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Abstract: Treatment of cystic fibrosis relies so far on expensive and sophisticated drugs. A logical
approach to rescuing the defective ∆F508-CFTR protein has not yet been published. Therefore, virtual
docking of ATP and CFTR activators to the open conformation of the CFTR protein was performed.
A new ATP binding site outside of the two known locations was identified. It was located in the
cleft between the nucleotide binding domains NBD1 and NBD2 and comprised six basic amino acids
in close proximity. Citrate and isocitrate were also bound to this site. Citrate was evaluated for its
action on epithelial cells with intact CFTR and defective ∆F508-CFTR. It activated hyaluronan export
from human breast carcinoma cells and iodide efflux, and recovered ∆F508-CFTR from premature
intracellular degradation. In conclusion, citrate is an activator for ∆F508-CFTR and increases export
by defective ∆F508-CFTR into the extracellular matrix of epithelial cells.
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1. Introduction

Cystic fibrosis (CF) is one of the most common inherited diseases, afflicting 1 in
approximately 2500 white individuals [1]. The primary cause of morbidity and mortality in
CF is chronic lung infection and deterioration of lung function. CF is caused by mutations
in the CF transmembrane conductance regulator (CFTR) gene, which encodes a chloride
channel expressed at the apical membrane of epithelial cells in the airways, pancreas, testis,
and other tissues [2,3]. The most common CFTR mutation producing CF is deletion of
phenylalanine at residue 508 (∆F508) in its amino acid sequence. The ∆F508-CFTR protein
is misfolded and retained at the endoplasmic reticulum, where it is degraded rapidly. Small-
molecule activators of defective ∆F508-CFTR folding/cellular processing (“correctors”) and
channel gating (“potentiators”) may provide a strategy for therapy of CF that corrects the
underlying defect. A number of small-molecule ∆F508-CFTR potentiators and correctors
have been identified [4]. They were found by high-throughput screening for activation of
the chloride channel.

We discovered that hyaluronan is exported from mesenchymal fibroblasts by MRP5
(multidrug resistance associated protein 5) [5] and from epithelial cells by CFTR [6].
Hyaluronan has an important role in epithelial clearing of the bronchial surface by fa-
cilitating cilial beating [7,8]. In an attempt to evaluate interaction between CFTR and
hyaluronan transmembrane transport, we synthesized a new class of drug-like compounds
(Hylout4) that mimic the non-reducing end of hyaluronan and discovered that they acti-
vated chloride export from bronchial epithelial cells and hyaluronan export from breast
cancer cells [9]. The compounds together with other known modulators were docked to the
open and closed conformation of ∆F508-CFTR [10] to identify possible optimized activators
for ∆F508-CFTR. Molecular modelling and physiological experiments showed that citrate
serves as an activator of hyaluronan transport in ∆F508-CFTR.
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2. Materials and Methods
2.1. Materials

Mouse-anti-CFTR-IgM was from Acris Antibodies, Hiddenhausen, Germany. Other
chemicals were from Sigma-Aldrich Chemical Corporation (St. Louis, MO, USA).

2.2. Computational Studies

In silico docking studies were carried out to evaluate the affinity and binding interac-
tions by molecular docking simulation using the AutoDock 4.2 and PyRx software—Python
Prescription 0.8 to coordinates of the open and closed CFTR conformation [10–12]. ATP,
citrate and docosahexaenoic acid (DHA) were docked as fully ionized molecules to enable
ionic interaction with basic amino acids. The theoretical KI-values of binding are listed in
Table 1.

Table 1. Virtual docking of activators and inhibitors to the open conformation of CFTR.

Name Structure Calculated Affinity
Km (µM)

Experimental Activation/
Inhibition
EC50 (µM)

Ref.

Hylout4
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Table 1. Cont.

Name Structure Calculated Affinity
Km (µM)

Experimental Activation/
Inhibition
EC50 (µM)

Ref.

Isocitrate
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Docking was performed with the AutoDock software 1.5.6.rc3. The affinities of the best fits are listed.

2.3. Cell Lines

The cell line HMT3552 has been described previously [18]. The wildtype CFTR (16HBE14o−)
and the mutant ∆F508-CFTR (CFBE41o−) cell line were from Dr. D.C. Gruenert [19].

2.4. Western Blotting of CFTR

Western blotting was performed as described [9].

2.5. Determination of Hyaluronan Export

Hyaluronan export of HMT3552 cells was performed as described [20].

2.6. Iodide Efflux

Iodide efflux experiments were performed as described [21].

3. Results
3.1. Virtual Docking

In an attempt to identify optimized CFTR activators, we docked Hylout4 [9] and
several other known activators and inhibitors to the open and closed conformation of
CFTR [10,12]. In preliminary docking calculations, we found that the outward-facing CFTR
configuration [10,11] bound Hylout4 with higher affinities than the inward-facing ATP
free configurations. The predicted Hylout4 binding site was a cleft between the nucleotide
binding domains NBD1 (433 to 634) and NBD2 (1225 to 1415). The CFTR activators corr-4a,
CFTRact-06, VX809, the inhibitor CFTRinh-172 and dietary supplement docosahexaenoic
acid (DHA) also bound to this cavity with the highest affinity (Table 1). It comprised the
amino acids R170, A171, E267, W465, F494, R553, K968, K1060, W1063, K1292, G1342, and
K1351. The most striking feature of this site was the close neighbourhood of six basic amino
acids (underlined) and the preference of lysines that have long flexible arms for ligand
binding by ionic interactions and hydrogen bonds. The distances of positive charges in the
open conformation ranged from 5 Å to 16 Å and in the closed conformation from 12 Å to
32 Å.

Evaluating other potential binding compounds, we included substrates of the interme-
diate metabolism and found that citrate and isocitrate showed considerable affinity for this
binding site (Table 1, Figure 1).

Figure 1a shows the location of citrate in the cleft between the nucleotide binding
domains. Figure 1b shows that citrate and the phosphate groups of ATP are located at the
same position in close vicinity of F508, which was 11 Å apart from R553.
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Figure 1. Binding site of citrate and ATP to the open conformation of CFTR. (a) Citrate (green) binds
to a cleft between the nucleotide binding domains NBD1 (red) and NBD2 (blue). (b) Citrate (green)
and ATP (yellow) bind to basic amino acid residues in the vicinity of F508.

3.2. Activation of Hyaluronan Export

Since hyaluronan is exported from human breast carcinoma cells by CFTR [5], citrate
and isocitrate were tested for their influence on hyaluronan export in cell culture. Figure 2
shows that both compounds activated hyaluronan export in a concentration-dependent
manner. Citrate showed a higher increase of hyaluronan export than isocitrate. Therefore,
citrate was chosen for further evaluation.
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Figure 2. Activation of hyaluronan export by citrate (�) and isocitrate (N) from HMT3552 cells. The
error bars indicate the means of two determinations.

3.3. Iodide Efflux

In addition to chloride and hyaluronan, CFTR also exports iodide that can be measured
by an iodide selective electrode. Iodide efflux from 16HBE14o- and CFBE41o- cells was
assessed with increasing citrate concentrations. Citrate activated immediately iodide efflux
from 16HBE14o- as well as from CFBE41o- cells (Figure 3), indicating that citrate recovered
the activity of ∆F508-CFTR.
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3.4. Recovery of ∆F508-CFTR Cell Surface Expression

The ∆F508-CFTR mutation impairs maturation and destabilizes the protein in post-
Golgi compartments. Figure 4 shows that citrate increased ∆F508-CFTR cell surface expres-
sion, indicating that citrate recovered cellular processing of ∆F508-CFTR.
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4. Discussion

It is surprising that virtual docking of ATP has so far been conducted on computed
CFTR fragments [22], but not the whole structural model, in spite of the long history of
intensive pharmaceutical research. It is even more surprising that the highest docking
affinity for ATP and other activators of CFTR function did not reside in the two known
ATP binding sites, but in a cleft between the nucleotide binding sites NBD1 and NBD2.
This site has been claimed to open the CFTR channel due to salt bridges between opposing
basic and acidic residues [23]. Remarkably, the external phosphate of ATP overlaps with
the positions of citrate and the carboxyl group of DHA. Thus, our docking results confirm
the notion of salt bridges between the NBD1 and NBD2 domains; however, we propose
that the salt bridges are mediated by anionic activators.

These basic amino acids are probably responsible for ionic nucleotide binding and
stabilization of the open CFTR conformation. The ATP binding affinity to this binding site
is very high with KD = 22 nM in comparison to normal intracellular nucleotide triphosphate
concentrations in the mM range, but such high ATP concentrations are required for reliable
gating [24,25]. The ATP binding sites had previously been located by site-directed CFTR
mutations to W401 in NBD1 and Y1219 in NBD2 [26] which are only 9.8 Å and 11.4 Å
apart from our predicted amino acids R170 and K968, respectively. Virtual docking also
revealed that the most known CFTR activators bound to this cavity by bridging both
nucleotide binding domains and thus appear to function as ATP agonists stabilizing the
open conformation. This mechanism of action has been shown for the CFTR activator
VX-770, which opens the ∆F508-CFTR in an ATP-independent manner [27] and decouples
gating from ATP hydrolysis [28]. It is interesting to note that also the inhibitor CFTRinh-172
had high affinity to the ATP binding site. It could be an ATP antagonist which displaces
ATP, destabilizing the open conformation.
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The conspicuous proximity of six basic amino acids led us to investigate other possible
ligands. We tested citrate and isocitrate and found considerable affinity of KD = 2.7 µM
and KD = 1.1 µM, respectively. These theoretical affinities were again much higher than
the normal cytosolic concentrations of 80 µM to 220 µM for citrate and about 10 µM for
isocitrate [29,30], indicating that high saturation density is again necessary for gating. The
levels of both ATP and citrate are indicators of the cellular energy level [31].

Accordingly, our cell culture experiments showed that citrate activated hyaluronan
export from breast carcinoma cells, stimulated iodide efflux from epithelial cells carrying
normal CFTR as well as ∆F508-CFTR and recovered it from premature intracellular degra-
dation. It can thus be regarded as a potentiator as well as a corrector for the defective
∆F508-CFTR protein.

Part of the cytosolic citrate is exported into the circulation, giving rise to citrate in
plasma and urine. It is known that urinary citrate secretion from cystic fibrosis patients
was significantly lower [32,33]. A striking similarity of citrate and hyaluronan is their
high Ca2+-chelating property with KD = 171 µM [34] and KD = 1.4 mM [35], respectively,
as compared to the normal plasma concentration of about 2 mM. Cystic fibrosis patients
have abnormal Ca2+ homeostasis [36], and chelate formation of cytosolic citrate and Ca2+

could reduce the effective Ca2+ concentration which is required for normal ∆F508-CFTR
trafficking [37].

The function of citrate as Ca2+ chelator and as hyaluronan export activator may explain
some of the observed metabolic disturbances of cystic fibrosis patients such as the associated
diabetes [38] and lithiasis [33]. Diabetes favours a shift from the aerobic energy production
by the citric acid cycle and respiration towards gluconeogenesis, causing withdrawal of
metabolites from the citric acid cycle. Low citrate in other tissues such as kidney again
decreases extracellular hyaluronan required for Ca2+ complexation and solubilization,
causing lithiasis in cystic fibrosis patients [39–42]. Patients thus remain in a vicious cycle,
unless they are treated by citrate as a food additive for stone solubilization [43–50]. Citrate is
freely available in the supermarket and also a nutritional additive for treatment of lithiasis.

Citrate has been patented as an ingredient of inhalation solutions to reduce the vis-
cosity of the sticky mucous in cystic fibrosis patients [51]. It was speculated that citrate
might correct all other symptoms of cystic fibrosis by systemically recovering the function
of ∆F508-CFTR.

Citrate and isocitrate are intermediates of the citric acid cycle within mitochon-
dria. They are nutrients taken up by mammalian cells and form two separated citrate
pools: mitochondrial and cytosolic. The intracellular citrate level depends on nutrition:
A carbohydrate-rich nutrition induces the citrate lyase to reduce the citrate concentration
by transformation into fatty acids. A protein-rich nutrition induces anaplerotic reactions to
increase intracellular citrate concentrations. A protein-rich diet has frequently been evalu-
ated over the past decades with no final conclusion, but it seemed to be underestimated [52]
probably because activation of hyaluronan export by citrate by the regulatory balance of
carbohydrate-rich and protein-rich diets was not taken into account. Indeed, a low glycemic
index diet has already been shown to be beneficial for cystic fibrosis patients [53,54].

Frequent and severe infections of cystic fibrosis patients by Pseudomonas aeruginosa are
often responsible for morbidity in CF patients. These bacteria can upregulate an isocitrate
lyase as a virulence factor for persistent infection [55], which further depletes citrate levels
and thus inactivates hyaluronan export. Sufficient hyaluronan shedding is required for
efficient ciliary beating and debris removal from airways [8]. Thus, a protein-rich and
low carbohydrate diet supplemented with DHA and citrate could have benefits similar to
expensive drugs and lucrative treatments.
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