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Autoimmune diseases generally result from the loss of self-tolerance (i.e., failure of the

immune system to distinguish self from non-self), and are characterized by autoantibody

production and hyperactivation of T cells, which leads to damage of specific or multiple

organs. Thus, autoimmune diseases can be classified as organ-specific or systemic.

Genetic and environmental factors contribute to the development of autoimmunity.

Recent studies have demonstrated the contribution of innate immunity to the onset

of autoimmune diseases. Natural killer (NK) cells, which are key components of

the innate immune system, have been implicated in the development of multiple

autoimmune diseases such as systemic lupus erythematosus, type I diabetes mellitus,

and autoimmune liver disease. However, NK cells have both protective and pathogenic

roles in autoimmunity depending on the NK cell subset, microenvironment, and disease

type or stage. In this work, we review the current knowledge of the varied roles of NK cell

subsets in systemic and organic-specific autoimmune diseases and their clinical potential

as therapeutic targets.
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INTRODUCTION

Autoimmune diseases generally result from the loss of self-tolerance (i.e., failure of the immune
system to distinguish self from non-self), which leads to the production of autoantibodies and
self-reactive lymphocytes that cause tissue damage (1, 2). Although most autoimmune diseases
are relatively uncommon, they are associated with significant morbidity and mortality. Nearly
100 distinct autoimmune diseases have been identified to date; these are organ-specific (e.g.,
primary biliary cirrhosis [PBC]) or are characterized by systemic immune dysfunction involving
multiple organs [e.g., systemic lupus erythematosus (SLE)] (3, 4). Despite significant advances
in the diagnosis and treatment of autoimmune diseases, many details of their pathogenesis and
etiology have yet to be elucidated.

Autoimmune diseases principally develop as a result of abnormal activation of T and B cells.
However, there is increasing evidence that natural killer (NK) cells—which link innate and adaptive
immunity—play an important role in their development, for example in SLE, type 1 diabetes
mellitus (T1DM), and autoimmune liver disease (ALD) (5–7). NK cells are cytotoxic lymphocytes
that are critical for the defense against infections and tumors (8). NK cell activation is governed
by the integration of activating and inhibitory signals from cell surface receptors (9, 10); NK cells
detect cells that are under stress as a result of infection or malignancy and rapidly respond by
secreting cytotoxic granules or death receptor ligands.

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.624687
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.624687&domain=pdf&date_stamp=2021-03-12
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:caizhangsd@sdu.edu.cn
mailto:liangshj@wfmc.edu.cn
https://doi.org/10.3389/fimmu.2021.624687
https://www.frontiersin.org/articles/10.3389/fimmu.2021.624687/full


Liu et al. NK Cells in Autoimmune Diseases

In addition to their direct cytotoxicity, NK cells exert
immunoregulatory functions in innate and adaptive immune
responses by producing various cytokines and chemokines
such as interferon (IFN)-γ, tumor necrosis factor (TNF)-
α, granulocyte-macrophage colony-stimulating factor (GM-
CSF), and chemokine (C-C motif) ligand (CCL)5 (11–13).
They also exhibit immunologic memory, which challenges the
conventional distinction between innate and adaptive immunity
(14–18). NK cells shape the adaptive immune response through
secreted cytokines and chemokines or crosstalk with other
immune cells such as T and B cells and dendritic cells (DCs).
Thus, NK cell hyperactivation or dysfunction is associated with
the pathogenesis of various inflammatory and autoimmune
diseases. However, NK cells have both protective and pathogenic
functions in these diseases (19, 20) depending on the NK cell
subset, microenvironment, and disease type and developmental
stage. In this review, we discuss recent research on the diversity
of NK cells and their roles in autoimmune diseases.

BIOLOGICAL CHARACTERISTICS OF NK
CELLS

NK cells are a heterogeneous population of innate lymphocytes
comprising subsets with distinct phenotypes or cytokine
secretion patterns (Figure 1) (20, 21). In humans, conventional
(c)NK cells are divided into 2 major subsets based on the relative
surface expression levels of cluster of differentiation (CD)56
and CD16 (FcγRIII). CD56brightCD16− NK cells (also termed
CD56bright NK cells) are mostly present in secondary lymphoid
tissues and produce cytokines such as IFN-γ, TNF-α, GM-
CSF, interleukin (IL)-10, and IL-13 upon stimulation, thereby
serving an immunoregulatory function in the maintenance of
immune homeostasis (12, 13). Although CD56bright NK cells
have low cytotoxicity, this effect is enhanced under inflammatory
conditions (12, 22). CD56dimCD16+ NK cells (also termed
CD56dim NK cells) exist predominantly in peripheral blood
and express high levels of CD16; as they mature and become
cytotoxic, they also express the terminal differentiation marker
CD57 (23–25).

Circulating CD56bright NK cells in peripheral blood are
thought to be the precursors of CD56dim NK cells (26). In murine
NK cells lacking CD56 expression, CD27, CD127, and C-X-
C motif chemokine receptor (CXCR)3 are important markers
that distinguish NK cell subsets (27–29). CD27−, CD127−, and
CXCR3− NK cells have potent cytotoxicity resembling that of
CD56dim NK cells in humans, whereas NK cells positive for
these markers are responsible for cytokine secretion and have low
cytolytic capacity like the human CD56bright subset.

There are 4 stages in the maturation of human and murine
NK cells—i.e., CD11bloCD27lo → CD11bloCD27hi →

CD11bhiCD27hi → CD11bhiCD27lo (30). Murine NK cells can
also be divided into cNK and tissue-resident (tr)NK cells based
on their production of IFN-γ and cytotoxicity (31–33). cNK cells
are widely distributed and are CD49a−DX5+, whereas trNK cells
have variable distribution in the uterus, skin, kidneys, salivary

glands, and adipose tissue; the 2 cell types have common as well
as unique features (31, 34–37).

Some factors in the tissue microenvironment (e.g., cytokines
and ligands for NK cell receptors) contribute to differences in
the composition of NK cell subsets and diversity of trNK cells.
For example, liver-derived transforming growth factor (TGF)-β
regulates and maintains the CD56bright phenotype of human
liver-resident NK cells by suppressing T-bet expression (38);
and salivary gland-derived TGF-β directs the differentiation of
salivary gland innate lymphoid cells including salivary-resident
NK cells by inhibiting eomesodermin (Eomes) expression (34).
Glomerulus-specific expression of NK group 2 member D
(NKG2D) ligands was shown to be correlated with increased
infiltration, maturation, and activation of NK cells in kidney
during the development of lupus nephritis (39). NK cells can
also be classified as NK1, NK2, or NK22 cells based on their
cytokine secretion profiles (40, 41). With the development of
detection methods such as mass cytometry, 2 NK cell subsets
(CD16+CD8+CXCR3+ and CD16+CD8+CXCR3+CD11c+)
were recently identified in patients at high risk for developing
T1DM that can potentially serve as predictive biomarkers for the
disease (42).

NK CELLS AND AUTOIMMUNE DISEASES

NK Cells and Systemic Autoimmune
Diseases
NK Cells and SLE
SLE is a progressive autoimmune disease with variable clinical
manifestations affecting several organs including skin, lungs,
blood, heart, and nervous system (43). It is characterized by
the presence of nuclear autoantibodies along with abnormally
activated T cells and hyperactive B cells, which form immune
complexes that lead to inflammation (4, 44–46).

While adaptive immunemechanisms leading to organ damage
in SLE have been extensively studied, the contribution of innate
immune cells—especially NK cells—remains unclear. Several
studies have provided evidence that NK cells are involved in
SLE pathogenesis. For instance, the number of NK cells was
markedly reduced in lpr mice, an SLE model; adoptive transfer
of NK cells delayed the onset of autoimmunity, indicating a
protective role for NK cells in SLE (47). It was also suggested
that NK cells could delay SLE onset by suppressing autoantibody
secretion by B cells. Recent studies have investigated the direct
cytotoxic action and cytokine profiles of NK cells in the
pathogenesis of SLE. For example, the increased cytotoxicity
and proinflammatory phenotype of NK cells was shown to be
correlated with downregulation of CD3ξ expression in patients
with SLE (48); the authors also demonstrated that caspase-3
activity was higher in NK cells from patients with SLE than
those from healthy controls and that this contributed to the
downregulation of CD3ξ expression in the cells, which enhanced
their proinflammatory phenotype.

NK cell subsets with different phenotypes, distributions,
functions, and development have distinct roles in SLE. The
proportion of NK cells (especially mature CD56dim NK cells)
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FIGURE 1 | Phenotype and functions of major NK cell subsets in mouse and human.

was lower but that of CD56bright NK cells was higher in
the peripheral blood of SLE patients compared to healthy
controls (49–51). It is worth noting that CD56dim NK cells in
active SLE patients showed increased IFN-γ production and an
activated phenotype that included high expression of activating
receptors (e.g., NKp44, NKp46, and CD69) and low expression
of CD158a/h/g (51). The reduced number of circulating CD56dim

NK cells in SLE can be attributed to the migration of highly

cytotoxic (CD56dim) NK cells from peripheral blood to kidneys
in SLE patients and the consequent damage to local tissue.
Many factors such as increased expression of NKG2D ligands
[e.g., ribonucleic acid export [RAE]-1 and mouse UL16-binding
protein-like transcript (MULT)-1], CD226 ligands (e.g., CD112
and CD115), proinflammatory cytokines (e.g., TNF-α), and
chemoattractant chemokines [e.g., C-X3-C motif chemokine
ligand (CX3CL)1] in kidney tissue potentially contribute to the
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migration of CD56dim NK cells (39, 52–54). Similar NK cell
migration was also observed in an animal SLE model, in which
circulating DX5+ NK cells (mostly CD226+) infiltrated into the
kidneys of MRL/lpr mice with an enhanced phenotype, which
may be responsible for the kidney injury observed in SLE (52).
Additionally, plasmocytoid (p)DC-secreted IFN-α mediated the
activation-induced cell death of circulating NK cells in patients
with active SLE, thereby contributing to the loss of circulating NK
cells (52). A recent study showed that CD56bright NK cells may
contribute to SLE development. Serum IL-15 level was elevated in
SLE patients, particularly those with active disease (55, 56); and
an increased number of peripheral blood Ki67+CD56bright NK
cells was strongly correlated with elevated serum IL-15, clinical
severity, and active nephritis in SLE patients (57). The high serum
IL-15 level in SLE may be attributable to type I IFN-mediated
DC activation; moreover, IL-15 induces the expression of Ki67 in
NK cells, which stimulates NK cell proliferation and contributes
to pathogenesis of SLE. However, the precise mechanisms by
which CD56bright NK cells promote SLE or mediate tissue injury
remain unclear. It is thought that inflamed tissues recruit NK cells
and alter their effector function by transforming their phenotype
from one of low toxicity to that of cytotoxic CD56bright NK cells
via mechanisms that are as yet unknown (22). Thus, multiple
factors in the local environment contribute to kidney infiltration
by NK cells (especially CD56dim NK cells) and tissue injury.

Most knowledge regarding the role of NK cells in SLE
is derived from studies on peripheral blood; less is known
about the functions of local NK cells in target tissues or trNK
cells in SLE development. Recent studies using mouse SLE
models have demonstrated a correlation between the number
kidney-infiltrating NK cells and an active disease state (39,
52). The microenvironment of lupus nephritis promotes the
maturation and maintenance of resident NK cells, as evidenced
by a significantly larger CD11bhiCD27lo NK cell fraction in the
kidneys of SLE model mice (39). Notably, the kidney immune
cell profile of SLE patients was recently established by single-
cell RNA sequencing (58, 59); 21 subsets of leukocyte were
identified including 2 clusters of trNK cells (CD56brightCD16−

and CD56dimCD16+) with both pro- and anti-inflammatory
activities (58). Further studies are needed to determine the
contribution of specific NK subsets to the pathogenesis of SLE.

NK Cells and Sjögren’s Syndrome
SS is a chronic, multisystem disorder characterized by
lymphocyte infiltration of target glands (e.g., lachrymal and
salivary) and sicca symptoms (60, 61). SS can be divided into
primary (p)SS or secondary SS depending on whether it occurs
alone or in conjunction with other systemic autoimmune
diseases such as SLE or rheumatoid arthritis (RA). The hallmarks
of pSS are progressive focal infiltration of immune cells (mainly
T and B cells), hypergammaglobulinemia, and the presence
of autoantibodies, underscoring the importance of adaptive
immunity in SS pathophysiology (62, 63). However, recent
findings have suggested that innate immunity—especially NK
cells—plays a role in SS pathogenesis (64–66). The relative and
total numbers of circulating NK cells and CD56dim NK cells were
lower while the number of CD56bright NK cells was higher in pSS

patients compared to healthy control subjects (67, 68). The ratio
of CD56bright to CD56dim NK cells was correlated with IgG level
and showed diagnostic utility for pSS with good sensitivity and
specificity (67). The lower numbers of circulating NK cells and
CD56dim NK cells in pSS patients may lead to their infiltration
into glands and focal immune injury.

NK cells in salivary glands are predominantly tissue-resident;
only a very small fraction is derived from peripheral blood (69).
Salivary gland NK cells promote pSS progression by inducing
IFN-γ production (70, 71). IL-33 expression is upregulated in
the salivary glands of pSS patients and acts synergistically with
IL-12 and IL-23 to stimulate IFN-γ secretion by NK cells, which
contributes to pSS pathogenesis (72, 73). The overexpression of
IL-12 in SS was also shown to participate in the differentiation
of helper T (Th)1 cells and IFN-γ production (74, 75); and
activation of IFN signaling and the recruitment of pDCs to the
salivary glands of pSS patients may promote NK cell activation
and IFN-γ production, thereby aggravating disease pathogenesis
(71, 76, 77).

Different NK cell subsets in the salivary glands may play
distinct roles in the pathogenesis of pSS. For example, NKp30+

NK cells are thought to accumulate in the minor salivary glands
of pSS patients. The interaction of NKp30 with its ligand B7–
H6 present on DCs and salivary gland epithelial cells induces
IFN-γ secretion by NK cells, which enhances focal inflammation
and cellular damage (78). NK22 cells—a subset of NK cells that
produce IL-22—have also been detected in the salivary glands
of pSS patients (79). Elevated IL-22 in the salivary glands acting
synergistically with IL-17 and IL-23 plays a proinflammatory
role in pSS (79, 80). On the other hand, NK22 cells secrete B
cell-activating factor, which may contribute to B cell-mediated
immunity in the development of pSS (81). Thus, NK cell
subsets in the salivary gland have a pathogenic role in pSS.
However, it was recently reported that a TNF-related apoptosis-
inducing ligand (TRAIL)+ NK cells exerted a protective function
in chronic infection-associated pSS by specifically eliminating
activated CD4+ T cells in salivary glands (82). Taken together,
most of the current data suggests a disease-promoting role for NK
cells, while some NK cell subsets may have a protective function
against pSS development.

NK Cells and Systemic Sclerosis
SSc, also known as scleroderma, is an immune-associated
multisystem rheumatic disease characterized by vasculopathy,
immune activation, and tissue fibrosis of skin and internal organs
caused by abnormal production and deposition of collagen (83,
84). Although SSc is uncommon, affecting about 1 in 10,000
people worldwide, it has high morbidity and mortality (85). SSc
can be divided into limited and diffuse cutaneous forms (lcSSc
and dcSSc, respectively) (86).

The etiology and progression of SSc depend on multiple
factors including immune activation (87, 88). Toll-like receptor
(TLR)-mediated DC activation may be responsible for the
variable immune responses observed in patients with different
SSc phenotypes. Type I IFN-induced TLR expression by DCs
may also contribute to the pathogenesis of SSc (89–91). However,
the role of NK cells in SSc is not fully understood. Changes in
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the percentages, phenotype, and functions of peripheral blood
NK cells have been observed in patients with SSc (92, 93);
one study suggested that these changes were dependent on the
SSc subtype, with increased NK cell numbers in dcSSc but not
lcSSc (93). The activating receptor killer cell immunoglobulin-
like receptor (KIR), two Ig domains and short cytoplasmic tail
(KIR2DS)2 but not the corresponding inhibitory receptor was
shown to be expressed on NK cells from SSc patients (94).
Additionally, a linear increase in activated CD56bright NK cells
with SSc progression from early to definite SSc was demonstrated
following TLR1/2 stimulation, highlighting the contribution
of NK cells to SSc onset (95). NK cells secrete cytokines
such as TNF-α, IL-6, and macrophage inflammatory protein
(MIP)-1α and crosstalk with other immune cell types including
DCs in response to TLR stimulation, thereby aggravating
inflammation (96). Although the number of circulating NK cells
is preserved in SSc, the cells show an unusual phenotype with
decreased expression of chemokine receptors [CX3C chemokine
receptor (CX3CR)1 and CXCR4], NKG2D, and CD69 (92).
The reduced percentage of circulating CX3CR1+ NK cells in
SSc patients may be due to their recruitment to target tissues
in response to upregulation of CX3CL1 and NKG2D ligands
in the inflamed endothelium. Moreover, NK cells from SSc
patients induce endothelial cell activation, possibly exacerbating
endothelial injury and contributing to SSc pathogenesis (92).
A recent cytometry by time-of-flight study quantifying the
proportions and phenotypes of circulating immune cells in
patients with systemic autoimmune disease (including SSc)
identified 12 cell populations that were altered compared to
healthy controls, including a notable decrease in the size of
the CD56hi NK cell fraction (97). Thus, significant changes in
immune cell populations occur in early-stage SSc, although how
this contributes to disease onset remains to be determined. Most
of the available evidence suggests a pathogenic role for NK cells
in SSc that is related to disease stage and subtype (i.e., early or late
stage of lcSSc and dcSSc).

NK Cells and Rheumatoid Arthritis (RA)
RA, one of the most prevalent chronic inflammatory diseases,
is characterized by persistent synovitis, production of
autoantibodies (especially against rheumatoid factor and
citrullinated peptide), and cartilage and bone destruction,
which lead to systemic complications including pulmonary,
cardiovascular, skeletal, and psychological disorders (98, 99).
The pathogenesis of RA is heterogeneous and complex and
involves genetic and environmental factors, although the
detailed mechanisms are not fully understood.

Genome-wide analyses have suggested that immune
regulatory mechanisms underlie RA (100). RA results from
the loss of immune self-tolerance, autoantigen presentation, and
aberrant inflammatory cytokine production caused by abnormal
activation of innate and adaptive immune systems (101).
Although adaptive immunity (e.g., autoantibody production
mediated by CD4+ T cells and B cells) predominates, innate
immune cells (e.g., DCs, macrophages, mast cells, and NK cells)
have also been implicated in RA pathogenesis (98, 102, 103).

Single-nucleotide polymorphisms in NK cell-related genes—
especiallyNKG2D andMHC class I polypeptide-related sequence
A (MICA)—were shown to be associated with RA susceptibility
and severity (104–107). Early studies reported conflicting
findings regarding the roles of NK cells in RA, which may be
attributable to the fact that peripheral but not local synovial
NK cells were examined; moreover, the different NK subsets
were not distinguished, and the data were derived from different
cohorts (108–110). The total numbers and percentages of
peripheral NK cells were shown to be abnormally elevated
in patients with active RA; this along with disease activity,
autoantibody levels, and Th17/regulatory T cell (Treg) imbalance
was correlated with increased serum IL-2 level (111). Higher
percentages of peripheral NK cells were also found to be
associated with elevated serum IL-15 level in RA patients
compared to healthy controls. Circulating NK cells from RA
patients showed decreased expression of the activating receptor
NKp46 and higher expression of the inhibitory receptors CD158b
and CD158e, which was associated with an impaired response
to IL-15 (112). Decreased numbers of total peripheral NK cells
and CD56dim NK cells, but not the CD56bright population, was
observed in seropositive (i.e., positive for anticyclic citrullinated
peptide antibodies and/or rheumatoid factor) patients with early
RA (113). A decreased number of CD56dim NK cells was
associated with CD16-triggered NK cell apoptosis, and CD16 also
triggered IFN-γ and TNF-α production by CD56dim NK cells,
thereby contributing to systemic inflammation (113).

Many studies have reported the accumulation of NK cells
in the inflamed joints of RA patients, particularly in the active
stage of the disease (114–116). The synovial CD56bright NK
cell population in inflamed joints expands and rapidly secretes
IFN-γ in response to monocyte/macrophage-secreted IL-12,
IL-15, and IL-18; IFN-γ activates macrophages and promotes
TNF-α production (114, 115). The interaction between NK
cells and monocytes/macrophages may constitute a positive
feedback loop that leads to uncontrolled, persistent inflammation
in RA. In addition to IFN-γ and TNF-α, GM-CSF plays
an important role in RA (117, 118). Recently, synovial NK
cells were shown to potentiate inflammatory arthritis through
secretion of GM-CSF in mice (119). Synovial NK cells produce
GM-CSF in an IL-18–dependent manner, which promotes
neutrophil infiltration into inflamed joints and persistent
arthritis. The suppressor of cytokine signaling (SOCS) family
member cytokine-inducible SH2-containing protein (CIS) was
identified as a direct negative regulator of GM-CSF signaling,
suggesting that it can be a therapeutic target (119). Synovial
fluid NK cells express high levels of the activating receptors
NKG2D, DNAX accessory molecule (DNAM)-1, NKp44, and
NKp46 and inhibitory receptor CD94/NKG2A, while synovial
fibroblasts express multiple ligands for NK cell receptors. These
activating receptors mediate the cytotoxic effects of NK cells on
synovial fibroblasts, thus promoting local joint inflammation in
RA (120). Synovial fluid NK cells also express high levels of C-C
chemokine receptor (CCR)6, which promotes NK cell migration
to the inflamed joint (121). An NK22 subset was identified in
the synovial fluid of RA patients that plays an important role
in the pathogenesis of RA by secreting IL-22 and TNF-α, which
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enhanced the proliferation of fibroblast-like synoviocytes (121,
122).

Most of the existing evidence indicates that synovial NK cells
exert pathogenic effects in RA by directly promoting cell or
tissue injury either by inducing cytotoxicity (e.g., in synovial
fibroblasts) expressing activating ligands for NK cell receptors or
by secreting inflammatory cytokines (e.g., IFN-γ, TNF-α, GM-
CSF, and IL-22) that induce the activation of macrophages and
neutrophils, thereby indirectly aggravating inflammation and
tissue damage. The contribution of distinct NK subsets and their
crosstalk with other cells in the inflammatory microenvironment
at different stages of RA development await further study.

NK Cells and Organ-Specific Autoimmune
Diseases
NK Cells and ALD
ALD is a chronic liver disorder caused by the loss of tolerance
to self-antigens in the liver. There are 3 types of ALD—namely,
autoimmune hepatitis (AIH), primary sclerosing cholangitis
(PSC), and PBC (123)—that have similar pathogenesis but
different patterns of liver injury. AIH is characterized by
infiltration of inflammatory cells around the portal tracts, which
causes interface hepatitis. In PSC, the large hepatic bile ducts
are targeted, leading to biliary tree obliteration, biliary cirrhosis,
and portal hypertension. Damage to the small bile ducts in PBC
results in portal tract destruction and biliary cirrhosis (123).

Adaptive immune responses are responsible for the
progressive destruction of liver parenchyma in ALD. However,
innate immune cells (especially NK cells) also contribute
to ALD physiopathology (7). NK cells are enriched in the
liver, accounting for up to 30–50% of total liver lymphocytes
(124, 125). A direct role for NK cells in hepatocellular damage has
been reported in AIH (126), and recent data from both animal
models and clinical studies have provided further evidence
for the contributions of different functional NK cell subsets
in AIH. In a mouse model of polyinosinic:polycytidylic acid-
induced hepatitis, which mimics human AIH histopathology,
NK cells accumulated and were activated in the liver and caused
hepatocyte injury, suggesting a pathogenic role for NK cells in
AIH (127). In a concanavalin A-induced AIH model, IL-17C
enhanced IL-2 expression in intrahepatic CD4+ T cells, which
promoted NK cell activation and increased the number of liver
NK cells and their activation; this was mostly due to a change
in the CD3−NK1.1+NKP46+ NK cell fraction post treatment.
There was also a significant upregulation of the surface markers
CD25 and CD69 in liver NK cells, indicating that the change
in the functional subset of NK cells in this model was induced
by the cytokine environment (128). Additionally, murine
CD49a+DX5− lrNK cells were shown to play a pathogenic role
during viral infection by inhibiting virus-specific T cell immunity
in a programmed cell death protein (PD)-1/programmed
death ligand (PD-L)1–dependent manner (129). Conversely,
CD49a−DX5+ cNK cells—but not CD49a+DX5− lrNK cells—in
mice exerted a protective effect during acute infection with the
hepatitis-B virus by promoting the antiviral activity of CD8+ T
cells via IFN-γ secretion (130). Thus, distinct hepatic NK cell

subsets (especially circulating and liver-resident populations)
have different functions during AIH development. A clinical
study found enhanced liver infiltration of NK cells in acute AIH
patients, with higher numbers of CD56bright but not CD56dim

NK cells before treatment that were markedly reduced after
corticosteroid therapy. Infiltrated NK cells also expressed a high
level CD161—a Th17 plasticity-associated marker—as well as
the activation molecules perforin and granzyme B, and were also
more resistant to Treg-mediated suppression, suggesting that
inadequate regulation by exhausted Forkhead box (FOX)P3+

Tregs was responsible for the functional bias of NK cells and
their pathogenic effects in AIH (131). A study combining clinical
samples and experimental AIH demonstrated that a decrease
in the size of the CD56dim NK cell fraction in peripheral blood
was negatively correlated with disease progression in AIH
patients. In an animal model, hepatic accumulation of CXCR3−

cNK cells—equivalent to CD56dim NK cells in humans—was
accompanied by a reduction in the numbers of these cells in the
periphery (blood, spleen, and bone marrow); this peripheral cNK
cell type redistribution was associated with AIH progression
(132). The same authors also observed that although the number
of CD49a+ lrNK cells did not increase significantly, they showed
an activation phenotype identical to cNK cells and contributed
to AIH injury. These data imply that targeting NK cell activation
and migration is a potential therapeutic strategy for AIH.

In patients with PBC, the number of cytotoxic NK cells was
shown to be increased in peripheral blood and liver. These NK
cells kill biliary epithelial cells in a TLR4-, TLR3-, or TRAIL-
dependent manner (133–135). Given their expression of TRAIL,
lrNK cells may be primarily responsible for PBC pathogenesis.
Infiltration of NK cells into the liver was dependent on the C-
X-C chemokine receptor (CXCR)1/C-X-C motif ligand (CXCL)8
axis and involved CD56dim cells, which exerted cytotoxic effects
against autologous biliary epithelial cells (136). In patients with
PSC, the number of NK cells was increased in peripheral
blood but not the liver (137, 138). The expression of ligands
of inhibitory KIRs was significantly reduced in PSC patients
(139), while that of ligands for activating NK cell receptors
was upregulated (140, 141). These data strongly suggest that
NK cells are activated and cytotoxic in PSC. A recent study
reported higher proportions of CCR7+ NK cells in the peripheral
blood and liver of PSC patients based on increased expression
of the CCR7 ligand CCL21, suggesting that CCR7+ NK cell
infiltration contributes to PSC pathogenesis (142). Data from
the same study also showed a significantly higher number of
CXCR3+ NK cells in peripheral blood but not in the liver of
PSC patients. In contrast to the earlier view that NK cells play
a pathogenic role, it was recently demonstrated that lrNK cells
have an immunosuppressive function in the pathogenesis of
PSC. In a dominant-negative TGF-β receptor (TGFβR)II mouse
model that mimics key phenotypic features of human PBC, the
progression of PSC was negatively correlated with lrNK cell
counts. It was further demonstrated that DX5−CD11chi lrNK
cells colocalized with and inhibited the proliferation of CD4+ T
cells (143). These findings strongly suggest that liver-infiltrating
NK cells participate in ALD development, although the detailed
mechanisms require further investigation.
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NK Cells and Multiple Sclerosis
MS is a chronic disease of the central nervous system
(CNS) (144) that results from immune-mediated inflammation,
demyelination, and subsequent axonal damage (145); it is
characterized by progressive motor disability and cognitive
deficits, and affects younger adults (146). The incidence of MS is
increasing worldwide. Despite decades of research, the etiology of
MS is still unknown. Increasing evidence points to the critical role
of autoimmunity in MS development and progression (144, 147),
with many studies focusing on the contribution of T and B cells
(144, 147, 148). In fact, therapies targeting T and B cells have
demonstrated clinical success in the treatment of MS; these are
reviewed in detail elsewhere (149–151).

MS was previously considered as an organ-specific T cell-
mediated autoimmune disease (152, 153). However, therapies
targeting B cells have also been effective (154). Data from both
MS patients and experimental autoimmune encephalomyelitis
(EAE), an animal model of MS, indicate that NK cells are
associated with disease activity and therapeutic response in MS
(155, 156), although their precise role is controversial On one
hand, blockade of the interaction between the NK cell inhibitory
receptor NKG2A and its ligand Qa-1 with an antibody that
is equivalent to human leukocyte antigen (HLA)-E alleviated
CNS inflammation in EAE by promoting the cytotoxic action
of NK cells on T cells and microglia (157, 158). Enrichment of
CNS-resident NK cells by treatment with an IL-2/IL-2 antibody
complex blocked MS progression by suppressing the myelin-
reactive Th17 response (142). The same study also demonstrated
that NK cells created a Th17-polarizing cytokine environment by
increasing the levels of IL-1β, TGF-β, TNF, and proinflammatory
cytokines including MCP-1 andMIP-1α; IL-2 complex treatment
reversed this effect, highlighting its therapeutic potential for
MS (142). MS disease severity was negatively correlated with
the accumulation of NK cells in the CNS, which involved
CX3CR1/CX3CL1 signaling (159). The number of peripheral
CD3−CD56+ NK cells was higher IFN-β-treated RR-MS patients
compared to untreated patients althoughNKG2D+CD3−CD56+

NK cell count and endogenous IL-22 level in CD3−CD56+

NK cells were lower in untreated RR-MS and CIS patients
than in treated RR-MS patients, indicating that NK cells have
a therapeutic role in MS while IFN-β treatment may direct
them toward a proinflammatory phenotype (40). On the other
hand, NK cells were shown to exacerbate EAE by promoting the
expansion of M1 macrophages and encephalitogenic T cells into
the CNS via secretion of IFN-γ (143). Through a mechanism
involving KIR two Ig domains and long cytoplasmic tail
(KIR2DL)4-HLA-G–mediated conjugation of human NK cells
and oligodendrocytes (OLs), activated NK cells were polarized to
express IFN-γ and exert cytotoxic effects against OLs, suggesting
a mechanism by which NK cells promote MS pathogenesis
(160). Data from MS patients and an EAE model also support a
pathogenic role for NK cells in MS development. In EAE, contact
with NK cells induced the release of IL-15 by neural stem cells
(NSCs), which promoted NK cell proliferation and survival, thus
contributing to CNS damage. Especially during the later stages
of EAE, reduced surface expression of Qa-1 on NSCs resulted

in their killing by NK cells; depleting NK cells during this phase
alleviated disease severity (161). Most of these studies focused on
total NK cells, whether different NK cell subsets play distinct roles
in MS pathology remains an open question.

The major NK cell populations in the cerebrospinal
fluid (CSF) and CNS are CD56bright NK cells (162, 163).
Along with a significant increase in total CD3−CD56+ NK
cells, the regulatory CD56bright NK cell fraction was also
increased and persisted following alemtuzumab treatment (164).
In relapsing–remitting (RR)-MS–the most common disease
subtype—and clinically isolated syndrome, dysfunction of
CD3−CD16+CD56dim (CD56dim) and CD3−CD16−CD56bright

(CD56bright) NK cell subsets was shown to be associated with
disease progression; specifically, the size of the latter cell
population was significantly increased in IFN-β-treated RR-MS
patients compared to untreated patients and healthy subjects
(165). Another study demonstrated that a lower NK/CD4+ T
cell ratio in IFN-β-treated early RR-MS patients had prognostic
value for disease activity compared to the CD56dim subset, while
CD56bright NK cell count was negatively correlated with CD4+ T
cell and more specifically, CD4+IL-17A+ T cell numbers (166).
These data indicate that CD56bright NK cells have an immune
regulatory function in MS that involves suppressing activated T
cells and T cell subsets such as Th17 cells; moreover, CD56dim

NK cells appear to play a role in reducing disease activity (166).
Interestingly, recent data from trials of various MS drugs such
as IFN-β, fingolimod, and daclizumab indicate that the size of
NK cell populations—specifically CD56bright cells—is increased
upon treatment (167, 168). Amass cytometry-based investigation
of circulating CD56bright cells in patients with RR-MS treated
with daclizumab beta revealed an upregulation of CD56 in
total NK cells along with multiple phenotypic changes in the
CD56bright cell population (169). One study examining the roles
and biological features of CD27high and CD27low/− NK cells
during the pre-disease onset stage in EAE found that the numbers
of CD27low/− NK cells in the spleen, lymph nodes, and bone
marrow were increased whereas the number of CD27high cells
was decreased; this was accompanied by enhanced cytotoxicity of
CD27low/− NK cells and reduced IFN-γ production of CD27high

NK cells. Adoptive transfer of CD27low/− NK cells aggravated
EAE; and CD27high but not CD27low/− cells inhibited CD4+ T
cell proliferation and Th17 cell differentiation. Moreover, these
2 subsets exhibited distinct roles in inducing the maturation of
antigen-presenting bonemarrow-derivedmacrophages and DCs.
Thus, CD27+ NK cell subsets have different functions at the
early stage of MS (170). Regulating CD56+ NK cell subsets is a
potential therapeutic strategy for preventing MS onset.

NK cells contribute to MS pathogenesis by causing direct
damage to CNS components (e.g., OLs) or exerting regulatory
effects on autologous T cells (Th17 cells) by modulating the
expression of activating and inhibitory receptors or secreting
cytokines (IFNγ, IL-15, etc). Whether the functions of NK cells
in MS are beneficial or detrimental is an open question, as
most studies were conducted on peripheral NK cells rather than
local tissue-resident or accumulated NK cells and have yielded
conflicting findings. Novel experimental approaches are needed
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to evaluate the complex dynamics of NK cell subsets during MS
development and their potential as therapeutic targets.

NK Cells and T1DM
T1DM is a typical organ-specific disease characterized by
immune-mediated destruction of insulin-producing β cells in
pancreatic islets (171), resulting in the loss of control of blood
glucose levels even with insulin replacement therapy; this can in
turn lead to ketoacidosis, severe hypoglycemia, and secondary
complications (172). The innate and adaptive immune responses
are involved in the destruction of pancreatic β cells (173–176),
and recent studies have focused on the possible roles of NK cells
in the initiation and progression of T1DM (177–180).

Evidence for the contribution of NK cells to the pathogenesis
of T1DM has come from experimental models [e.g., BioBreeding
diabetes-prone rat and non-obese diabetic (NOD) mouse] and
clinical studies. NK cells are among the first immune cells
to migrate to pancreatic islets (181, 182) and are involved in
all stages of T1DM (183–185). The destructive effect of NK
cells on pancreatic β cells was demonstrated by the decreased
inflammation of pancreatic islets and T1DM remission induced
by NK cell depletion (181, 186). Pancreatic NK cells of NOD
mice with an inflammatory phenotype were found to express
high levels of CD69 and CD25 and a low level of CD62 ligand
(CD62L), suggesting their involvement in the development
of T1DM (187). NK cells were also shown to contribute to
the elimination of pancreatic β cells in an NKp46-dependent
manner, leading to T1DM development (182). In NOD mice
expressing an impaired NKG2D receptor in peripheral NK
cells, exposure of pancreatic islet cells to the NKG2D ligand
RAE-1 resulted in the downregulation of NKG2D and reduced

NK cell cytotoxicity and IFN-γ secretion (188). NK cells in
pancreatic islets were found to indirectly contribute to the
destruction of pancreatic β cells by facilitating T cell activation
(6, 189, 190). However, other studies have suggested that NK
cells have a protective role in T1DM. For example, it was
reported that NK cells limit the destruction of pancreatic β

cells and contribute to T1DM remission by decreasing the
numbers of autoreactive cytotoxic T cells (191); and a later
study showed that increasing the proportion of NKG2D+ NK
cells and inducing IFN-γ secretion in this population which
enhancing the protective effect of complete Freund’s adjuvant
(CFA) in NOD mice (192). The mechanism underlying the
modulation of NK cell function in the CFA treatment model
is not clear, because the reason for the increased proportion
of NK cells in the periphery and whether this influences the
infiltration or functional status of pancreatic NK cells are
unknown. NK1.1+/c-Kit+ NK cells were identified in the spleen,
lymph, and islets of NOD mice that exerted direct cytolytic
activity against activated insulin-specific CD8+ T cells in a
PD-1/PD-L1–dependent manner (193). Adoptive transfer of
these NK cells delayed diabetes development, suggesting an
immunoregulatory and protective role for NK cells in T1DM
(179, 193, 194).

Clinical data on the functions of NK cells in T1DM patients
are scarce and ambiguous (179, 180, 195). Nonetheless, NK cells
are known to play an important role in the immunopathogenesis
of T1DM (196). A reduced number and decreased cytolytic
activity of NK cells along with downregulation of activating
receptors (e.g., NKG2D, NKp46, NKp30) or increased expression
of inhibitory receptors (e.g., KIR2DL3) in peripheral blood
mononuclear cells have been reported in T1DM patients

FIGURE 2 | Summary of the role of NK cells in autoimmune diseases. KAR, killer cell-activating receptor; KIR, killer cell immunoglobulin-like inhibitory receptor.
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(182, 195, 197–200), highlighting an association between NK
cells and T1DM disease stage or risk (42, 201). A decrease in
cytolytic activity of NK cells toward group B coxsackievirus
(CV-B)–infected pancreatic β cells contributed to the persistence
of CV-B and triggered autoimmunity in T1DM patients
(197, 202). However, other studies found no correlation
between T1DM clinical status and abnormalities in the
number or function of NK cells (203, 204). One report showed
that NK cells were rarely detected even in heavily inflamed
pancreatic islets of T1DM patients, suggesting that they are
not required for the death of pancreatic β cells (205). A bias
in functional NK cell subsets has been observed that may be
correlated with the development and progression of T1DM;
although the number of CD3−CD56+ NK cells is reduced in
patients with longstanding T1DM, there were no differences
in the ratio of CD56high/CD16− and CD56low/CD16+ NK
cells between patients with longstanding or recent-onset
T1DM and controls (195). Newly diagnosed young T1DM
patients had fewer NK cells and effector CD56dimCD16+

and CD56dimCD16− NK cell subsets compared to controls;
moreover, T1DM patients with diabetic ketoacidosis (DKA)
had fewer CD56brightCD16− regulatory NK cells compared to
patients without DKA (200). Hence, the relative proportions
of NK cell subsets may be altered depending on the degree of
metabolic impairment. Two novel NK cell subsets (CD16+CD8+

and CD16+CD8−) were identified in children at high risk
of T1DM using dimensional reduction and computational
unsupervised clustering approaches; and further analyses
revealed that CD16+CD8+ (as CD16+CD8+CXCR3+) and
CD16+CD8+CXCR3+CD11c+ NK cells were more abundant
in high-risk individuals. However, whether CD11c expression
reflects the activation status of NK cells in autoimmunity is
unclear. The inconsistent results obtained in different studies
may be attributable to the use of NK cell samples from peripheral
blood, the lack of human pancreas specimens and functional
markers of specific NK subsets, and the limited knowledge of the
translocation of NK cells from peripheral to local organs during
T1DM development.

CONCLUSIONS AND FUTURE
PERSPECTIVES

The existing evidence demonstrates that NK cells are involved
in the development of autoimmune diseases. The inflammatory
microenvironment facilitates the migration of circulating NK
cells into inflamed tissues and shapes the effector function
of infiltrating and trNK cells, which involves upregulation
of activating receptors and downregulation of inhibitory
receptors, cell activation, and enhanced cytolytic activity and
cytokine production (e.g., IFN-γ, TNF-α, and GM-CSF) leading
to direct cell or tissue injury. NK cells can also bind
autoantibodies through CD16 (FcγRIIIa) to mediate antibody-
dependent cellular cytotoxicity. The cytokines secreted by

NK cells recruit and activate other immune cells such as
macrophages, neutrophils, and autoreactive T and B cells,
thereby indirectly enhancing inflammation and tissue damage.
However, some NK cells subsets may have a protective role in
autoimmune diseases that involves direct killing of immature
DCs and autoreactive T and B cells, or secretion of IL-10
to block the activation and effector functions of autoreactive
T and B cells. The protective and pathogenic mechanisms
of NK cells in autoimmune diseases are summarized in
Figure 2.

There are many open questions regarding the precise
functions and mechanisms of NK cells in autoimmune diseases.
Based on current data, it is difficult to reconcile the contradictory
roles (protective or pathogenic) of NK cells even in a single
disease. Some early studies focused on bulk peripheral NK
cells rather than specific NK cell subsets, especially local
tissue-infiltrating or trNK cells. Single-cell RNA sequencing,
mass spectrometry, and bioinformatics approaches have aided
investigations of NK cell heterogeneity across different tissues
(including diseased vs. healthy tissue) and the identification of
distinct NK cell subsets involved in pro- and anti-inflammatory
responses. The type of NK cell that accumulates in a tissue may
determine the ultimate outcome of NK cell-mediated immune
responses. Moreover, the tissue-specific microenvironment (e.g.,
cytokines, chemokines, ligands of NK cell receptors, and
apoptosis-related molecules) and crosstalk between NK cells
and other immune or stromal cells may shape the properties
and functions of particular NK cell subsets. Notably, NK cells
may have both beneficial or detrimental effects in the same
autoimmune disease at different stages (e.g., onset, progression,
relapse, or remission). Thus, future investigations should focus
on tissue-specific NK cells and their interactions with other
cells at the site of inflammation during different stages of
disease development. Elucidating the precise roles of NK cells
in disease initiation, progression, and resolution will provide
insight into the pathogenic mechanisms of autoimmune diseases
and that can guide the design of new therapeutic interventions.
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