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Abstract

Precise identification of the time when a change in a hospital outcome has occurred enables clinical experts to search for a
potential special cause more effectively. In this paper, we develop change point estimation methods for survival time of a
clinical procedure in the presence of patient mix in a Bayesian framework. We apply Bayesian hierarchical models to
formulate the change point where there exists a step change in the mean survival time of patients who underwent cardiac
surgery. The data are right censored since the monitoring is conducted over a limited follow-up period. We capture the
effect of risk factors prior to the surgery using a Weibull accelerated failure time regression model. Markov Chain Monte
Carlo is used to obtain posterior distributions of the change point parameters including location and magnitude of changes
and also corresponding probabilistic intervals and inferences. The performance of the Bayesian estimator is investigated
through simulations and the result shows that precise estimates can be obtained when they are used in conjunction with
the risk-adjusted survival time CUSUM control charts for different magnitude scenarios. The proposed estimator shows a
better performance where a longer follow-up period, censoring time, is applied. In comparison with the alternative built-in
CUSUM estimator, more accurate and precise estimates are obtained by the Bayesian estimator. These superiorities are
enhanced when probability quantification, flexibility and generalizability of the Bayesian change point detection model are
also considered.
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Introduction

A control chart monitors the behavior of a process over time by

taking into account the stability and dispersion of the process. The

chart signals when a significant change has occurred. This signal

can then be investigated to identify potential causes of the change

and corrective or preventive actions can then be conducted.

Following this cycle leads to variation reduction and process

stabilization [1].

In monitoring hospital outcomes it is necessary to consider the

impact of patient health on process outcomes. To this end, risk

adjustment has been taken into account in the development of

control charts. Steiner et al. [2] developed a risk-adjusted type of

cumulative sum control chart (CUSUM) to monitor surgical

outcomes, death, which are influenced by the state of a patient’s

health, age and other factors. This approach has been extended to

exponential moving average control charts (EWMA) [3,4]. Both

modified procedures have been intensively reviewed and are now

well established for monitoring clinical outcomes where the

observations are recorded as binary data [5–7].

Monitoring patient survival time instead of binary outcomes of a

process in the presence of patient mix has recently been proposed

in the healthcare context. In this setting a continuous time-to-

event variable within a follow-up period is considered. The

variable may be right censored due to a finite follow-up period.

Biswas and Kalbfleisch [8] developed a risk-adjusted CUSUM

based on a Cox model for failure time outcomes. Sego et al. [9]

used an accelerated failure time regression model to capture the

heterogeneity among patients prior to the surgery and developed a

risk-adjusted survival time CUSUM (RAST CUSUM) scheme.

They showed that this procedure is more sensitive in detection of

an increase in odds ratio compared to risk-adjusted CUSUM

charts. Steiner and Jones [10] extended this approach by

proposing an EWMA procedure based on the same survival time

model discussed by Sego et al. [9].

The need to know the time at which a process began to vary, the

so-called change point, has been raised and discussed in the

context of quality control. Accurate detection of the time of change

can help in the search for a potential cause more efficiently as a

tighter time-frame prior to the signal in the control charts is

investigated.

In a clinical study, Assareh et al. [11] illustrated the capabilities

of change point investigation by comparing the estimated time of

changes in the rate of excess use of blood products and major

adverse events during and after cardiac surgery with the time of

known potential causes.

A built-in change point estimator in CUSUM charts suggested

by Page [12,13] and also an equivalent estimator in EWMA charts

proposed by Nishina [14] are two early change point estimators

which can be applied for all discrete and continuous distributions

underlying the charts. However they do not provide any statistical

inferences on the obtained estimates.

In an industrial context, Samuel and Pignatiello [15] developed

and applied a maximum likelihood estimator (MLE) for the

change point in a process fraction nonconformity monitored by a

p-chart, assuming that the change type is a step change. They
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showed how closely this new estimator detects the change point in

comparison with the usual p-chart signal. Subsequently, Perry and

Pignatiello [16] compared the performance of the derived MLE

estimator with EWMA and CUSUM charts. These authors also

constructed a confidence set based on the estimated change point

which covers the true process change point with a given level of

certainty using a likelihood function based on the method

proposed by Box and Cox [17]. In the case of monitoring low

fraction non-conforming, Noorossana et al. [18] derived and

analyzed the MLE estimator of a step change based on the

geometric distribution control chats discussed by Xie et al. [19].

Other methods including clustering, least squares and genetic

algorithms have also been applied in the development of change

point estimators for various change and process scenarios; see

Amiri and Allahyari [20] for more details.

All of the estimators described above were developed assuming

that the underlying distribution is stable over time. Often this

assumption cannot be satisfied in monitoring clinical outcomes

because the mean of the process being monitored is highly linked

to individual characteristics of patients. Recently, a series of

Bayesian estimators for step change [21] and linear trend [22] in

odds ratios of clinical outcomes in the presence of patient mix have

been proposed. These estimators were shown to be precise, highly

informative and flexible for change point investigation in this

context. It was also shown that the application of Bayesian

hierarchical modelling (BHM) and computational methods such as

Markov Chain Monte Carlo (MCMC) to change point estimation

facilitates more informed inferences based on posterior distribu-

tions for the time and the magnitude of a change.

In this paper we model and detect the change point in survival

time in a Bayesian framework. The change points are estimated

assuming that the underlying change is a step change. In this

scenario, we model the step change in the mean survival time of a

clinical process. We analyze and discuss the performance of the

Bayesian change point model through posterior estimates and

probability based intervals. Risk-adjusted survival time CUSUM

charts are reviewed in the next section. The change point model is

developed and then evaluated over several change scenarios and

settings. We then compare the Bayesian estimator with the

CUSUM built-in estimator.

Methods

Risk-Adjusted Survival Time Control Charts
The survival time of a patient who has undergone cardiac

surgery is affected by the rate of mortality of cardiac surgery within

the hospital and also patient covariates such as age, gender, co-

morbidities and so on. Risk-adjusted control charts of time-to-

event are monitoring procedures designed to detect changes in a

process parameter of interest, such as survival time, where the

process outcomes are affected by covariates, such as risk factors. In

these procedures, regression models for time are used to adjust

control charts in such a way that the effects of covariates for each

input, patient say, would be eliminated.

The risk-adjusted survival time CUSUM (RAST CUSUM)

proposed by Sego et al. [9] continuously evaluates a hypothesis of

an unchanged and in-control survival time distribution, f (xi,hi0),
against an alternative hypothesis of a changed, out-of-control,

distribution, f (xi,hi1) for the ith patient. In this setting the density

function f (:) explains the observed survival time, xi, that should be

adjusted based on the observed patient covariates.

The patient index i~1,2,::: corresponds to the time order in

which the patients undergo the surgery. We thus observe (ti,di)
where

ti~min(xi,c) and di~
1 if xiƒc

0 if xiwc:

�
ð1Þ

Here c is a fixed censoring time, equal to the follow-up period.

We assume that the survival time, xi, for the ith patient and

consequently (ti,di), are not updated after the follow-up period.

This leads to a dataset of right censored times, ti.

An accelerated failure time (AFT) regression model is used to

predict survival time functions, f (:), for each patient in the

presence of covariates, ui. However other models such as a Cox

model that also allows capture of covariates can be considered in a

similar manner.

In an AFT model the survival function for the ith patient with

covariates ui , S(xi,hi Dui), is equivalent to the baseline survival

function S0(xi exp(bT ui)), where b is a vector of covariate

coefficients.

Several distributions can be used to model survival time with an

AFT. Here we focus on the Weibull distribution and outline

relevant RAST CUSUM statistics; see [23] for more details. For a

Weibull distribution the baseline survival function is

S0(x)~exp½{(x=l)a� where aw0 and lw0 are shape and scale

parameters, respectively. For the RAST CUSUM procedure, all

parameters of the Weibull survival function, b,a and l, are

estimated using training data, so-called phase I. In this phase, an

available dataset of patients records is used assuming that the

process is in-control for that period of time. A set of independent

priors can also be used to obtain posterior estimates of the AFT

parameters over the training data.

It has been discussed that any shifts in the quality of the process

of interest can be interpreted in terms of shifts in the scale

parameters, l; see Sego et al. [9] and Steiner and Jones [10].

Hence the RAST CUSUM procedure can be constructed and

calibrated to detect a specific size of change in the average or

median survival time (MST) since any shift in l is equivalent to an

identical shift in the size of average or median survival time. Thus

the CUSUM score, Wi, is given by

W+
i (ti,di Dui)~(1{(r+){a)

ti exp(bT ui)

l0

� �
{dia log r+: ð2Þ

where it is designed to detect an increase (a decrease) from l0 to

lz
1 ~rzl0 (l{

1 ~r{l0). Upper and lower CUSUM statistics are

obtained through Zz
i ~maxf0,Zz

i{1zWz
i g and

Z{
i ~minf0,Z{

i{1{W{
i g, respectively, and then plotted over i.

Often CUSUM statistics, Zz
0 and Z{

0 , are initialized at 0.

An increase in the MST is detected when a plotted Z{
i exceeds

a specified decision threshold h{; similarly, if Zz
i exceeds a

specified decision threshold hz, the RAST CUSUM charts signals

that a decrease in the MST has occurred. Although this

interpretation of a chart’s signals is in contrast with the common

expression used for standard risk-adjusted control charts for binary

outcomes, it seems reasonable taking into account that any

increase in the MST can be characterized as a drop in the odds of

mortality. However in the Weibull distribution scenario for a

specific change size in the MST, the equivalent magnitude of shift

in odds is not obtainable; see Sego at al. [9] for more details.

The magnitudes of the decision thresholds in RAST CUSUM,

hz and h{, are determined in such a way that the charts have a

specified performance in terms of false alarm and detection of

shifts in the MST. In this regard, Markov chain and simulation

approaches can be applied; see Sego [24] for more details. The

Change Point in Monitoring Survival Time
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proposed initialization may also be altered to achieve better

performance in the detection of changes that immediately

occurred after control chart construction; see Steiner [25] and

Knoth [26] for more details on fast initial response (FIR).

Change Point Model
Statistical inferences for a quantity of interest in a Bayesian

framework are described as the modification of the uncertainty

about their value in the light of evidence, and Bayes’ theorem

precisely specifies how this modification should be made as below:

Posterior!Likelihood|Prior, ð3Þ

where Prior is the state of knowledge about the quantity of interest

in terms of a probability distribution before data are observed;

Likelihood is a model underlying the observations, and Posterior is the

state of knowledge about the quantity after the data are observed,

which also is in the form of a probability distribution.

This structure may be expanded to multiple levels in a

hierarchical fashion, resulting in a Bayesian hierarchical model

(BHM) [27]. In complicated BHMs it is not easy to obtain the

posterior distribution analytically. This analytic bottleneck has

been eliminated by the the emergence of Markov chain Monte

Carlo (MCMC) methods. In MCMC algorithms a Markov chain

is constructed whose stationary distribution is the posterior

distribution of the parameters. Samples generated from a long

run of the Markov chain can then be used for posterior inferences.

Some common MCMC methods include Metropolis-Hastings and

the Gibbs sampler; see Robert and Casella [28] and Liu [29] for

more details.

To model a change point in the presence of covariates, consider a

process that results in a survival time of ti, i~1,:::,T , that is initially

in-control. The observations can be explained by a survival function

S(ti,ui)), where the underlying distribution (f (:)) is a Weibull

distribution with (a0,l0), and ui is a vectors of covariates. At an

unknown point in time, t, the Weibull scale parameter changes

from its in-control state of l0 to l1, l1~k|l0,kw0 and =1. The

right censored survival time step change model can thus be

parameterized using survival function as follows:

S(ti,ui)~f
exp {

ti exp(bT
0

ui )

l0

� �a0
� �

if i~1,2,:::,t

exp {
ti exp(bT

0
ui )

l1

� �a0
� �

if i~tz1,:::,T

ð4Þ

where b0 is the vector of covariate coefficients.

Assume that the process ti is monitored by a control chart that

signals at time T .

Any probability distribution on positive values such as truncated

normal, uniform and Gamma can be chosen as the prior for the

magnitude of the change, k, since drops, 0vkv1 and jumps,

kw1, are expected in the process parameters; see Gelman et al.

[27] for more details on selection of prior distributions. However

knowing that the CUSUM control charts are very sensitive in

detection of very large shifts in the process parameters and

immediately signals and also the fact that the type of a detected

change, either an increase or a decrease, can be distinguished by

the control chart signal enable us to incorporate more information

into the prior in order to gain a better performance by the

proposed change point model.

In this regard, we assign a truncated normal prior distribution

(m,s)I(:) for k where the distribution parameters and lower and

upper bounds of truncation in the indicator function I(:) are set to

correspond to the design of RAST CUSUM and the obtained

signals.

For an increase in k which is detected by the lower bound h{ of

the RAST CUSUM, we set N(m~4:004,s~8)I(1:01,20). Simi-

larly, the prior is set to N(m~0:255,s~0:6)I(0:01,0:99) for a

drop of k that is detected by the upper bound hz of the RAST

CUSUM. This setting leads to informed priors for the magnitude

of the change. The mean of both priors were set to correspond to

the shifts that the chart was calibrated to detect; see Evaluation.

The priors encourage sensitivity in detection of low to relatively

large jumps and falls in k.

We place a uniform distribution on the range (1, T{1) as a

prior for t where T is set to the time of the signal of the control

chart. See File S1 for the step change model code in WinBUGS.

Evaluation
We used Monte Carlo simulation to study the performance of

the constructed BHM in step change detection following a signal

from a RAST CUSUM control chart when a change in mean

survival time is simulated to occur at t~500. We considered the

same cardiac surgery dataset that were used by Steiner et al. [2]

and then Sego et al. [9] to construct risk-adjusted control charts for

Bernoulli and time-to event variables, respectively. It was reported

that this dataset contains 6449 operations information that were

performed between 1992–1998 at a single surgical center in U.K.

The Parsonnet score [30] was recorded to quantify the patient’s

risk prior to the cardiac surgery. It is an additive scoring system for

predicting risk in cardiac surgery based on logistic regression with

13 patient-related and three surgery-related factors [30].

A follow-up period of 30 days after the surgery was set as the

censoring time. A Weibull AFT model with parameters of

âa0~0:4909,l̂l0~42133:6 and b̂b0~0:1307 was reported by Sego

et al. [9] when the first two years of the data were used as training

data to fit the model and construct the in-control state of the

process and RAST CUSWUM. They also found that the recorded

Parsonnet scores of the training data can be well approximated by

an exponential distribution with a mean of 8.9.

We apply the same Weibull AFT model to simulate observa-

tions coming from the in-control state of the process. Figure 1

shows the estimated survival curves obtained through the in-

control survival time model for patients with a range of different

Parsonnet scores. As seen, a patient with a low score, u~10 or

below, is highly likely (p§0:94) to survive within the follow-up

period; see Figure 1-1. In contrast for patients with a score of

u~50 and higher, death is not unlikely within this period since the

risk of death is estimated to be at least 51% for the last day shown

in Figure 1-2.

To generate right censored survival time observations of a

process in the in-control state ti, i~1,:::,t, we first randomly

generated the Parsonnet score, ui, i~1,:::,t, from an exponential

distribution with a mean of 8.9 and then drew an associated

survival time, xi, i~1,:::,t, from the Weibull AFT model with

a0~0:4909,l0~42133:6, and b0~0:1307. Finally, ti and di were

obtained considering a censoring time of c~30 through Equation

(1). Plotting the obtained observations when the associated

covariates are considered results in a RAST CUSUM chart that

is in-control. Note that other distributions such as uniform

distributions with proper parameters or even sampling randomly

from the baseline Parsonnet scores can be applied to generate

covariates directly.

Because we know that the process is in-control, if an out-of-

control observation was generated in the simulation of the early

500 in-control observations, it was taken as a false alarm and the

Change Point in Monitoring Survival Time
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simulation was restarted. However, in practice a false alarm may

lead to stopping the process and analyzing root causes. When no

cause is found, the process would follow without adjustment.

To generate the step change in l0, or MST, we then induced

changes of sizes k~f1:33, 1:5, 2, 3, 4, 5, 7, 10, 15, 20g as

increases and their inverse values of k~f0:05, 0:066, 0:1, 0:143,

0:20, 0:25, 0:33, 0:50, 0:66, 0:75g as decreases and generated

observations until the control charts signalled. These changes led

to different change sizes in in-control estimated survival probabil-

ity over days for a patient with ui as well as survival curves between

patients with different Parsonnet scores.

The effects of an increase of size k~4 and a drop of size

k~0:25 in the MST on the probability of survival at the midpoint,

day 15, and the end, day 30, of the follow-up period for all possible

Parsonnet score are demonstrated in Figure 2. As expected, the

probability of survival for each patient would increase when a

jump in the MST occurred. However the magnitude of this

increase is larger for patients with higher Parsonnet scores.

Figure 1. Estimated survival curves for patients over the follow-up period of 30 days. For patients with (1) low to medium and (2) medium
to high Parsonnet scores (risks prior to surgery) obtained through the fitted Weibull AFT model to the training survival time data.
doi:10.1371/journal.pone.0033630.g001

Figure 2. Estimated probability of survival over all Parsonnet scores prior and after changes in the MST. Probabilities at the 15th and
the 30th day of the follow-up period of 30 days prior and after (1) an increase of size k~4, and (2) a decrease of size k~0:25 in the MST. Prior and
after the change are indexed by 1 and the value of k.
doi:10.1371/journal.pone.0033630.g002

Change Point in Monitoring Survival Time
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Figure 3. Estimated absolute magnitude of change in probability of survival over all Parsonnet scores prior and after changes in
the MST. Probabilities at the 15th and the 30th day of the follow-up period of 30 days prior and after (1) an increase of size k~4, and (2) a decrease of
size k~0:25 in the MST.
doi:10.1371/journal.pone.0033630.g003

Figure 4. Risk-adjusted survival time CUSUM charts ((hz,h{)~(4:88,4:53)) and obtained posterior distributions following changes in
the MST. The RAST CUSUM chart and posteriors of the time t and the magnitude k of (a1–a3) an increase of size k~4, and (b1–b3) a decrease of size
k~0:25 in l (mean survival time) where l0~42133:6 and t~500.
doi:10.1371/journal.pone.0033630.g004
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It was also found that the resultant magnitude of the shift in

the probability of survival for an individual patient with a

covariate of ui, is not constant over days. The magnitude of

increases in the probability at the end of period are slightly

higher than those obtained for the midpoint of the period

caused by a jump of k~4 in the MST for patients with

Parsonnet scores of less than 63; compare absolute change in

probability for the days 15 and 30 of the follow-up period

before (k~1) and after the increase (k~4) in Figure 3-1. As

shown for patients with higher scores, the increase in

probability for the end of the follow-up period is less than

the midpoint. The same behavior was also observed for a drop

of size k~0:25; however the superiority of resultant magnitude

of the shift in the probability for the end of the period tends to

decline and underlie the corresponding probability for the

midpoint of the period over a wider range of Parsonnet scores;

see Figure 3-2.

To construct a RAST CUSUM, we applied the procedures

outlined in control chart section. We calibrated the RAST

CUSUM to detect an increase and a decrease in the MST that

correspond to a halving and a doubling of the odds ratio within the

follow-up period and with an in-control average run length

(ÂARL0) of approximately 10000 observations. As noted before, for

the Weibull AFT model the corresponding odds ratio formula,

discussed by Sego et al. [9], is not reduced to a closed form of l0

and r+ since the covariate term is not simplified in

OR~
Oi1

Oi0
, and Oi~

1{S(cDui)

S(cDui)
ð5Þ

where S(cDui) is the probability of survival at the end of follow-up

period, c.

Therefore we used Monte Carlo simulation to estimate the

corresponding r+. To do so, we set r+ such that over 100,000

replications of generating Parsonnet scores from the fitted

exponential distribution with a mean of 8.9 and calculating

associated probability of survival at the end of the follow-up period

of 30 days using Equation (4), and then constructing the odds in

Equation (5), the desired odds ratios of size OR~2 and OR~0:5
were obtained on average. An increase of r̂rz~4:004 and a

decrease of r̂r{~0:255 in the MST were found to correspond to

the desired drop and jump in odds ratio, respectively.

We also used Monte Carlo simulation to determine decision

intervals, h+. However other approaches may also be considered;

see Steiner et al. [2] and Sego et al. [9]. This setting led to decision

intervals of hz~4:88 and h{~4:53. As two sided charts were

considered, the negative value of h{ was used. The associated

CUSUM scores were also obtained through Equation (2)

considering the generated ti,di and ui.

The step change and the control chart were simulated in the

statistical package R version 2.12.2 (http://www.r-project.org).

To obtain posterior distributions of the time and the magnitude

of the changes for each change point scenario, we used the

R2WinBUGS interface [31] to generate 100,000 MCMC

samples in WinBUGS version 1.4.3 [32], with the first 20000

samples ignored as burn-in. This package employs standard

MCMC algorithms such as Gibbs, Metropolis and slice sampling,

depending on the nature of the conditional distributions, to draw

the MCMC samples; see the documentation associated with the

software for further details. The posteriors were obtained in

14 minutes in average using a machine equipped by a CPU Intel

dual core 2.53 GHz and 3GB RAM. We then analyzed the

results using the coda package in R [33]. See File S1 for the step

change model code in WinBUGS.

Results and Discussion

Performance Analysis
To demonstrate the results of Bayesian change point detection

in risk-adjusted control charts, we induced a jump and a drop of

sizes k~4:0 and k~0:25, respectively, at time t~500 in an in-

control process with an overall survival time of l0~42133:6. The

RAST CUSUM chart detected the changes and signalled at the

839th and 651st observations, corresponding to delays of 339 and

151 observations as shown in Figures 4-a1 and 4-b1, respectively.

The posterior distributions of time and magnitude of the change

were then obtained using MCMC discussed in Evaluation. Both

distributions of the time of the change, t, concentrate on the 500th

observation, approximately, as seen in Figures 4-a2 and 4-b2. The

posterior for the magnitude of the change, k, also reasonably

identified the exact change sizes as it highly concentrates on values

of around 4.0 and 0.25 shown in Figure 4-a3 and 4-b3.

This investigation was replicated using a smaller shift in both

direction, k~0:33 and k~3:0 in l0. Table 1 summarizes the

posterior estimates for all scenarios. If the posterior was

asymmetric and skewed, the mode of the posterior was used as

an estimator for the change point model parameters (t and k). The

results imply that although the obtained posterior underestimated

the change point, except for k~3:0, they still performed

substantially better than the RAST CUSUM charts.

Applying the Bayesian framework enables us to construct

probability based intervals around estimated parameters. A

credible interval (CI) is a posterior probability based interval

which involves those values of highest probability in the posterior

density of the parameter of interest. Table 2 presents 50% and

80% credible intervals for the estimated time and the magnitude of

changes in l0 for the RAST CUSUM chart. As expected, the CIs

are affected by the dispersion and higher order behaviour of the

posterior distributions. Under the same probability of 0.5, the CI

for the time of the change of size k~4:0 covers only eight

obsrevations around the 500th observation whereas it increases to

210 observations for k~3:0 due to the larger standard deviation;

see Table 1. In this scenario, the true change point does not exist

in both CIs whereas the intervals obtained for the equavalent

change size in the opposite direction, k~0:33, are highly

informative.

This investigation can be extended to other shift sizes for the

time estimates. As shown in Table 1 and discussed above, the

magnitudes of the changes are also estimated reasonably well and

Table 2 shows that in all cases the real sizes of the changes are

contained in the respective posterior 50% and 80% CIs.

Having a distribution for the time of the change enables us to

make other probabilistic inferences. As an example, Table 3 shows

the probability of the occurrence of the change point in the last

Table 1. Posterior estimates (mode, sd.) of step change point
model parameters (t and k) following signals (RL) from RAST
CUSUM ((hz,h{)~(4:88,4:53)) where l0~42133:6 and
t~500.

k RL t̂t ŝst̂t k̂k ŝsk̂k

0.25 651 499.8 96.0 0.226 0.18

0.33 722 494.8 160.6 0.27 0.19

3.00 1107 734.1 165.8 3.52 3.6

4.00 839 496.3 109.1 3.68 2.4

doi:10.1371/journal.pone.0033630.t001
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{25, 50, 100, 200, 300, 400, 500} observations prior to signalling

in the control charts. For a step change of size k~4:0 in the mean

survival time, since the RAST CUSUM signals late (see Table 1),

it is unlikely that the change point occurred in the last 200

observations. A considerable growth in the probability is seen

when the next 200 observations are included, reaching to 0.72,

whereas for a smaller increase of size k~3:0, it is still not unlikely

that the change point has occurred prior the last 400 observations

with a probability of 0.43. For drops, k~0:33,0:25, the likelihood

of occurrence of the change in the last 200 observations are

noticeably high since more precise posteriors of time were

obtained; see Table 1.

The above studies were based on a single sample drawn from

the underlying distribution. To investigate the behavior of the

Bayesian estimator over different sample datasets, for different

changes in l0, we replicated the simulation method explained in

Evaluation 100 times. This replication allows us to have

distribution of estimates with standard errors of the order of 10.

The number of replications is a compromise between computa-

tional time, posterior estimation and particular tail probabilities.

Table 4 shows the average of the estimated parameters obtained

from the replicated datasets where there exists a step change in l0

of size k. Using Monte Carlo simulation an equivalent odds ratio

of mortality in the follow-up period, ÔOR, for each step change in

the MST was also obtained.

As seen, the RAST CUSUM control chart tends to detect larger

shifts in the MST with less delays. The chart tends to fail in

detection of small jumps since signals with a long delay of more

than 954 observations were obtained when the MST doubled,

k~2:0. This behavior is also consistent over small drops. Having

said that, more accuracy and precision are associated with the

RAST CUSUM signals over drops in MST. This superiority can

be explained by the nature of censored data. Since survival time

are right censored, the effects of improvements is less observable

Table 4. Average of posterior estimates (mode, sd.) of step
change point model parameters (t and k) for a change in the
mean survival time following signals (RL) from RAST CUSUM
((hz,h{)~(4:88,4:53)) where l0~42133:6 and t~500.

Change point Change size

k ÔOR ÊE(RL) ÊE(t̂t) ÊE(ŝst̂t) ÊE(k̂k) ÊE(ŝs
k̂k
)

0.05 4.73 542.4 486.0 91.2 0.077 0.173

(16.2) (57.3) (34.7) (0.086) (0.022)

0.066 3.94 554.8 490.5 92.9 0.083 0.177

(26.6) (62.5) (36.7) (0.075) (0.025)

0.10 3.26 568.3 485.7 99.4 0.127 0.181

(39.7) (70.9) (33.9) (0.094) (0.017)

0.143 2.70 594.2 487.3 110.9 0.154 0.182

(49.2) (72.5) (34.5) (0.090) (0.016)

0.20 2.26 624.7 503.7 119.5 0.182 0.183

(71.3) (87.1) (36.6) (0.103) (0.018)

0.25 2.02 692.3 527.3 132.9 0.231 0.183

(150.4) (146.2) (53.4) (0.111) (0.018)

0.33 1.75 779.6 554.3 153.9 0.27 0.186

(187.7) (162.3) (58.9) (0.118) (0.023)

0.50 1.41 1139.0 661.8 258.9 0.43 0.188

(605.0) (287.7) (173.0) (0.16) (0.028)

0.66 1.23 2369.4 1270.3 562.1 0.57 0.193

(1169.8) (783.2) (456.6) (0.22) (0.047)

0.75 1.16 2773.4 1748.0 697.9 0.63 0.195

(2195.4) (1304.4) (720.8) (0.25) (0.047)

1.33 0.87 2921.9 2080.6 635.8 1.59 3.25

(2629.8) (1674.0) (763.4) (2.57) (0.747)

1.5 0.81 2438.8 1764.9 510.0 1.85 3.60

(1671.8) (1238.9) (555.5) (2.59) (0.788)

2.0 0.70 1454.0 928.8 291.9 2.69 3.81

(626.9) (434.4) (197.6) (2.10) (0.819)

3.0 0.58 1004.7 645.1 179.9 3.60 3.98

(382.2) (250.3) (98.8) (2.19) (0.618)

4.0 0.50 828.8 525.9 137.0 4.12 4.08

(196.5) (134.9) (68.0) (2.26) (0.401)

5.0 0.45 785.6 514.5 113.7 5.79 4.14

(170.2) (128.8) (63.5) (2.42) (0.394)

7.0 0.38 753.2 493.1 106.1 6.69 4.17

(125.4) (100.9) (46.8) (2.36) (0.364)

10.0 0.32 692.4 471.8 95.3 8.90 4.27

(89.6) (90.9) (43.2) (2.20) (0.291)

15.0 0.26 689.5 467.6 88.7 12.25 4.38

(84.7) (78.2) (41.6) (2.23) (0.270)

20.0 0.22 670.7 465.2 80.1 14.73 4.45

(61.6) (73.5) (35.3) (2.04) (0.148)

Standard deviations are shown in parentheses.
doi:10.1371/journal.pone.0033630.t004

Table 3. Probability of the occurrence of the change point in
the last {25, 50, 100, 200, 300, 400, 500} observations prior to
signalling for RAST CUSUM ((hz,h{)~(4:88,4:53)) where
l0~42133:6 and t~500.

k 25 50 100 200 300 400 500

0.25 0.03 0.07 0.20 0.89 0.94 0.96 0.97

0.33 0.01 0.05 0.20 0.59 0.77 0.82 0.90

3.0 0.00 0.01 0.02 0.12 0.40 0.57 0.82

4.0 0.01 0.02 0.04 0.08 0.27 0.72 0.96

doi:10.1371/journal.pone.0033630.t003

Table 2. Credible intervals for step change point model
parameters (t and k) following signals (RL) from RAST CUSUM
((hz,h{)~(4:88,4:53)) where l0~42133:6 and t~500.

2*k CI 50% CI 80%

t̂t k̂k t̂t k̂k

0.25 (488, 551) (0.14, 0.33) (453, 581) (0.09,
0.48)

0.33 (487, 648) (0.15, 0.40) (359, 709) (0.09,
0.57)

3.00 (681, 891) (2.08, 5.74) (604, 995) (1.52,
9.32)

4.00 (397, 505) (2.48, 5.39) (389, 611) (1.51,
7.20)

doi:10.1371/journal.pone.0033630.t002
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and detectable than deteriorations. In other words, the data

obtained after an increase in the MST is less informative than

those obtained following a drop; see the next section.

For a large jump in the MST, k of size 7.0 or more, the average

values of the modes, ÊE(t̂t), tends to underestimate the time of the

change since it reports at best the 493rd observation for k~7:0.

However, the Bayesian estimator still outperforms the chart signal

with less bias over large increases. For inverse change sizes, large

falls, the posterior mode also reports the true change point with

less bias than the chart’s signal. The magnitude of this bias is less

than those obtained over jumps in the MST (drops in the odds

ratio). The superiority of the Bayesian estimator over the chart’s

signal also persists for moderate shifts in the MST.

Table 4 shows that the Bayesian estimator of time, ÊE(t̂t), tends

to overestimate the time of the change over moderate to small step

changes. This bias dramatically increases over small to very small

shifts, a drop of size k~(0:5,0:66,0:75) and their inverse values for

jumps, reaching to a bias of 1080 observations obtained for

k~1:33, yet significantly outperforms the chart’s signal. However,

it may still be considered as an informative estimate of the time of

the change.

Table 4 indicates that the average of the Bayesian estimator of

the magnitude of the change, ÊE(d̂d), identifies change sizes with

some bias. For large drops, this estimator tends to overestimate the

change size whereas it underestimates the size over moderate to

small drops. This estimator behaves conversely over jumps.

Having said that, Bayesian estimates of the magnitude of the

change must be studied in conjunction with their corresponding

standard deviations. In this manner, analysis of credible intervals is

effective.

The Effect of Censoring Time
Specification of the time c at which the survival times are right

censored, affects the resulting performance of the RAST CUSUM

chart. Sego et al. [9] have addressed construction of a RAST

CUSUM chart in an updating fashion that uses longer censoring

times. Here we investigated the performance of the chart and the

proposed Bayesian estimator of the change point over longer

censoring times. Using the simulation procedure discussed in

Evaluation and followed above, we replicated generating in-

control and out-of-control states of the sample process and change

point detections for a selection of decreases, k~(0:1,0:25), and

increases, k~(4,10), in the MST where the observed survival

times are right censored using follow-up periods of

c~f30,90,180,365g which correspond to, a month, a quarter, a

half and a full year, respectively. Note that the RAST CUSUM

chart was not re-calibrated based on the new censoring time since

it was assumed that no updates were obtained for the patients in

the training dataset.

Table 5 shows that when a longer censoring time is used, the

chart detects a fall with a less delay. For a large reduction of size

k~0:1 this delay drops by 26 observations on average when a

follow-up period of 90 days is considered instead of the common

30 days. In this scenario, applying longer periods improves the run

length since more accurate and precise ÊE(RL) were obtained.

However it is not as significant as that observed by replacing a

month with a quarter of a year. This behavior is consistent over a

moderate drop of size k~0:25. The average of the Bayesian

estimator of the time, ÊE(t̂t), also shows that estimates with less

biases and variations would be obtained if a longer follow-up

period was used.

The behavior of the chart and the estimator observed for drops

persists over increases in the MST as well. Having said that, it

seems to be more significant over increases. The Bayesian

estimator of the time, ÊE(t̂t), also tends to detect the change point

more accurately and precisely since less overestimation and

underestimation were observed over a longer censoring time for

moderate and large jumps, respectively.

Although the discussed results are in favor of following up

patients for a longer time, care should be taken in this approach

since the possibility of contribution of other risk factors rather than

the process of interest, cardiac surgery, in the observed survival

time increases. Investigation of incorporating such post-surgery

factors and also the effect of re-calibration of the RAST CUSUM

is left for further research.

Comparison of Bayesian Estimator with Other Methods
To study the performance of the proposed Bayesian estimators

in comparison with that introduced in Introduction, we run the

available alternative, built-in estimator of the CUSUM chart,

within the replications discussed in Performance Analysis.

Based on the suggestion by Page [12], if an increase in a process

rate is detected by CUSUM charts, an estimate of the change

point is obtained through t̂tcusum~maxfi : Zi~0g. Similarly for

detection of a decrease, the estimated change point is

t̂tcusum~maxfi : Z{
i ~0g.

Table 5. Average of posterior estimates (mode, sd.) of step change point model parameters (t and k) for a change in the mean
survival time using different censoring time, c, following signals (RL) from RAST CUSUM ((hz,h{)~(4:88,4:53)) where l0~42133:6
and t~500.

k~0:1 k~0:25 k~4 k~10

c ÊE(RL) ÊE(t̂t) ÊE(k̂k) ÊE(RL) ÊE(t̂t) ÊE(k̂k) ÊE(RL) ÊE(t̂t) ÊE(k̂k) ÊE(RL) ÊE(t̂t) ÊE(k̂k)

30 568.3 485.7 0.127 692.3 527.3 0.231 828.8 525.9 4.12 692.4 471.8 8.90

(39.7) (70.9) (0.094) (150.4) (146.2) (0.111) (196.5) (134.9) (2.26) (89.6) (90.9) (2.20)

90 542.8 486.3 0.124 609.9 513.7 0.233 708.5 517.3 4.38 621.3 473.3 8.81

(19.5) (62.3) (0.102) (77.6) (63.0) (0.119) (126.6) (115.9) (2.38) (55.9) (79.5) (2.40)

180 534.8 492.6 0.124 579.4 509.7 0.213 645.6 515.2 4.16 591.4 488.2 8.72

(16.1) (36.5) (0.101) (46.5) (50.6) (0.126) (97.3) (86.2) (2.41) (37.9) (40.4) (2.56)

365 527.9 489.7 0.148 562.6 495.3 0.227 604.7 512.2 4.29 562.7 489.1 8.92

(12.5) (33.6) (0.139) (44.4) (63.9) (0.130) (69.7) (76.2) (2.52) (25.4) (32.4) (2.71)

Standard deviations are shown in parentheses.
doi:10.1371/journal.pone.0033630.t005
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Table 6 shows the average of the Bayesian estimates, tb, and

detected change points provided by the built-in estimator of

CUSUM, tcusum charts for shifts in the mean survival time, l0 say.

The built-in estimator of CUSUM charts outperforms associ-

ated signals over all shifts in the MST; however it tends to

significantly underestimate the exact change point when the

magnitude of the shifts increases. It has been previously discussed

that the RAST CUSUM has a better performance over drops; this

finding persists for the built-in estimator since less bias and higher

precision are associated with the change point estimates over

drops. Having said that, the superiority of the built-in estimator

over the chart’s signal is more significant over jumps in the MST.

Although the Bayesian estimator, t̂tb, tends to underestimate the

time of changes over large shifts, k~7 or more, and their inverse,

it outperforms the built-in estimator, t̂tcusum, with less bias reaching

to 15 and 35 observations over large drops and jumps,

respectively.

The posterior mode tends to overestimate the true change point

over moderate to small shift sizes, yet it reports more accurate

results than the alternative. In the only exceptional scenarios, a

shift of sizes k~0:25 and k~3:0, where less bias is associated with

the built-in estimator, no significant superiority is gained when the

obtained variation of the estimates is also taken into account.

Comparison of variation of estimated change points across other

scenarios of shifts in the mean survival time also supports the

superiority of the Bayesian estimator over the alternative.

Conclusion
Obtaining accurate information about the time when a change

occurred in the process has been recently considered within

quality control applications. Indeed, knowing the change point

enhances efficiency of root cause analysis efforts by restricting the

search to a tighter window of observations and related variables.

In this paper, using a Bayesian framework, we modeled change

point estimation in time-to-event data for a clinical process with

dichotomous outcomes, death and survival, where patient mix was

present. We considered a range of jumps and falls in the mean

survival time of an in-control process. We constructed Bayesian

hierarchical models and derived posterior distributions for change

point estimates using MCMC. The performance of the Bayesian

estimators was investigated through simulation in conjunction with

RAST CUSUM control charts for monitoring right censored

survival time of patients who underwent cardiac surgery

procedures within a follow-up period of 30 days. Here the severity

of risk factors prior to the surgery was evaluated by the Parsonnet

score.

The results showed that the Bayesian estimates significantly

outperform the RAST CUSUM control charts in change

detection over different magnitudes of shifts in the mean survival

time. These results highlight that post-signal change point

investigation can enhance the efficiency of root cause analysis

efforts in monitoring time-to-event outcomes. It was also shown

that over longer follow-up periods better estimates were provided

by the RAST CUSUM chart and the Bayesian estimator.

However, care should be taken in practice since the effects of

unseen contributors in the observed survival model may increase

over longer follow-up periods. The comparison of the Bayesian

estimator with built-in estimators of CUSUM revealed that the

Bayesian estimator performed reasonably well and outperformed

the alternatives.

In addition to the accuracy and precision criteria used for the

comparison study, the posterior distributions for the time and the

magnitude of a change enable us to construct probabilistic

intervals around estimates and probabilistic inferences about the

location of the change point. This is a significant advantage of the

proposed Bayesian approach over other methods that produce

only MLE estimators. Furthermore, the flexibility of the Bayesian

Table 6. Average of detected time of a step change in the
mean survival time obtained by the Bayesian estimator (tb)
and CUSUM built-in estimator following signals (RL) from
RACUSUM ((hz,h{)~(5:85,5:33)) where l0~42133:6 and
t~500.

k ÊE(RL) ÊE(t̂tcusum) ÊE(t̂tb)

0.05 542.4 458.22 486.0

(16.2) (77.9) (57.3)

0.066 554.8 467.5 490.5

(26.6) (80.9) (62.5)

0.10 568.3 456.0 485.7

(39.7) (79.9) (70.9)

0.143 594.2 474.5 487.3

(49.2) (67.1) (72.5)

0.20 624.7 477.1 503.7

(71.3) (75.6) (87.1)

0.25 692.3 523.5 527.3

(150.4) (138.4) (146.2)

0.33 779.6 565.4 554.3

(187.7) (158.9) (162.3)

0.50 1139.0 903.7 661.8

(605.0) (568.0) (287.7)

0.66 2369.4 2289.5 1270.3

(1169.8) (1168.2) (783.2)

0.75 2773.4 2426.0 1748.0

(2195.4) (1906.9) (1304.4)

1.33 2921.9 2561.2 2080.6

(2629.8) (2655.8) (1674.0)

1.5 2438.8 2035 1764.9

(1671.8) (1672.0) (1238.9)

2.0 1454.0 997.6 928.8

(626.9) (597.2) (434.4)

3.0 1004.7 635.1 645.1

(382.2) (332.1) (250.3)

4.0 828.8 468.4 525.9

(196.5) (174.0) (134.9)

5.0 785.6 470.0 514.5

(170.2) (160.6) (128.8)

7.0 753.2 455.2 493.1

(125.4) (100.5) (100.9)

10.0 692.4 417.0 471.8

(89.6) (122.2) (90.9)

15.0 689.5 432.3 467.6

(84.7) (102.4) (78.2)

20.0 670.7 430.5 465.2

(61.6) (112.9) (73.5)

Standard deviations are shown in parentheses.
doi:10.1371/journal.pone.0033630.t006
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hierarchical models, ease of extension to more complicated change

scenarios such as linear and nonlinear trends in survival time, relief

from analytic calculation of the likelihood function through

MCMC, and ease of coding with available packages should be

considered as additional benefits of the proposed approach. The

only drawback of the Bayesian approach is that it is more time-

consuming; however this was not particularly onerous in the

studies presented here.

The investigation conducted in this study was based on a

specific in-control rate of mortality observed in the pilot hospital.

Although it is expected that superiority of the proposed Bayesian

estimator persists over other processes in which the in-control rate

and the distribution of baseline risk may differ, the results obtained

for estimators and control charts over various change scenarios

motivates replication of the study using other patient mix profiles

and underlying models. Moreover modification of change point

model elements such as replacing priors with non-informative and

informative alternatives may be of interest.

Supporting Information
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