𝑠 is a constant that provides 
data stability. Tversky loss actually solves the issue pertaining to samples that are positive or negative, and we further realize the 
distinction between difficult samples. By intervening with the hyperparameter 𝛽, the Focal Tversky loss function [34] improves the 
classification difficulty of samples on lesion training and achieves a better balance between accuracy and recall, as in equation (5). 
The Focal Tversky Loss function was assigned the value of 𝛼 = 0.7, 𝛽 = 0.75 based on empirical investigation.

𝐹𝑇 =
∑
𝑐

(1 − 𝑇 𝑣𝑒𝑟𝑠𝑘𝑦)𝛽 (5)

3. Results

3.1. Data sets

In this study, the model has been trained using three distinct datasets to assess its generalization and robustness.

Dataset 1: The data used in our experiments were sourced from The Cancer Genome Atlas (TCGA) [35], where brain tumor 
images from 110 patients with low-grade gliomas were identified, collected from five different institutions. Specifically, we utilized 
the LGG Segmentation Dataset, compiled as described by Mateusz et al. [36]. This dataset comprises open low-grade glioma MRI 
scans, encompassing both normal brain images and brain tumor images. Our experimental dataset consisted of 2556 images without 
brain tumors and 1373 images with brain tumors. To ensure a robust evaluation, the dataset was partitioned into 22 distinct subsets 
that were mutually exclusive, each containing images from 5 different patients selected from the total of 110 patients. These subsets 
were further divided into testing, validation, and training sets, with 1167 images allocated to the training set and 103 images each 
for the testing and validation sets.

Dataset 2: The dataset employed in this article, referred to as the ‘brain tumor dataset’, was obtained from Figshare and was 
originally made available by Jun Cheng [37]. This dataset comprised a total of 3064 T1-weighted pictures, which were represen-

tative of three distinct categories of brain tumors. Initially provided in MAT file format, we employed a custom data processing 
script to convert it into a more suitable numpy array format for deep learning models. This preprocessing involved tasks such as 
loading the MAT files, resizing all images to a consistent 256x256 pixel dimensions, and randomly partitioning the dataset into three 
subsets, accounting for 70%, 15% and 15% respectively. This approach ensures both dataset uniformity and randomness. Finally, the 
partitioned dataset was saved as a numpy array file, making it easily accessible for future research.

Dataset 3: The dataset utilized in this study consists of images sourced from the BraTS 2021 training set, which is part of the 
BraTS Challenge [38]. This dataset comprises a total of 1251 cases and includes MRI images of the brain captured from various axial 
perspectives. To facilitate model training, we extracted 2D image slices from each axial view, specifically the transverse, coronal, 
and sagittal views. These image slices were further processed to categorize the data from various imaging modalities into binary 
categories before being utilized as input data for model training.

3.2. Evaluation indicators and experimental details

The experiments detailed in this paper were conducted using a Windows operating system, Python 3.7 programming language, and 
the Keras 2.4.3 deep learning framework with a TensorFlow 2.4.0 backend. Furthermore, the experiments made use of a configuration 
featuring a CUDA 11.5 RTX 3060Ti graphics card and the CUDNN 8.0 deep neural network model training library. Throughout the 
6

model training process, several key parameters were employed. The initial rate of learning was established as 0.01, the batch size 
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was specified as 6. The Adam optimizer was utilized with an epsilon value of 0.1. Additionally, a maximum of 200 iterations were 
specified for each training run.

In this paper, we use Focal Tversky index (FT), Precision (Pre), Intersection over Union (IoU), F1 Score (F1), Structural Similarity 
Index (SSIM), Hausdorff Distance (HD) and Mean Absolute Error (MAE) as evaluation indicators to measure the prediction results 
of the model and make a more scientific evaluation. Among them, precision focuses on the accuracy of the model prediction results 
and is particularly suitable for measuring sample imbalance problems like medical image processing; IoU evaluated the segmentation 
capacity of the model; The F1 measure is responsible for adjusting the weights of Precision (Pre) and Recall (R) in various scenarios; 
The Structural Similarity Index (SSIM) is a metric used to quantify the degree of resemblance between an image and its original 
structure, encompassing attributes such as brightness and contrast; The Hausdorff Distance (HD) is employed to quantify the discrep-

ancy at the boundary of the designated region; the Mean Absolute Error (MAE) is utilized to assess the average absolute difference 
between the anticipated outcome and the initial image. The evaluation metrics are calculated as shown in equations (6), (7), (8), (9), 
(10).

Pre = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(6)

𝑅 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
,𝐹1 = 2 × 𝑃𝑟𝑒 ×𝑅

𝑃𝑟𝑒+𝑅
(7)

where 𝑇𝑃 is a True positive case, 𝑇𝑁 is a True negative case, 𝐹𝑃 is a False positive case, and 𝐹𝑁 is a False negative case.

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 +𝐶1)(2𝜎𝑥𝑦 +𝐶2)

(𝜇𝑥2 + 𝜇𝑦
2 +𝐶1)(𝜎𝑥2 + 𝜎𝑦

2 +𝐶2)
(8)

where 𝜇𝑥, 𝜇𝑦 denote the brightness of the original image and the predicted image respectively, 𝜎𝑥, 𝜎𝑦 denote the contrast of the 
original image and the predicted image respectively, and 𝐶1, 𝐶2 is a constant.

𝐻𝐷 =𝐻(𝐴,𝐵) = max [ℎ (𝐴,𝐵) , ℎ (𝐵,𝐴)] (9)

Where 𝐻 is the Hausdorff function, 𝐴 is the prediction result, 𝐵 is the original image, 𝐴 =
{
𝑎1, 𝑎2,⋯

}
, 𝐵 =

{
𝑏1, 𝑏2,⋯

}
is the two-

point set, ℎ (𝐴,𝐵) = max
𝑎∈𝐴

min
𝑏∈𝐵

‖𝑎− 𝑏‖, ℎ (𝐵,𝐴) = max
𝑎∈𝐴

min
𝑏∈𝐵

‖𝑏− 𝑎‖, 𝐻 (𝐴,𝐵) is the Hausdorff bidirectional distance, the unidirectional 
Hausdorff distance (HD) from point set A to point set B is denoted as ℎ (𝐴,𝐵), while the unidirectional Hausdorff distance (HD) from 
point set B to point set A is denoted as ℎ (𝐵,𝐴).

𝑀𝐴𝐸 = 1
𝑚

𝑚∑
𝑖=1

||𝐵𝑖 − 𝐴𝑖
|| (10)

Where 𝑚 represents the total number of samples, 𝐵𝑖 denotes the original image, 𝐴𝑖 signifies the prediction result, and the function | ⋅ | stands for the absolute value computation.

3.3. Ablation experiments

The efficacy of the suggested model was validated through the implementation of ablation experiments in this research. These 
studies encompass the following key enhancements: (1) Integration of U-Net with VGG-19: This augmentation deepens the network 
structure while significantly enhancing the capacity for feature information extraction, despite the increase in parameter count. (2) 
Introduction of CBAM Attention Mechanism: Within the decoding stage, the CBAM attention mechanism is incorporated. It involves 
the processing of output feature maps from all layers, employing both channel attention (CA) and spatial attention (SA) modules. 
When compared to the baseline U-Net, this modification leads to an improvement in accuracy: 8% on Dataset 1, 3.6% on Dataset 2, 
and 0.2% on Dataset 3. Additionally, it results in a reduction in the Mean Absolute Error (MAE) by 0.46% and 0.14% on Dataset 1 and 
2, respectively, as well as 0.81% on Dataset 3, underscoring the effectiveness of the enhanced attention mechanism.(3) Incorporation 
of Edge Detection Convolutional Layer: An edge detection convolutional layer is introduced into each encoder layer to enhance the 
precision of lesion edge detection. This enhancement yields superior outcomes, particularly in relation to the Hausdorff distance (HD) 
metric, achieving optimal scores of 1.82, 1.31, and 2.30, respectively. These enhancements have been seamlessly integrated into our 
model’s architecture and their feasibility for enhancing model performance has been rigorously demonstrated through experimental 
data, as presented in Table 1.

3.4. Comparative experiments

This study involved the implementation of comparative experiments on three separate datasets in order to assess the efficacy of 
different convolutional neural network designs for medical image segmentation. Specifically, we investigated the Full Convolutional 
Neural Network (FCN), the U-Net network, and two modified approaches based on the U-Net framework. FCN and U-Net are well-

established segmentation networks widely used within the domain of medical image analysis. We also investigated UNet++, a 
novel architecture that enhances the U-Net framework by incorporating a pruning mechanism and deep supervision techniques to 
7

improve overall model performance. Additionally, we introduced AS-UNet, an innovative variant of U-Net. AS-UNet integrates an 
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Table 1

Comparison of various functional modules and overall network structures in different brain tumor 
image segmentation tasks.

Dataset model Pre IoU F1 SSIM HD MAE (%) FT

Dataset 1 U-Net 0.843 0.856 0.922 0.881 10.4 0.67% 0.83

+VGG19 0.882 0.875 0.903 0.954 8.50 0.37% 0.88

+CBAM 0.923 0.791 0.883 0.967 4.12 0.21% 0.86

+Edge 0.918 0.897 0.936 0.934 2.83 0.34% 0.88

EAV-UNet 0.932 0.924 0.961 0.968 1.82 0.18% 0.93

Dataset 2 U-Net 0.782 0.778 0.717 0.918 2.38 4.19% 0.76

+VGG19 0.815 0.815 0.732 0.930 2.21 3.82% 0.82

+CBAM 0.818 0.803 0.719 0.926 2.15 4.05% 0.75

+Edge 0.932 0.812 0.722 0.931 2.03 3.18% 0.82

EAV-Unet 0.853 0.842 0.768 0.931 1.31 2.85% 0.83

Dataset 3 U-Net 0.919 0.779 0.876 0.905 8 1.64% 0.82

+VGG19 0.923 0.830 0.892 0.895 5.82 0.62% 0.88

+CBAM 0.921 0.812 0.831 0.926 6.31 0.83% 0.73

+Edge 0.928 0.822 0.826 0.902 4.28 1.58% 0.77

EAV-Unet 0.953 0.831 0.869 0.958 2.3 1.02% 0.85

Table 2

EAV-UNet was compared with the baseline U-Net model and three other relevant network models 
for image segmentation across various brain tumor datasets.

Datasets model Pre IoU F1 SSIM HD MAE(%) FT

Dataset 1 FCN 0.831 0.795 0.886 0.903 11.3 0.60% 0.75

U-Net 0.843 0.856 0.922 0.881 10.4 0.67% 0.83

UNet++ 0.862 0.835 0.820 0.921 11.4 1.09% 0.82

AS-Unet 0.891 0.846 0.917 0.967 3.24 0.76% 0.82

EAV-Unet 0.932 0.924 0.961 0.968 1.82 0.18% 0.93

Dataset 2 FCN 0.671 0.625 0.552 0.843 13.8 6.35% 0.64

U-Net 0.782 0.778 0.717 0.918 2.38 4.19% 0.76

UNet++ 0.735 0.652 0.685 0.921 4.23 5.12% 0.71

AS-Unet 0.831 0.805 0.683 0.926 1.82 4.32% 0.80

EAV-Unet 0.853 0.842 0.768 0.931 1.31 2.85% 0.83

Dataset 3 FCN 0.791 0.658 0.812 0.759 23.8 9.36% 0.69

U-Net 0.919 0.779 0.876 0.905 8.00 1.64% 0.82

UNet++ 0.896 0.832 0.854 0.892 6.76 1.98% 0.79

AS-Unet 0.932 0.815 0.882 0.912 6.32 2.47% 0.83

EAV-Unet 0.953 0.831 0.869 0.958 2.30 1.02% 0.85

Edge-Attention module within the last three layers of the U-Net decoder. This module is specifically devised to tackle the difficulties 
related to the segmentation of picture edges.

The experimental findings, as presented in Table 2, demonstrate the greater efficacy of our proposed approach in comparison 
to four alternative methodologies. Despite the relatively simpler architectures of FCN and U-Net networks, which result in fewer 
parameters, our method excels comprehensively across all evaluation metrics. Specifically, on Dataset 2, our method demonstrates 
substantial improvements, with Precision (Pre) metrics surpassing those of FCN and U-Net by 16% and 7.1%, respectively. Further-

more, in comparison to UNet++, our method on Dataset 1 achieves a 5.9% increase in Precision (Pre) and a 2.7% enhancement 
in the F1 score, while simultaneously reducing the mean absolute error (MAE) by 0.91%. These findings underscore the superior 
feature information extraction capabilities during the encoding phase, in contrast to the decoding phase. Moreover, when compared 
with AS-UNet, our method yields significant improvements in Hausdorff distance metrics, with reductions of 1.42, 12.49, and 5.7 on 
the respective datasets. This observation indicates enhanced proficiency in edge identification, hence reinforcing the efficacy of our 
approach.

Visualizations were obtained from various methods applied to three distinct datasets, each comprising the original brain tumor 
image, its corresponding Ground Truth, and the predicted segmentation outcomes generated by different network architectures. The 
figures presented depict the red contour, which serves to show the extracted original mask area, while the green region represents 
the segmented tumor.

Fig. 6 and Fig. 7 display the image results obtained from Dataset 1. A detailed analysis of these images reveals the following 
observations: FCN exhibits subpar predictive performance, particularly when confronted with images characterized by low contrast. 
It struggles to accurately delineate and segment lesion regions. UNet++, on the other hand, demonstrates less effective predictions, 
especially when dealing with images featuring boundary smoothing and blurring characteristics. In comparison, the AS-UNet model 
excels in terms of its similarity to the original image and its ability to capture information related to lesion edges and blurred 
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images. However, it slightly lags behind the method proposed in this paper in certain aspects. EAV-UNet’s prediction results closely 
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Fig. 6. Visualization results of EAV-UNet and four other methods in the high-contrast image segmentation task of the LGG Segmentation Dataset.

Fig. 7. Visualization results of EAV-UNet and four other methods in the low-contrast image segmentation task of the LGG Segmentation Dataset.

Fig. 8. Visualization results of EAV-UNet and other network models in the brain tumor Dataset segmentation task.

align with the original images, especially when dealing with images featuring complex lesion edges and low contrast. It effectively 
highlights lesion regions and, as a result, achieves the highest level of accuracy among the evaluated models. Fig. 8 presents 
the visualization results obtained from Dataset 2, also known as the Brain Tumor Dataset. This dataset encompasses various brain 
tumor types, each characterized by diverse shapes, textures, and boundary features. The presence of such data diversity significantly 
contributes to enhanced model training, enabling it to effectively adapt to these inherent variations. Notably, the incorporation of 
T1-weighted contrast-enhanced pictures serves to emphasize the boundaries of brain tumors and other discernible characteristics, 
hence facilitating accurate identification and segmentation of the tumors. When we compare the network model incorporating 
edge enhancement with the original U-Net and FCN models, a clear emphasis on the lesion’s edge region becomes evident in the 
visualization results. Upon closer scrutiny, it becomes apparent that EAV-UNet excels in generating predictions that closely resemble 
the original images, particularly when handling complex boundary scenarios. The visualization results presented in Fig. 9 are obtained 
from Dataset 3. BraTS2021 dataset is a comprehensive collection that includes four distinct imaging modalities, effectively covering 
a wide range of brain tumor types. This dataset provides a rich and diverse set of data, which plays a crucial role in enhancing our 
model’s ability to comprehend intricate information. Traditional methodologies and alternative deep learning models may encounter 
performance limitations due to inherent challenges such as boundary ambiguities and regional inhomogeneities, which further 
9

complicate the task of precise segmentation. However, by adopting the EAV-UNet method, we have successfully overcome these 
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Fig. 9. Visualized results of EAV-UNet and other network models in the BraTS2021 segmentation task.

Fig. 10. Optimal hyperparameters set at 𝛼 = 0.7, 𝛽 = 0.75 for loss function analysis. The left panel presents the model’s training progression via the Focus Tversky 
loss, while the right panel showcases the training evolution in terms of the Tversky index.

Table 3

Experimental results of Focal Tversky loss with different hyperparameters.

𝛼 (𝛽 = 0.75) 0.9 0.7 0.5 0.3 0.1

Loss 0.341 0.144 0.173 0.153 0.176

Score 0.659 0.856 0.827 0.847 0.694

challenges, thereby demonstrating the efficacy of our methodology in attaining superior segmentation results in the context of brain 
tumor analysis.

3.5. Experimental results of Focal Tversky loss with different hyperparameters

To optimize performance, we make adjustments to parameters 𝛼, 𝛽 achieving the optimal configuration. Fig. 10 displays the loss 
function for hyperparameters 𝛼 = 0.7 and 𝛽 = 0.75. Fig. 11 illustrates the results of the Focal Tversky loss function for our method 
with different hyperparameters 𝛼. Compared with Fig. 11. (a),(b),(c),(d), it becomes evident that the loss is minimized when 𝛼 = 0.7
and 𝛽 = 0.75. The curve presented in Fig. 11. (b) or the validation set aligns better with the test set, but results in higher loss values. 
However, apart from Fig. 11 (b), the other three plots exhibit noticeable oscillations, and the losses do not yield favorable results, can

be explained to the discrepancy between the chosen loss function and the hyperparameter. Specific experimental data are provided 
in Table 3 for further analysis.

4. Discussion

The article presents a novel brain tumor segmentation technique, referred to as EAV-UNet, with a primary focus on edge en-

hancement. Drawing upon insights from contemporary deep learning network models and benchmarking against other methods, we 
strategically leverage the VGG19 architecture. Our approach involves the replacement of the U-Net network structure with smaller 
10

convolutional and pooling kernels, resulting in a reduction of network parameters and an enhancement in the capture of detailed 
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Fig. 11. Training results for Focal Tversky loss under various hyperparameters. Panel (a) displays the model’s training loss curve (left) and Tversky index progression 
(right) with hyperparameter set at ‘𝛼 = 0.1, 𝛽 = 0.75’. Similarly, panels (b), (c), and (d) depict the training trajectories under the hyperparameter settings ‘𝛼 = 0.3, 𝛽 =
0.75’, ‘𝛼 = 0.5, 𝛽 = 0.75’, and ‘𝛼 = 0.9, 𝛽 = 0.75’ respectively. The left side of each panel presents the associated loss curve, while the right side illustrates the Tversky 
index curve.

information within the feature graph. This refinement proves particularly advantageous for large-scale datasets, especially those 
encompassing a substantial volume of medical images, as empirically demonstrated in our experiments.

Our method undergoes extensive validation across three distinct datasets: the LGG Segmentation Dataset, brain tumor dataset, and 
BraTS2021. Diverging from conventional brain tumor segmentation techniques, our primary focus centers on the precise delineation 
of tumor edge information an essential element for preoperative assessment and treatment planning. Through the integration of 
scoring mechanisms, we augment edge features, effectively addressing common challenges related to edge blurring and indistinct 
segmentation within brain tumor segmentation tasks.

Experimental outcomes underscore the excellence of our method in managing brain tumor boundary regions. Notably, the Haus-

dorff distance (HD) metric reveals a significant reduction when compared to traditional methods, attaining values of 1.82, 1.31, and 
2.30 across the three datasets, respectively. Furthermore, our method demonstrates strong performance in handling feature informa-

tion, successfully mitigating common issues related to edge blurring and indistinct segmentation in brain tumor segmentation. The 
robustness of our method is consistently validated across diverse datasets. To address data imbalance concerns, we incorporate the 
Focal Tversky loss function, providing additional guidance for the segmentation model. Through meticulous hyperparameter tuning 
and improvements to the model loss function, we achieve enhanced stability in segmentation outcomes.

5. Conclusions

The main objective of this paper is to accurately partition 2D brain tumor images with the U-Net network. We leverage the 
inherent advantages of the U-Net network’s fundamental structure while deepening its architecture with the incorporation of VGG19. 
This modification allows for the extraction of deep features from input brain tumor images using smaller convolutional kernels. 
Furthermore, we propose the incorporation of the convolutional attention mechanism module for the purpose of computing feature 
scores and extracting global information. This, in turn, enhances the accuracy of model training by filtering out irrelevant noise 
information while emphasizing key details.

Additionally, we address the challenge of predicting unclear tumor edges, smoothing surrounding tissues, and preserving edge 
details by introducing an edge enhancement module. This module leverages edge detection methods to strengthen edge information, 
thereby alleviating difficulties in medical segmentation. The feasibility of the method is proved by experiments, and the model 
exhibits strong performance on the given dataset.

In subsequent endeavors, our intention is to investigate the potential use of the methodology put out in this scholarly article for 
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the examination of 3D brain tumor images. This direction aims to overcome the limitation of 2D convolutional networks, which 
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may not capture the full extent of 3D spatial information. Our research will focus on developing and adapting techniques that can 
effectively process and extract relevant features from 3D medical imaging data.
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