
fphys-10-00682 June 21, 2019 Time: 16:38 # 1

REVIEW
published: 25 June 2019

doi: 10.3389/fphys.2019.00682

Edited by:
Charlotte Helfrich-Förster,

University of Würzburg, Germany

Reviewed by:
Urs Albrecht,

Université de Fribourg, Switzerland
Violetta Pilorz,

Luebeck University of Applied
Sciences, Germany

*Correspondence:
Jiajia Zhao

zhaojiajia0130@163.com
Lili Chen

lily-c1030@163.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Chronobiology,
a section of the journal
Frontiers in Physiology

Received: 28 January 2019
Accepted: 13 May 2019

Published: 25 June 2019

Citation:
Xie Y, Tang Q, Chen G, Xie M,

Yu S, Zhao J and Chen L (2019) New
Insights Into the Circadian Rhythm

and Its Related Diseases.
Front. Physiol. 10:682.

doi: 10.3389/fphys.2019.00682

New Insights Into the Circadian
Rhythm and Its Related Diseases
Yanling Xie†, Qingming Tang†, Guangjin Chen, Mengru Xie, Shaoling Yu, Jiajia Zhao* and
Lili Chen*

Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology,
Wuhan, China

Circadian rhythms (CR) are a series of endogenous autonomous oscillators generated
by the molecular circadian clock which acting on coordinating internal time with the
external environment in a 24-h daily cycle. The circadian clock system is a major
regulatory factor for nearly all physiological activities and its disorder has severe
consequences on human health. CR disruption is a common issue in modern society,
and researches about people with jet lag or shift works have revealed that CR
disruption can cause cognitive impairment, psychiatric illness, metabolic syndrome,
dysplasia, and cancer. In this review, we summarized the synchronizers and the
synchronization methods used in experimental research, and introduced CR monitoring
and detection methods. Moreover, we evaluated conventional CR databases, and
analyzed experiments that characterized the underlying causes of CR disorder. Finally,
we further discussed the latest developments in understanding of CR disruption, and
how it may be relevant to health and disease. Briefly, this review aimed to synthesize
previous studies to aid in future studies of CR and CR-related diseases.
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Abbreviations: βOHB, beta-hydroxybutyrate; AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; AMPK,
adenosine monophosphate-activated protein kinase; ASK, apoptosis signal-regulating kinase; AVP, arginine vasopressin;
BMAL1, brain and muscle Arnt-like protein 1; CaMK, calcium-calmodulin kinase; cAMP, cyclic adenosine monophosphate;
CCD, charge-coupled device; CCGs, clock-controlled genes; CIRBPs, cold-inducible RNA binding proteins; CLOCK,
circadian locomotor output cycles kaput; CR, circadian rhythms; CRE, cAMP response elements; CREB, cAMP response
element-binding protein; Cry, cryptochrome; CT, circadian time; DBP, D-box binding protein; DD, dark-dark; Dex,
dexamethasone; DM, dorsomedial; DPSC, dental pulp-derived stem cells; E4BP4, E4 Promoter-Binding Protein 4; EGF,
epidermal growth factor; EGR1, Early growth response protein 1; FAA, food anticipatory activity; FABP7, fatty acid binding
protein 7; FEO, food-entrainable oscillator; FFT, fast fourier transform; Fsk, forskolin; GABA, gamma-aminobutyric acid;
GHT, geniculohypothalamic tract; GR, glucocorticoid receptor; GRE, glucocorticoid response element; HLF, hepatic leukemia
factor; HSF1, heat shock factor 1; IGL, intergeniculate leaflet; IRC, irradiance response curve; LD, light-dark; MAPK pathway,
mitogen-activated protein kinase pathway; Mmp3, matrix metalloproteinase 3; MRTFs, myocardin-related transcription
factors; mTOR, mammalian target of rapamycin; NADH, nicotinamide adenine dinucleotide; NADPH, nicotinamide adenine
dinucleotide phosphate; NFIL3, nuclear factor interleukin-3-regulated protein; NMDA, N-methyl D-aspartate; NPAS2,
neuronal PAS domain protein 2; NPY, neuropeptide Y; Opg, osteoprotegerin; PAC1, proteasome assembly chaperone 1;
PACAP, pituitary adenylyl cyclase activating peptide; PAR-bZip, proline and acidic amino acid-rich basic leucine zipper; PCR,
polymerase chain reaction; Per, Period; PGE2, prostaglandin E2; PKA, protein kinase A; PKCA, protein kinase Cα; PKG,
protein kinase G; PMTs, photomultiplier tubes; PPAR, peroxisome proliferator-activated receptors; pRGC, photosensitive
retinal ganglion cell; RHT, retinohypothalamic tract; ROREs, ROR binding elements; RORs, retinoic acid receptor-related
orphan receptors; SCN, suprachiasmatic nucleus; SP, substance P; TEF, thyrotroph embryonic factor; TERT, telomerase
reverse transcriptase; TGF-β, transforming growth factor beta; TLR, toll-like receptor; TRP channel, transient-receptor
potential channel; TRPCs, transient-receptor potential channels; TTFLs, transcription and translation feedback loops; VIP,
vasoactive intestinal polypeptide; VL, ventrolateral; VPAC2, vasoactive intestinal peptide receptor 2; ZT, zeitgeber time.
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INTRODUCTION

Circadian rhythms (CR) are endogenous autonomous oscillators
of physiological activities resulting 24-h day/night cycles, which
allow organisms to adapt to a fluctuating environment (Reppert
and Weaver, 2002; Dibner et al., 2010). The core pacemaker of
CR lies in the SCN, which plays crucial roles in maintenance
of systemic CR and regulates peripheral tissue clocks through
secretion of endogenous regulatory factors (Dibner et al., 2010).
The molecular clock of the CR system, which is present in all cells,
is made up of oscillating clock-related proteins that compose
TTFLs (Gekakis et al., 1998). The core TTFL is composed of the
transcriptional activator proteins CLOCK and BMAL1, and the
repressor proteins Period-1 (PER1), PER2, PER3, Cryptochrome-
1 (CRY1) and CRY2 (Gekakis et al., 1998). Other loops are
coupled to the core TTFL to maintain oscillation. The first sub-
loop is composed of RORs and nuclear REV-ERB receptors. The
second sub-loop comprises D-box-related genes, which include
DBP, TEF, and HLF (Figure 1; Preitner et al., 2002; Sato et al.,
2004). Moreover, recent studies have suggested that circadian
regulation is heavily involved in gene expression. A considerable
portion (approximately 10%) of genes expressed in cells or
tissues have been found to display circadian oscillations, resulting
in identification of these genes as “CCGs” (Duffield, 2003;
Zhang et al., 2014).

Mammalian tissues and cells have an autonomous circadian
oscillator with a period of roughly 24 h. External stimuli are
essential for maintaining the appropriate circadian oscillations
(Bass and Takahashi, 2010; Roenneberg and Merrow, 2016;
Tahara et al., 2017). In vivo, CR is mainly entrained by
environmental signals such as light, food, and arousal stimuli.
In the SCN, the circadian clock mainly responds to the LD
cycle. In peripheral tissues, CR can be synchronized by food or
temperature (Damiola et al., 2000; Hara et al., 2001; Buhr et al.,
2010). Moreover, internal signals such as circulating hormones,
cytokines, metabolites, sympathetic nervous activation, and body
temperature are significant timing cues that regulate peripheral
clocks (Albrecht, 2012; Menaker et al., 2013). In vitro, CR are
difficult to observe due to lack of SCN signals. As such, external
stimuli should be applied to induce CR in cultured cells or
explants (Figure 2).

The field of chronobiology requires detection of features
of CR in tissues or cells. Through chronological collection
or luminescence monitoring, the basic data resulting from
circadian fluctuations in vivo or in vitro can be accurately
recorded. Approaches such as FFT (Moore et al., 2014),
JTK-Cycle (Hughes et al., 2010), or autocorrelation (Levine
et al., 2002) can be used to analyze the rhythmic features of
CR. Subsequently, we introduced several circadian databases
established in recent years.

Finally, we summarized in vivo and in vitro factors that
can alter CR. In vivo factors include entrainments such as
light, food, and temperature, while the in vitro factors include
cell density (Noguchi et al., 2013), osmotic pressure, PH,
mechanical stimulus, temperature, oxygen concentration, and
microorganisms (Haspel et al., 2014). These factors can lead
to circadian disruptions, and result in various diseases such

as cancer, dysplasia, and metabolic and behavioral disorders
(Takahashi et al., 2008).

THE MAMMALIAN CIRCADIAN CLOCK
SYSTEM

The circadian clock system is the totality of all oscillators
in organisms coupled to various physiological processes.
This system generally consists of three parts in mammals
including the input pathway, the core circadian clock, and
the output pathway. The input pathway senses external timing
signals, for example, light/dark, and sends information to
the core circadian clock. The core circadian clock forms
endogenous CR according to external time cues to allow
for adaptation to the environment. Based on changes in
the core circadian clock, the output pathway adjusts the
physiological activities in various tissues and organs through
neurohumoral regulation.

In mammals, the core pacemaker of the CR system exists
in the SCN, which exhibits endogenous rhythmic oscillations
both at the tissue and cell levels, plays a vital role in
maintenance and alterations of CR, and provides outputs
to peripheral tissues after synchronization by external time
cues (Dibner et al., 2010). The SCN can be distinguished
into two main areas: the VL core area and the DM shell
area (Welsh et al., 2010). The core area mainly expresses
the neuropeptide VIP, while the shell area expresses AVP.
The VL-SCN, which controls essential physiological activities
such as exercise, body temperature, heart rate, and hormone
synthesis, serves to couple the circadian system. VIP is released
periodically from the VL core region, binding to VPAC2
on the neuronal surface, resulting in cell depolarization and
induction of PER1 and PER2 (Stepanyuk et al., 2014). VIP
deficiency impairs synchronization of the cells, leading to
weakening of whole-body rhythms (Loh et al., 2011). AVP-
deficient rats exhibit weakened rhythms, but do not experience
changes in circadian pacemaking. As such, the AVP-SCN
is considered to function as the output (Mieda, 2019). In
addition to VIP and AVP, other neurotransmitters such as
glutamate and GABA, which are present in the SCN, conduce
to regulate areas upstream and downstream of the circadian
clock system (Morin et al., 2006). The SCN has historically
been considered to be the only endogenous circadian clock
with autonomous oscillations, and peripheral clocks were not
believed to spontaneously oscillate, but could oscillate under
pacing by the SCN. However, studies have demonstrated
that the peripheral clocks also have the ability to oscillate
autonomously and keep their internal rhythms (Balsalobre et al.,
1998; Yoo et al., 2004). The predominant theory is that the
SCN, as the master pacemaker, can drive peripheral clock
rhythms (Dibner et al., 2010). Peripheral clocks are under the
regulation of endogenous regulatory factors from the SCN. In
an organized CR system, the connection between the SCN
and peripheral tissues is a complex network, and the gene
expression patterns of peripheral tissues are under the control
of various complex factors including autonomic innervations,
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FIGURE 1 | The molecular mechanism of circadian rhythms. CLOCK and BMAL1 activate the cis-acting element E-box to initiate the transcription of downstream
genes such as Pers and Crys, while the accumulated PER and CRY proteins, in turn, bind to CLOCK/BMAL1 and switch them from an activated state to an inhibited
state, suppressing the transcriptional activation of downstream genes. ROR/REV-ERB and DBP (TEF, HLF)/E4BP4, acting on other cis-acting elements such as
RORE and D-box, participating in the regulation of the core feedback loop. CCGs refer to the clock-controlled genes. The circles represent proteins, the squares
represent genes or clock-related elements, the red arrows represent transcriptional activation, and the orange lines with horizontal bars represent transcriptional
inhibition.

endocrine signaling, temperature, and local signals (Figure 2;
Mohawk et al., 2012).

Within cells, the CR system regulates cell biological behaviors
either directly through the TTFLs or indirectly (Figure 1). The
core TTFL contains two transcription activators, CLOCK and
BMAL1, which generate a heterodimer, bind to the cis-acting
element E-box (5′-CACGTG-3′), and activates transcription
of the PER and CRY genes at the beginning of the cycle
(Gekakis et al., 1998). After several hours, PER and CRY
proteins accumulate, dimerize, and generate a complex which
translocates to the nucleus and inhibits the CLOCK/BMAL1
heterodimer (Xu et al., 2015). Other loops are coupled to
the core TTFL to complete the oscillation. The first sub-
loop comprises RORs and REV-ERB, which directly targets at
CLOCK/BMAL1 or ROREs (Preitner et al., 2002; Sato et al.,
2004). The second CLOCK/BMAL1-driven sub-loop contains
the PAR-bZip factors DBP, TEF, and HLF. The repressor
NFIL3 (or E4BP4), driven by the REV-ERB/ROR loop, interacts
with these proteins at sites containing D-boxes (Mitsui et al.,
2001; Gachon et al., 2004; Takahashi, 2017). These three
interlocking TTFLs form 24-h cycles of transcription with
diverse expression phases, resting with the combination of cis-
elements (E-box, RORE, D-box) in the promoters and enhancers
of specific CCGs.

CIRCADIAN RHYTHM SYNCHRONIZERS

Nearly every eukaryote has a cell-autonomous circadian clock
which exhibits 24-h physiological oscillations and can be
influenced by external timing cues. These external timing cues,
also called “synchronizers,” “zeitgeber,” or "entraining agents" can
reset the body’s circadian clock and place all cells at the same
phase of circadian oscillation, a process called circadian rhythm
synchronization. The word “ZT” is used to describe external cues
that synchronize CR such as LD cycles or temperature cycles,
and the word “CT” is utilized to describe timing without external
signals (Li et al., 2017). In the field of chronobiology research,
whether in vivo or in vitro, researchers use these entraining agents
to synchronize CR of the experimental animals or cells. A variety
of factors which act as synchronizers are summarized in Figure 2.

Light
Most organisms acquire the time information through changing
light intensity throughout the day to reset their own clock,
referred to as “photic entrainment” (Roenneberg and Foster,
1997). In chronobiology experiments, light is often served as
a stimulus to induce responses from the circadian clock. The
light signaling cascades that entrain the circadian clock are
fairly complex. In vivo, pRGCs receive light information, which
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FIGURE 2 | Schematic summary of in vivo and in vitro circadian synchronization. In vivo, the photic zeitgeber mainly entrains the central clock, which regulates the
peripheral clocks through the internal timing cues including autonomic innervations, endocrine signaling and body temperature; the non-photic zeitgebers including
arousal stimuli, temperature and food mainly entrain the peripheral clocks. In vitro, the circadian oscillations of cells or explants can be synchronized by temperature
cycles, chemical factors (such as Dex, Fsk, or horse serum) and mechanical stimuli.

is transmitted to the SCN directly through the RHT (Hattar
et al., 2002; Ishida et al., 2005; Kalsbeek et al., 2006; van Diepen
et al., 2015; Pilorz et al., 2016; Mouland et al., 2017; Astiz
et al., 2019), resulting in regulation of the peripheral clocks by
the SCN via secreting neurohumoral factors (Mohawk et al.,
2012). The light-sensitive photopigment melanopsin (Provencio
et al., 2000), is expressed in the pRGCs which mediate a
series of responses to light (Hankins et al., 2008; Do and Yau,
2010; Schmidt et al., 2011). Stimulation of melanopsin causes
activation of G protein coupled signaling cascades and the PLC
pathway, leading to opening of TRPCs such as TRPC6 and
TRPC7, Ca2+ influx, and cellular depolarization (Poletini et al.,
2015). The input pathway to the SCN mainly depends on the
monosynaptic RHT. The primary neurotransmitters in the RHT
are glutamate, PACAP, SP, and aspartate (Ebling, 1996; Chen
et al., 1999; Hannibal, 2002; Golombek et al., 2003; Hannibal and
Fahrenkrug, 2004; Fahrenkrug, 2006). Glutamate, which binds
to glutamatergic receptors such as NMDA or AMPA receptors,
is the main signal for photic entrainment (Mikkelsen et al.,
1993; Golombek and Ralph, 1996; Chambille, 1999; Peytevin
et al., 2000; Michel and Colwell, 2001; Paul et al., 2005), and
induces increased intracellular Ca2+ concentrations (Kim et al.,
2005). PACAP, which activates PAC1 receptor, is also responsible
for mediating synchronization to light (Hannibal et al., 1998,
2008; Shen et al., 2000; Colwell et al., 2004; Hashimoto et al.,

2006). Ca2+ influx activates a range of kinases including PKA,
MAPK, CaMK, PKCA, and PKG (Meijer and Schwartz, 2003).
These kinases are involved in phosphorylation of CREB, which
binds to cAMP response elements in promoters, resulting in
transcription of clock genes such as PER1 and PER2 (Meijer and
Schwartz, 2003). Moreover, transcription factors such as c-FOS
(Travnickova-Bendova et al., 2002) and EGR1 (Riedel et al.,
2018) also participate in regulation of the SCN clock through
optical signals.

Based on RHT innervation and the neurochemical natures of
the cells, the SCN is distinguished into two main subdivisions:
the VL area (core area) and the DM area (shell area) (Moore
et al., 2002). The VL-SCN, which contains VIP and gastrin-
releasing peptide, is located above the optic chiasm, and
receives most of its photic input from RHT innervation.
In contrast, the DM-SCN region, where neurons contain
AVP and calretinin, receives mostly neural signals from the
hypothalamus, limbic areas, and the VL-SCN (Golombek
and Rosenstein, 2010). VL-SCN neurons respond to photic
stimuli during the subjective night and communicate with
DM-SCN neurons through several neurotransmitters such as
VIP, GRP, and SP (Best et al., 1999; Berson et al., 2002),
resulting in synchronization of the DM-SCN to the expression
of these proteins. Therefore, DM-SCN neurons depend on
neuropeptide release from the VL-SCN, although they show
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stronger autonomous oscillations (Moga and Moore, 1997;
Meijer and Schwartz, 2003; Antle and Silver, 2005).

Arousal Stimuli
Other stimuli can synchronize CR, resulting in “non-photic
entrainment.” Arousal stimuli are non-photic entrainments
which include social interactions, exercise, restraint stress, and
caffeine-induced arousal (Mistlberger and Skene, 2004). Different
species respond differently to arousal stimuli. For example,
during the daytime, wheel running or gentle handling cause a
robust phase advance in locomotor activity rhythms of Syrian
hamsters, whereas these stimuli do not arouse a similar phase
advance in the behavioral rhythms of mice or rats (Antle and
Mistlberger, 2000; Mistlberger et al., 2002). However, phase
advance in peripheral clocks such as liver and kidney can be
induced by restraint stress or running wheel exercise during
the intermediate of the light phase in mice (Tahara et al.,
2015; Sasaki et al., 2016). These studies suggested that under
LD cycles, peripheral tissues directly respond to behavioral
entrainment without influencing the SCN. However, in constant
darkness during projected daytime, behavioral rhythms of mice
can also be observed under several-hour daily wheel stimulation
(Mistlberger, 1991). These results imply that the master clock in
mice is primarily impacted by light rather than arousal stimuli.

A review by Golombek and Rosenstein (2010) showed
that arousal stimuli transmit to the SCN through two major
pathways. The GHT from the thalamic IGL, employs NPY,
GABA, and endorphins as neurotransmitters, and plays a role
in activation of the Y2 receptor/PKC pathway. The other is the
serotonergic median raphe nucleus projection to the SCN, where
serotonergic effects are mediated by 5-HT1A/7 receptors and PKA
activation (Golombek and Rosenstein, 2010). The mechanisms
responsible for behavioral entrainment of peripheral clocks
include physiological factors such as glucocorticoids, sympathetic
nerves, oxidative stress, hypoxia, PH, cytokines, and temperature
(Tahara and Shibata, 2018).

Food/Feeding
The CR of mammals can be synchronized by light, and thus
the central clock for light response, the SCN, is considered a
light-entrainable oscillator. Food is a non-photic stimulus that
can reset the circadian rhythm. Many studies have confirmed
the existence of a FEO, but the anatomical location(s) and
molecular timekeeping mechanisms of the FEO have not been
determined. In the case of mammalian research, food is provided
and consumed within a few hours. This condition is called time-
restricted feeding, or temporal food restriction, and is frequently
used to study FAA (Challet et al., 1998). FAA refers to the output
of the FEO, which appears under time-restricted feeding, but
disappears under ad libitum access, and reoccurs during the
following fasting (Pendergast and Yamazaki, 2018). Mice allowed
access to a standard diet ad libitum typically ingest 60–80% of
their daily food intake at night.

Feeding-fasting signals reset the circadian clocks in the
peripheral tissues by causing periodic availability of many
circulating macronutrients (Woods, 2005). For example,
ingestion causes release of insulin into the blood and induces

clock gene expression in insulin-sensitive tissues (such as liver,
adipose, and muscle) (Oike et al., 2014). Feeding also enhances
blood glucose levels, and high glucose concentrations can down-
regulate the expression of PER1 and PER2 in fibroblasts (Hirota
et al., 2010), and indirectly regulate AMPK, which controls
the stability of CRYs (Lamia et al., 2009). Recent evidence
showed that the liver may be a communication center of the
FAA synchronization signal. Under time-restricted feeding,
the liver increased βOHB production through regulation of
Cpt1a and Hmgcs2 by Per2, which was then used as a signal to
cause animals to anticipate feeding time (Chavan et al., 2016).
In addition, food restriction may alter the anabolic/catabolic
cycles of tissues, which may affect the cellular redox state
(Rutter et al., 2002) and further influence the circadian feedback
loop (Mendoza, 2007). For instance, NADH and NADPH,
classical cofactors for intracellular redox reactions, can promote
binding of CLOCK/BMAL1 and NPAS2/BMAL1 dimers to
DNA, while their oxidized forms, NAD(P)+, inhibit this
binding (Rutter et al., 2001, 2002; Schibler and Naef, 2005).
Furthermore, restricted feeding may influence body temperature
cycles, which have been confirmed to entrain peripheral clocks
(Brown et al., 2002).

Although the central oscillators are not affected by temporal
food restriction during the light phase of the day (Damiola
et al., 2000; Stokkan et al., 2001), SCN-derived physiological
rhythms such as locomotor activity and body temperature can
be entrained by caloric restriction (also called hypocaloric diet,
characterized by caloric intake reduction to 60% of the animal’s
normal daily food intake) under LD cycles (Challet et al., 1997)
or time-restricted feeding in constant darkness (Holmes and
Mistlberger, 2000). Although the mechanisms by which caloric
restriction affects the SCN clock has not been characterized,
previous studies suggested that receptors of metabolism-related
hormones such as insulin, leptin, and ghrelin, which exist in SCN
cells, may involve in synchronizing the SCN (Guan et al., 1997;
Zigman et al., 2006). Moreover, feeding regulates brain structures
that project straightly to the SCN such as the DM hypothalamus
and the arcuate nucleus through orexin and ghrelin (Akiyama
et al., 2004; Mieda et al., 2004; LeSauter et al., 2009; Moriya et al.,
2009; Acosta-Galvan et al., 2011). Moreover, glucose influences
the neural activity phase in vitro SCN slices (Hall et al., 1997).
Further researches are required to evaluate the involvement of
these factors and their probable impacts on the SCN.

Temperature
Temperature is a non-photic synchronizer with a weaker
synchronization effect than that of light. Roberto Refinetti
found that only 60–80% mice can be synchronized by ambient
temperature cycles, and stable entrainment takes longer in
response to temperature cycles than LD cycles (Refinetti,
2010). Though multiple physiological processes rely on ambient
temperature, the CR system has a significant feature called
temperature compensation, in which circadian oscillations
remain resistant to temperature changes, resulting in the period
length still maintaining approximately 24 h despite ambient
temperature changes (Isojima et al., 2009; Narasimamurthy and
Virshup, 2017). In addition, the SCN clock does not respond
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to temperature stimuli, whereas cells and tissues outside of the
SCN can be synchronized by temperature fluctuations (Brown
et al., 2002; Buhr et al., 2010; Ohnishi et al., 2014). The reason
why the SCN is resistant to temperature changes could be that
the circadian clocks in the SCN cells have robust couplings.
After uncoupling of SCN cells using tetrodotoxin or nimodipine,
temperature sensitivity was detected (Buhr et al., 2010). Because
temperature is a weak synchronizer, it is not typically used as a
zeitgeber in animal experiments.

The phase shift of the clock in response to simulated
body temperature fluctuations has been demonstrated in vitro
(Brown et al., 2002; Buhr et al., 2010; Saini et al., 2012;
Dudek et al., 2017), and the amplitude of circadian gene
expression was enhanced by temperature cycles (Dibner et al.,
2009; Sporl et al., 2011; Dudek et al., 2017). Mammalian cells
sense temperature fluctuations through a series of temperature-
stimulated TRP channel subfamily members called thermo-
TRPs, each of which is activated in a narrow thermal range
(Poletini et al., 2015). The intrinsic mechanism of temperature
effects on CR may be mediated by HSF1 and CIRBPs (Ki
et al., 2015). HSF1 is a circadian transcription factor which
binds the heat shock element sequence, causing circadian
activation of downstream promoters such as Per2 (Kornmann
et al., 2007; Reinke et al., 2008; Tamaru et al., 2011). CIRBP-
mediated post-transcriptional regulation allows high-amplitude
clock genes express, including that of the core clock gene CLOCK
(Ki et al., 2015).

Chemical Factors
In vitro experiments lack the humoral and neuronal factors
that can act as entrainments in vivo. As such, cultured cells
or explants are desynchronized and circadian oscillations are
absent. Thus, to observe endogenous oscillations of cells or
explants in vitro, chemical factors with similar effects to in vivo
entrainments are required.

Many chemical factors can function as synchronizers. It has
been reported that glucocorticoid, a kind of anti-inflammatory
hormones released by the adrenal cortex, serves as a vigorous
synchronizer of peripheral tissues (Balsalobre et al., 2000a,b;
Yamamoto et al., 2005; Segall et al., 2006; So et al., 2009; Cheon
et al., 2013). Dex, an artificial glucocorticoid, exposure for 1 h
can be used to restart the oscillations of circadian clock genes
(Balsalobre et al., 2000b; Wu et al., 2008). Glucocorticoids activate
GRs, which bind to the GREs on the promoters of core clock
genes such as Per1, Per2, and E4bp4, thereby directly activating
the core clock cycle, or by activating the transcription factor
HNF4alpha, which targets downstream rhythmic genes without
GRE elements (Reddy et al., 2007; Cheon et al., 2013). Dex
cannot be used for SCN synchronization, because the SCN does
not express GRs.

A study performed in 1998 indicated that serum shock
could induce the rhythmic expression of Perl, Per2, Reverb-α,
Dbp, and Tef in cultured rat fibroblasts (Balsalobre et al.,
1998). Thereafter, serum shock was used to synchronize the
circadian oscillations of various tissues, immortalized cells, and
fibroblast cells. This study suggested that various factors in the
blood could stimulate rhythmic oscillations. Previous reports

showed that various factors such as such as EGF (Izumo et al.,
2006), calcium (Balsalobre et al., 2000b), glucose (Hirota et al.,
2002), PGE2 (Tsuchiya et al., 2005), 1α,25-dihydroxyvitamin
D3 (Gutierrez-Monreal et al., 2014), and atomoxetine (O’Keeffe
et al., 2012) can synchronize clock genes. Moreover, serum
shock can induce Ser/Thr phosphorylation of CLOCK through
the Ca2+-dependent PKC pathway (Shim et al., 2007), or
activate the p42/44 MAPK pathway in a manner similar to
that observed in response to light pulses (Ginty et al., 1993;
Yagita and Okamura, 2000), which may cause resetting of
the clock. In addition, a previous report showed that blood-
borne signals activate GTPase RhoA, which promotes G-actin
polymerization into F-actin, resulting in release of MRTFs into
the nucleus, thus regulating the transcription of clock genes
(Esnault et al., 2014).

Another common chemical synchronizing agent, Fsk, has
a similar mechanism to that of serum. Fsk directly activates
AC, which activates CREB through phosphorylation by
promoting the synthesis of cAMP and activating PKA indirectly
(Yagita and Okamura, 2000).

Mechanical Stimuli and Oxidative/
Hypoxia Stress
A recent study showed that intermittent uniaxial stretching
of bone marrow-derived mesenchymal stem cells, DPSCs,
and adipose tissue-derived mesenchymal stem cells can
reset their CR, resulting in a synchronization effect similar
to that observed in response to Dex treatment (Rogers
et al., 2017). Changing media also could reset cellular CR
(Yeom et al., 2010; Guenthner et al., 2014). Mechanical
stimuli provide researchers with alternate mechanisms to
reset the circadian clocks of cells, such as DPSCs, which
cannot be synchronized by other methods. However,
the mechanisms by which mechanical stimuli induced
synchronization are still unclear. It might be involved the
RhoA pathway, by which short-duration fluid shear force can
induce changes expression levels of clock genes in osteoblasts
(Hamamura et al., 2012).

Oxidative or hypoxic stimuli may lead to circadian clock
entrainment. In vitro, oxidative stimulation via hydrogen
peroxide synchronizes cellular circadian oscillations in dose- and
time-dependent manners (Tamaru et al., 2013). In vivo, phase
shifts in peripheral clocks such as those in the kidney and
liver are observed after hydrogen peroxide injection (Geerdink
et al., 2016). However, whether the master clock responds to
oxidative stress is unknown. Oxygen cycles (12-h 5%:12-h 8%)
synchronize cellular clocks via a key transcription factor in
cultured fibroblasts, HIF1α, which has similar a similar PAS
domain to CLOCK and BMAL1 (Adamovich et al., 2017).
Furthermore, at the onset of a 6-h-shifted dark period,
hypoxic stimulation (14% O2) for 2 h advanced phases
of locomotor activities in response to a new LD cycle
(Adamovich et al., 2017). These results suggested that both
central and peripheral oscillations can be reset by hypoxic
stimulation. Taken together, oxygen signals may induce circadian
synchronization in vitro.
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COMMON SYNCHRONIZATION
METHODS USED IN LAB

Synchronization in vivo
Light Stimuli
Most researchers choose light to synchronize CR in animals. Most
studies utilize a rectangular LD cycle, which includes sudden
transitions from light/dark to dark/light. Under laboratory
condition, the 24-h LD cycle can be represented in various
ways, such as a short photoperiod (shorter than 12-h light
per day, e.g., 6L:18D), an equinox photoperiod (12-h light per
day, i.e., 12L:12D), and a long photoperiod (longer than 12-h
light per day, e.g., 18L: 6D). In nature, however, the transition
between light and dark is not abrupt, and is characterized by
gradual changes in light intensity and spectral composition.
Mimicking natural conditions as closely as possible requires a
light transition time (usually 0–2 h) in which the log of light
intensity increases (or decreased) over time from 0 to 100 lux,
and these changes can be implemented at any point during
the transition from light to dark or dark to light. Different
photoperiods lead to different waveforms of the SCN population
rhythm. In SCN, short photoperiods result in waveforms that
are slim and high-amplitude, while long photoperiods lead to
the wide and low-amplitude waveforms (Inagaki et al., 2007;
VanderLeest et al., 2007). Increasing the photoperiod compresses
the activity phase of mice, but this effect is weakened by a long
twilight duration (2-h) (Comas and Hut, 2009). In addition,
light intensities impact the phase angle of entrainment and the
velocity of re-synchronization to a new LD cycle. Specifically,
low light intensity results in a longer phase angle (Wright et al.,
2005), decreasing the rate of re-entrainment. If light intensity is
insufficient, entrainment may fail (Leloup and Goldbeter, 2013).

An equinox photoperiod is used to study normal CR in
animals. However, sometimes the 16L:8D cycle is used for mice
because the locomotor period of mice is usually longer than
12 h (Albrecht and Foster, 2002). Furthermore, to observe the
autonomous rhythms of animals, constant darkness (i.e., dark-
dark, or DD condition) after a stable entrainment of 7–10 days
in the LD cycle is required to avoid the effects of light (Albrecht
and Foster, 2002). However, genetically engineered mice with no
functional clock such as Per1/Per2 and the Cry1/Cry2 double-
mutant mice (van der Horst et al., 1999; Zheng et al., 2001) seem
to lose circadian rhythmicity in DD conditions, but show obvious
rhythmic activity under LD conditions. The condition in which
rhythmicity is induced by the LD cycle but not by the endogenous
clock is called masking (Mrosovsky et al., 2001).

Longer light durations are used to affect the frequency of
rhythms, whereas short light pulses are used to induce phasic
entrainment of the clock (Daan, 1977; Roenneberg et al., 2003).
The durations of short light pulse experiments are usually 15–
30 min. Light pulses during the activity period of the mouse
(subjective night) induce phase shift (advance or delay) of the
clock, while light stimulus during the resting period (subjective
day) alters the phase of the circadian clock (Johnson, 1999;
Johnson et al., 2003). Use of this phenomenon allows for
production of a phase response curve. In fact, using one or two

light pulses to determine the frontiers of the subjective day and
night of animals (also called “skeleton photoperiod”) can reduce
negative masking (Lewy et al., 2001; Kennaway, 2004).

To study biological behaviors resulting from disrupted CR,
jet lag protocols that advance the LD cycle (delaying may mask
the onset of activity) can be used (Cao et al., 2013; Jagannath
et al., 2013; Yamaguchi et al., 2013). In addition, constant light
conditions can prolong the clock period compared to constant
dark conditions, leading to a daily phase delay of activity in
a light intensity-dependent manner. The sensitivity of these
responses can be expressed as an IRC (Daan and Pittendrigh,
1976). Different wavelengths of light have different effects on
phase, resulting in multiple IRCs that enable formation of an
action spectrum (Peirson et al., 2005; Foster et al., 2007).

Time-Restricted Feeding
In addition to LD cycles, time-restricted feeding is used to
examine the function of food intake timing on the circadian
clock, and to synchronize peripheral oscillators, particularly in
studies of metabolism-related tissues such as the liver, adipose,
pancreas, and kidney. In these experiments, food access timing
is restricted to between 2 and 12 h during the day or night.
Within a few days, the rodents begin to predict the timing of food
arrival and eat their meals during the period of food supply. If
the period of food supply is less than 6 h, the animals cannot
eat an equivalent amount of food compared to those allowed
food ad libitum. When the period of food supply is over 8 h, the
animals ingest nearly an equal amount of calories as those allowed
food ad libitum. Thus, time-restricted feeding that allows greater
than 8 h of access to food is an effective method to examine
the role of food timing entrainment in response to changes in
nutrition quality or quantity (Manoogian and Panda, 2017).

Because the synchronization effects in response to
temperature and arousal stimuli are comparatively weaker
than those in response to light, these factors are not commonly
used in vivo experiments (unless the purpose is to study the
synchronization effects of these two factors), but researchers
should work to control for these factors to prevent interference
with the experimental results.

Synchronization in vitro
In cultured cells or explants, chemical synchronization reagents
such as Dex, Fsk, or 50% horse serum are commonly used
to reset circadian oscillations. As previously discussed, Dex
is unable to synchronize SCN cell lines or explants due to
lack of GRs. Different synchronization reagents have different
abilities to induce clock gene oscillations. Mariko Izumo et al.
compared the synchronization effects of ten different compounds
in Rat-1 fibroblasts, and found that horse serum, Dex, Fsk, and
EGF induced the largest oscillatory amplitudes, among which
Fsk and Dex induced the highest-amplitude rhythms (Izumo
et al., 2006). In addition, Dex-induced rhythms reached the
strongest amplitude 30 min after administration, faster than
Fsk, and the amplitude of Dex-treated cells was consistently
higher than that of Fsk (Izumo et al., 2006; Takarada et al.,
2017). These discrepancies may have been by reason of
differences in synchronization mechanisms (Izumo et al., 2006).
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In addition to these chemical synchronization approaches, other
synchronization approaches should be considered under some
circumstances. For instance, when synchronization reagents are
not readily permeable (e.g., some dense explants or cells are
grown in 3D materials), temperature cycles could be a good
alternative. An example protocol is as follows. Cells or explants
are cultured for 2–3 days with a square-wave temperature
cycle of 12-h low temperature (35.5–36.5◦C) and 12-h high
temperature (38.5◦C). After 2–3 days, when cells return to a
constant temperature condition of 37◦C (CT0), the rhythm
of synchronized cells or explants can be monitored (Dibner
et al., 2009; Sporl et al., 2011; Dudek et al., 2017; Yang et al.,
2017; Williams et al., 2018). Similar to Dex, temperature cycles
cannot be used to synchronize SCN oscillations because of robust
couplings in the SCN. Newly discovered mechanical stimulation
synchronization may also be useful, but specific instances where
this is the case have not been identified.

Some other “synchronization” methods such as centrifugal
washing and serum starvation (Banfalvi, 2017) are used to
synchronize the cell cycle so that all cells are in the same phase
of the cell cycle. The cell cycle is defined as the whole process
from the end of last round of mitosis to the beginning of
next round of mitosis, which contains four distinct phases: G1
phase (RNA and ribosomes synthesis), S phase (chromosome
replication), G2 phase, and M phase (mitosis). G0 phase refers
to the quiescent state in which cells have temporarily stopped
dividing. Similar to the CR system, the cell cycle appears to be
an oscillator, where the periodic expression of cyclins controls cell
cycle progression in a sequential and unidirectional manner. Both
the cell cycle and the CR system exhibit sequential phases in the
transcription/translation of genes and modification/degradation
of proteins. As two basic periodic processes that occur within
a day, these two systems are interrelated and interact. Control
of the cell cycle progression by the circadian clock is known as
circadian gating of the cell cycle. Previous reports have indicated
that the CR system regulates cell cycle progress both at the
G1/S (Geyfman et al., 2012; Kowalska et al., 2013) and at G2/M
(Matsuo et al., 2003; Tulina et al., 2014) transitions. In contrast,
the cell cycle can regulate the circadian clock as well. Nagoshi
et al. (2004) indicated that cell division could influence the
circadian clock by impacting the concentrations of PER/CRY
protein complex. Bieler et al. (2014) showed that the cell cycle
oscillator has a significant effect on the clock oscillator, resulting
in a robust synchronization of both cycles in NIH3T3 cells.

Studies have indicated that the circadian oscillator and the
cell cycle oscillator are bidirectionally coupled. For example,
the cell-cycle duration is usually within the range of the
circadian period in many mammalian cell lines (Glass, 2001).
When cells are arrested to the same stage of the cell cycle
by methods such as serum starvation (retaining cells at the
G0/G1 phase), we observed some synchronization of CR (Nagy
et al., 2016). Moreover, circadian synchronization induced by
Dex leads to clusters of dividing cells, suggesting that the
cell cycle is synchronized through the circadian clock (Feillet
et al., 2015). Coupling (also called phase locking or mode
locking) is defined by the coupling ratio p:q, in which p cell
cycles finish during q circadian cycles (Glass, 2001). In the loss

of external timing signals, the circadian clock and cell cycle
display phase locking with a ratio of 1:1 (Bieler et al., 2014).
However, other studies have shown that CR are not exactly
synchronized with the cell cycle synchronization, and while there
may be coupling between CR and the cell cycle, the coupling
ratio is not always 1:1, and can be altered with increases in
serum concentration or cell differentiation (Feillet et al., 2014;
Matsu-Ura et al., 2016). In conclusion, researchers can choose
different synchronization methods based on the advantages
and disadvantages of various synchronizers to address different
experimental questions (summarized in Table 1).

CIRCADIAN RHYTHM MONITORING
AND DETECTING METHODS

Rhythm Monitoring Methods
Since the discovery of CR, researchers have used various methods
to monitor this phenomenon. In animal studies, a wheel-running
system with passive infrared sensing elements is utilized to
monitor the rhythm of locomotor activity (Albrecht and Foster,
2002). RNA or proteins are extracted from cells or tissues
by successive sampling to determine the oscillatory patters of
clock genes in vitro or in vivo. This chronological collection
approach is severely limited by many practical issues (Gaspar
and Brown, 2015). After sampling chronologically, detection
of gene fluctuations at the transcriptional or translational
levels requires complex steps including extraction, RNA reverse
transcription/protein denaturation and PCR/immunoblotting,
which may increase the error of the results. In addition, since
detection is not in real-time, time intervals are between sample
collections at different time points may result in maximum or
minimum values not being captured. Moreover, chronological
collection is relatively labor-intensive, making it difficult to
decreasing errors by enhancing temporal resolution (Sellix et al.,
2010). Furthermore, it is difficult to distinguish the defects
whether come from intercellular synchrony or cell-autonomous
clock function because the individual cellular clocks cannot be
monitored (Sellix et al., 2010).

In recent years, there has been rapid progress in
bioluminescence reporter technologies and specialized
dynamic imaging techniques, allowing for real-time quantitative
monitoring of rhythmic oscillations, resulting in advances in
the field of chronobiology (Ballesta et al., 2017). Since the
early 1990s, luciferases have been utilized as indicators of
circadian clock genes (Welsh and Kay, 2005). By fusing the
promoter of a target gene to the firefly luciferase reporter
gene at the cellular or organismal level, stable reporter cell
populations or stable reporter transgenic mice can be generated
(Yamazaki et al., 2000; Izumo et al., 2003). In vitro, after
synchronizing the reporter cells or tissue explants, the samples
are placed in medium containing luciferin (the substrate for
luciferase). Apparatuses with PMTs are used to detect oxidation
of luciferin by luciferase (Yoo et al., 2004), allowing for real-
time monitoring of gene expression. By inserting an optical
fiber into the SCN of a PER1-luciferase transgenic mouse,
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TABLE 1 | Summary of the effects and mechanisms in vivo and in vitro zeitgebers.

Zeitgebers Effect and Application Mechanism References

In vivo Light The strongest zeitgeber; Mainly entrain
to SCN; 12L:12D to study normal
rhythm

pRGCs, RHT; Glutamate and NMDA or
AMPA receptors; PACAP and PAC1
receptors; Ca2+-dependent PKC and
CREB pathway, MAPK pathway,
c-FOS, EGR1

Mikkelsen et al., 1993; Golombek and
Ralph, 1996; Hannibal et al., 1998,
2008; Chambille, 1999; Peytevin et al.,
2000; Shen et al., 2000; Michel and
Colwell, 2001; Hattar et al., 2002;
Travnickova-Bendova et al., 2002;
Colwell et al., 2004; Ishida et al., 2005;
Paul et al., 2005; Hashimoto et al.,
2006; Kalsbeek et al., 2006; Poletini
et al., 2015; van Diepen et al., 2015;
Pilorz et al., 2016; Mouland et al., 2017;
Riedel et al., 2018; Astiz et al., 2019

Arousal Stimuli Weaker than light GHT from IGL (NPY, GABA,
endorphins; Y2 receptor/PKC
pathway); serotonin (5-HT1A/7
receptors and PKA activation)

Golombek and Rosenstein, 2010

Food/Feeding Mainly entrain to peripheral tissues;
Restricted feeding to study
metabolism-related rhythm; Weaker
than light

Causing periodic availability of many
circulating macronutrients such as
insulin and glucose; Redox state
changes (NADH and NADPH); Body
temperature cycles

Rutter et al., 2001, 2002; Schibler and
Naef, 2005; Woods, 2005; Lamia et al.,
2009; Hirota et al., 2010; Oike et al.,
2014

Temperature Weaker than light Thermo-TRPs, HSF1 and CIRBPs Ki et al., 2015; Poletini et al., 2015

In vitro Temperature cycles Long synchronization time (2–3 days);
Used when the chemical synchronizer
is impermeable; Do not work on SCN

Thermo-TRPs, HSF1 and CIRBPs Ki et al., 2015; Poletini et al., 2015

Serum Shock Short synchronization time (0.5–2 h);
The effect is not as good as Fsk and
Dex

Ca2+-dependent PKC and CREB
pathway, MAPK pathway, Rho-actin
signaling and MRTF

Ginty et al., 1993; Yagita and Okamura,
2000; Shim et al., 2007; Esnault et al.,
2014

Fsk Short synchronization time (0.5–2 h);
The effect is between serum and Dex

cAMP/PAK-CREB pathway Yagita and Okamura, 2000; Izumo
et al., 2006

Dex Short synchronization time (0.5–2 h);
Best effect in comparison to Fsk and
serum in, peripheral tissues; Do not
work on SCN

Glucocorticoid receptors/ HNF4alpha -
GREs

Balsalobre et al., 2000b; Reddy et al.,
2007; Wu et al., 2008; Cheon et al.,
2013

Mechanical Stimuli Long synchronization time (2–3 days);
An alternative when other synchronizers
do not work

Rogers et al., 2017

Oxidative/Hypoxia Stress HIF1α (Hypoxia Stress) Geerdink et al., 2016; Adamovich et al.,
2017

the in vivo central clock oscillations can be recorded in real-
time (Yamaguchi et al., 2001). In addition, by subcutaneously
injecting luciferin into Per2::luc mice (Tahara et al., 2012), or by
injecting Adv-Bmal1-luc viral vectors targeting hepatocytes via
tail vein injection in combination with intraperitoneal injection
of a fluorescein solution (Saini et al., 2013), oscillations of
peripheral clocks such as the liver, kidney, and submandibular
glands can be surveilled in vivo. Apparatuses such as fluorescent
imaging systems, cooled CCD cameras, or RT-Biolumicorders
(designed by Saini et al., 2013) are used to monitor circadian
oscillations. The CCD camera, which can detect a single
photon, allows for single-cell fluorescence rhythm monitoring
in vitro or in vivo (Welsh and Kay, 2005; Sellix et al., 2010;
Lande-Diner et al., 2015).

The luciferase reporter system can be employed to supervise
circadian oscillations at the transcriptional level in real time.
In these experiments, the generated luminescence is very weak
and the background luminescence is nearly zero, which has

the advantage of preventing phototoxicity related to long-
term illumination (Sellix et al., 2010). However, the luciferase
reporter system is not suitable for measuring the fluctuations
of clock proteins and their sub-cellular localization, and their
requirement for luciferin as substrate can result in luciferase
chemistry-dependent artifacts (Smyllie et al., 2016). Smyllie
et al. (2016) generated a PER2::VENUS mouse, which expresses
the fluorescent fusion protein PER2::VENUS, allowing for
dynamic acquisition of information regarding PER2 in individual
mammalian cells. The PER2::VENUS half-life is similar to that of
PER2::LUC, but it directly measures the circadian protein PER2
instead of indirectly measuring enzymatic luciferase activity. As
such this strategy may provide a more accurate estimate of PER2
stability and rhythm (Smyllie et al., 2016).

Taken together, a number of methods for monitoring CR are
available and can be chosen according to experimental conditions
and the limitations and benefits of each of the above introduced
monitoring methods (summary in Table 2).
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TABLE 2 | Summary of circadian rhythm monitoring methods.

Monitoring method Equipment Advantage Disadvantage

Monitor the rhythm of locomotor
activity

Wheel-running system with passive
infrared sensing elements

Monitor locomotor activity in real time Need specific equipment;

Chronological collection RNA-sequencing, Microarray,
qRT-PCR, Western blot

Dot not need specific equipment Complex steps and time interval
detection increase the errors;
Labor-intensive; Single-cell detection is
difficult to achieve

The luciferase reporter system with
real-time bioluminescence
monitoring

Apparatuses with PMTs, CCD camera Real-time detection; Not
labor-intensive; Can detect single cell

Need specific equipment; Can not
measure the fluctuations of clock
proteins and their sub-cellular
localization

Fluorescent protein fused with
clock protein and real-time
bioluminescence monitoring

Apparatuses with PMTs, CCD camera Real-time detection; Not
labor-intensive; Can detect single cell;
Can measure the fluctuations of clock
proteins and their sub-cellular
localization

Need specific equipment;

Rhythmicity Detecting Methods
One of the basic problems in CR research is detection and
analysis of the rhythmicity of measured data. Following collection
of physiological data from a cell over many days, we are
able to evaluate periodicity. Rhythmic data has several basic
characteristics. Period is defined as how often the cycle is
repeated. If the period is 24 h, the data pattern of oscillation
reoccurs every 24 h. Phase refers to the time point of peak or
trough expression, which reflects the timing in the individual
tissues or cells. Phase angle of entrainment means the appropriate
phase relationship between the endogenous CT and external
environmental time. Amplitude is the magnitude of oscillation
between peak and trough. If the data is rhythmic, we must
evaluate more parameters than whether the data vary over
time. We should also estimate whether the waveform meets the
characteristics of a periodic function, such as a cosine function,
as determined by its amplitude, period, and phase (Herzog
et al., 2015). FFT is the most common method for detection of
periodicity, and generally assumes that the fundamental rhythm
is in the form of several cosine waves. This method fits the
data to cosine functions with different periods, amplitudes, and
phases (Moore et al., 2014). The periodicity in the data is
fitted to the highest-amplitude cosine function (Herzog et al.,
2015). Another method is JTK-Cycle, which is a non-parametric
statistical algorithm for identifying and characterizing rhythmic
expression in large datasets. It can reliably detect the transcripts
in datasets with oscillating abundance because of its statistical
power, specificity, accuracy, and precision (Hughes et al., 2010).
Other approaches such as cross-over analysis, autocorrelation
(Levine et al., 2002), and curve-fitting (Straume, 2004) could also
be used for detection and evaluation of periodicity.

CIRCADIAN RHYTHM-RELATED
DATABASES

Previous studies have reported that various tissues and cells
exhibit CR in vivo or in vitro. As a growing number of tissues
and cells have been found to display periodic gene expression,

and the number of identified CCGs has increased. Based on
accumulation of new data, researchers urgently need platforms
to collect and obtain this information. Several databases
have been constructed, including CircadiOmics1, CircaDB2,
Bioclock3, SCNseq4, CGDB5, and CirGRDB6, which have different
characteristics and functions. These databases allow investigators
to search for genes of interest that exhibited rhythmic expression
patterns in different species.

CircadiOmics contains circadian–related data sets from the
livers of wild-type and Clock mutant mice, and is integrated
with genomic, transcriptomic, proteomic, and metabolomic data
sets (Patel et al., 2012). The CircaDB database contains circadian
transcriptional profiles of over 3000 potential circadian genes
in mice and humans (Pizarro et al., 2013). Bioclock is a s
resource library which contains diel and circadian microarray
expression data from Aedes aegypti (1674 potential circadian
genes) and Anopheles gambiae (∼1000 potential circadian genes)
(Leming et al., 2014). SCNseq is an important chronobiological
resource that contains data from mouse SCN, and contains
4569 rhythmic genes and 3187 intergenic non-coding RNAs
(Pembroke et al., 2015).

Among the above databases, Bioclock is focused on insects
(mosquitoes), and CircadiOmics, SCNseq, and CircaDB are
focused on mammals (mouse and human). However, these
databases are still not considered comprehensive despite having
been established for several years. CGDB, a new database of
cycling genes in eukaryotes established in recent years, contains
∼73,000 oscillating genes across phyla (68 animals, 39 plants, and
41 fungi) from published small-scale or high-throughput data
obtained from various species (Li et al., 2017). This database
can be browsed “by species” or “by external conditions,” and
genes can be reported in peaks or troughs at specific time points

1http://circadiomics.igb.uci.edu/
2http://circadb.hogeneschlab.org/
3https://www3.nd.edu/~bioclock/
4www.wgpembroke.com/shiny/SCNseq/
5http://cgdb.biocuckoo.org/
6http://cirgrdb.biols.ac.cn/
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(Li et al., 2017). In addition, another new database, CirGRDB,
has integrated over than 4936 genome-wide assays, and allows
users to retrieve three groups of transcriptome profiles including
normal conditions (oscillatory patterns in normal tissues or
cell lines), different conditions (oscillatory patterns under
different conditions), and other conditions (expression pattern
of specific genes under knock-out/down or over-expression)
(Li et al., 2018). This database also provides information
about regulatory mechanisms including transcriptional factors,
histone modification, chromatin accessibility, enhancer RNAs,
microRNAs, RNA binding proteins, RNA editing, and RNA
methylation, and can be used to construct a regulatory
network of rhythmic genes at multiple regulatory layers (Li
et al., 2018). The CirGRDB database adds information about
post-translational modifications, transcriptional factors, and
epigenetic modifications that were not available in previous
databases. These databases that integrate circadian information
have been established successively in recent years, and each have
different characteristics and functions. These databases allow
for convenient evaluation of past results, which may provide
scientific direction for future studies.

EXPERIMENTAL CAUSES OF
CIRCADIAN RHYTHM DISORDERS

After synchronizing the CR by appropriate means and
monitoring the circadian oscillations of subjects, any
inconsistency in our observations compared with previous results
requires careful evaluation of the experimental conditions, since
there are lots of factors that can influence the circadian clock.

Light, food, temperature, arousal stimulation, and oxygen
concentration in the environment can affect CR in mammals.
As previously described, exposure light pulses, different
photoperiods, constant light conditions, differing light intensity,
and different wavelengths of light can alter the phase, period, or
amplitude of CR. In addition to entrainment, negative masking
is another response of animals to light. Thus, in CR experiments
researchers must control all appropriate parameters and avoid
negative masking.

As the previous description, time-restricted feeding entrains
the clock, and shifts the phase of peripheral clocks from that
observed with ad libitum feeding (Damiola et al., 2000; Stokkan
et al., 2001) and calorie restriction (Mendoza et al., 2008; Patel
et al., 2016). In addition, different ingredients in food can
cause inconsistencies in circadian rhythm expression patterns.
For example, high fat diet impacts the central and peripheral
clocks, and significantly decreases the amplitude of circadian
oscillations in the liver (Kohsaka et al., 2007). This may be
due to elevated blood glucose levels, insulin resistance, or other
metabolic changes (Bass and Takahashi, 2010). Moreover, high
fat diet signals could promote release of gastrointestinal tract-
derived peptides or bile, resulting in dysregulation of PPAR-
α signaling in the liver and other tissues, which may explain
high fat diet-induced rhythm disruption (Asher et al., 2010;
Zarrinpar et al., 2016). Timed restricted feeding resets the
circadian oscillations of animals on a high fat diet and prevents

high-fat diet-caused obesity through improving CREB, mTOR,
and AMPK pathway function (Hatori et al., 2012; Sherman et al.,
2012). High salt diet also influences clock oscillations. Two weeks
of 4% NaCl administration resulted in phase advances in mouse
peripheral clocks (Oike et al., 2010). Therefore, it is necessary
to control the ingredients and caloric value of the diet, and the
feeding approach (time-restricted feeding or ad libitum feeding),
to control the peripheral oscillators. Although other non-photic
entrainment factors such as arousal stimuli, ambient temperature
and oxygen concentration have weaker effects on the animal
CR system (previously described), it is still necessary to control
all the above factors to maintain consistent and reproducible
experimental conditions.

Causes of circadian rhythm disturbance in cultured cells
or tissues include cell density, osmotic pressure, media PH,
mechano-environment, temperature, oxygen concentration, and
microorganisms. The circadian amplitude depends on cell
density. The rhythmicity of low-density SCN neurons and
fibroblasts was greatly reduced, and was significantly enhanced
in high-density cultures (Liu et al., 2007). Coupling between
SCN neurons could enhance the rhythmicity of a cell population
(Liu et al., 2007), and the normal rhythmic expression of
fibroblasts need paracrine signals from adjacent cells (Noguchi
et al., 2013). Moreover, a stiff extracellular matrix increases
the amplitudes of circadian oscillations in mammary epithelial
cells, and decreases in amplitudes in mammary fibroblasts occur
through mechanotransduction pathways mediated by integrin
adhesion and Rho signaling (Yang et al., 2017; Williams et al.,
2018). Furthermore, the circadian period can be regulated by
osmotic stress. A previous report showed that the circadian
period of mouse embryonic fibroblasts can be lengthened using
hypertonic media and shortened using hypotonic media through
ASK -dependent phosphorylation of proteins (Imamura et al.,
2018). Furthermore, an intense alter in media pH (±0.4) induces
extensive phase shifts (>8 h) of clock genes in rat fibroblasts,
likely through the TGF-β signaling pathway (Kon et al., 2008).
As previously described, circadian oscillations can be entrained
by changes in ambient temperature. In addition, temperature
pulses for 1 or 6 h also cause phase shifts in ex vivo pituitary
or lung cultures (Kon et al., 2008). Furthermore, oxygen levels
affect CR. These results imply that it is crucial to control
cell density, the mechano-environment, osmotic pressure, pH,
and oxygen concentration when evaluating circadian rhythms.
Cells contaminated microorganisms can exhibit circadian genes
expression disruption. The presence of bacteria can reduce the
amplitudes circadian rhythms in mouse enterocytes (Mukherji
et al., 2013; Wang et al., 2017) and lung epithelial cells (Haspel
et al., 2014) by directly invading or secreting endotoxins that
activate the TLR signaling pathway. Moreover, multiple viruses
such as Hepatitis B and C viruses, human immunodeficiency
virus, Coxsackie virus A16, human T-lymphocyte virus type 1,
and influenza can also disrupt the expression of clock genes
(Zhuang et al., 2017). Therefore, it is necessary to prevent
microbial contamination when evaluating CR.

In addition to the above environmental factors, the age of
animals or cells should also be considered when studying CR.
Circadian rhythm oscillations in humans and rodents gradually
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dampen with increasing age, although whether this age-related
change is owing to dysfunction of inherent core clock or
insufficient environmental entrainment is unclear (Chang and
Guarente, 2013; Wang et al., 2015). In general, CR can be
affected by many environmental factors. Any imbalance of these
factors can lead to circadian disorders, which can contribute
to several diseases through a series of signal pathways and
molecular mechanisms.

CIRCADIAN RHYTHM DISORDER AND
DISEASES

In mammals, many physiological functions under the regulation
of the circadian clock are affected by external cues such
as sleep and wakefulness, alertness and motor ability, body
temperature fluctuations, the urinary system, hormone secretion,
immune regulation, cytokine release, and cell cycle progression
(Panda et al., 2002; Bass and Takahashi, 2010). When circadian
systems are disrupted by various environmental or genetic
defects, dysfunction of various physiological processes can occur
(Hastings et al., 2003).

A common reason of human circadian disorder is
misalignment between the environmental rhythm (e.g.,
light–night cycle) and the endogenous circadian oscillators.
Previous reports have shown that human subjects who were
maintained in a controlled circadian misalignment condition
experienced severe imbalances in glucose homeostasis, insulin
action, and appetite control (Buxton et al., 2012; McHill et al.,
2014). In animal studies, when the intrinsic clocks of animals
are desynchronized from external timing cues, disorders in
many organs or tissues can occur, including diet-induced
obesity (Kohsaka et al., 2007; Arble et al., 2009), a light-induced
pro-inflammatory state (Lucassen et al., 2016), cardiac fibrosis,
and systolic dysfunction (Penev et al., 1998; Martino et al.,
2008). Genetically, since the molecular clock is highly conserved,
diseases caused by mutations of clock genes (which are often
used in animal models to study clock gene-related dysfunction)
are rare in humans. An examples of these kinds of mutations is
familial advanced sleep phase syndrome, which is induced by a
missense mutation (S662G) of the core clock gene PER2 (Jones
et al., 1999; Reid et al., 2001). In addition, several clock gene
single nucleotide polymorphisms related to metabolic syndrome,
hypertension, and diabetes mellitus also have been identified
in genome-wide association studies (Saxena et al., 2007; Woon
et al., 2007; Zeggini et al., 2007; Scott et al., 2008).

A large quantity of studies have suggested that circadian
disruptions are closely associated with the formation and
development of various diseases including cancer (Momma et al.,
2017; Polo et al., 2017; Xiong et al., 2018), dysplasia (Vilches
et al., 2014; Voiculescu et al., 2016; Zhao et al., 2018; Zhou et al.,
2018), cardiovascular disease (Angelousi et al., 2018), obesity
(Antunes et al., 2010), diabetes (Pan et al., 2011), and sleep
disorder (Logan and McClung, 2019). As previously described,
the cell cycle and the circadian clock are two basic periodic
processes of a day, and they are interrelated. Clock genes
contribute to the occurrence and development of tumors by

regulating and interfering with cell cycle-related genes such as
c-Myc, P53, and P21 (Angelousi et al., 2018). In addition, our
previous studies also suggested that circadian disruption led
to an abnormal increase in the precancerous gene PFKFB3,
thereby promoting differentiation from normal cells to tumor
cells (Chen et al., 2016). Further, deletion of the core clock
protein BMAL1 attenuated inhibition of TERT transcription,
and TERT upregulation is closely related to tumorigenesis
(Tang et al., 2017).

Disorders of the circadian clock also affect the development
of organs such as the brain and bone, leading to dysplasia.
CR are essential for brain development (Novakova et al.,
2010). Studies have indicated that rhythms of clock genes
and genes encoding NMDA receptor subunits are inhibited in
the hippocampus of rat adult progeny subjected to persistent
illumination during pregnancy, resulting in impaired spatial
memory in these animals (Vilches et al., 2014; Voiculescu et al.,
2016). Further, recent human and animal studies suggested that
sleep and circadian disruptions during pubescence can impact
brain development and may lead to susceptibility to mood and
substance use disorders (Logan and McClung, 2019). Moreover,
circadian clocks participate in regulation of neurogenesis. Studies
have displayed that the clock component REV-ERBα directly
inhibited the promoter of the FABP7 gene, a marker for
neuronal progenitor cells, resulting in alterations in neuronal
differentiation (Young et al., 2013; Giachino et al., 2014).
Loss of REV-ERBα resulted in increased FABP7 expression
and hippocampal neurogenesis, which was in connection with
changes in mood-related behaviors (Schnell et al., 2014).
Furthermore, our previous studies showed the importance of
the circadian clock on bone development. Circadian disruption
resulted in Bmal1 down-regulation, leading to direct inhibition
of Opg transcription (Zhou et al., 2018) and an indirect
increase in Mmp3 expression through P65 phosphorylation
(Zhao et al., 2018). These changes promoted osteoclasis and
suppressed osteogenesis, resulting in bone loss and abnormal
mandibular development.

Circadian-related metabolic diseases may be associated with
defective glucose tolerance and insulin resistance, and abnormal
glucose metabolism (Stenvers et al., 2018). Circadian disruption
may result in aberrant glucocorticoid and melatonin levels, which
could affect insulin secretion (glucocorticoids decrease insulin
secretion, and melatonin increases insulin secretion) (Stenvers
et al., 2018). In addition, a study exhibited that the circadian
clock may maintain long time energy balance through regulating
the leptin endocrine feedback loop between adipose tissue and
the brain, as demonstrated by circadian clock defects or long-
time jet lag resulting in leptin-resistant animals (Kettner et al.,
2015). Moreover, other studies indicated that the circadian clock
regulates levels of neurohormones involved in cardiovascular
function such as angiotensin II, renin, aldosterone, growth
hormone, and atrial natriuretic peptide (Bhatnagar, 2017). These
neurohormones may be responsible for increased blood pressure
and inflammation in response to circadian misalignment (Scheer
et al., 2009; Morris et al., 2015).

Higher incidences of brain diseases such as sleep disorders and
depression were observed in a population with interrupted CR
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(Logan and McClung, 2019). Moreover, circadian dysregulation
can induce emotional and psychotic attacks in individuals
already suffering from psychiatric disorders (Logan and
McClung, 2019). Several processes such as oxidative stress,
inflammation, dopamine synthesis, and cellular metabolism are
under the control of the circadian clock, and may contribute
to neurodegeneration (Logan and McClung, 2019). Although
most studies have suggested that circadian disorder is a symptom
of neurodegenerative diseases including Alzheimer’s disease
and Parkinson’s disease, some evidence indicates that circadian
dysregulation induced by night illumination can cause enhanced
incidence of tau deposition and neurodegeneration (Kim et al.,
2018). Furthermore, increased risk of Alzheimer’s disease and
Parkinson’s disease has been associated with the incidence of
single-nucleotide polymorphisms in CLOCK and BMAL1, and
in BMAL1 and PER1, respectively (Logan and McClung, 2019).
Therefore, circadian rhythm disorders may act on accelerating
the progression of diseases in vulnerable individuals.

Taken together, many studies have highlighted that increased
risk of multiple diseases including carcinoma, dysplasia,
metabolic disorders, and neurodegenerative diseases are
associated with circadian disorders induced by changes in
external environmental cues. The mechanisms responsible for
these associations may be physiological processes including
cell proliferation, differentiation, oxidative stress, inflammation,
synthesis, and cellular metabolism, which are regulated by the
circadian clock.

CONCLUSION AND FUTURE
PROSPECTS

Circadian clock system plays vital roles in the regulation of
physiological processes, including cell cycle progression, cytokine
release, hormone secretion, sleep and wakefulness, immune

regulation, etc. Multiple systemic diseases are proven to be closely
associated with circadian rhythm disorders, so chronobiology
research is becoming a focal point in biological and medical
fields at present. With the development of chronobiology in these
years, external cues that can be used as synchronizers to reset
the circadian oscillators of animals or cells have been gradually
discovered. From time-serial collection to real-time monitoring
through luciferase reporter genes and fluorescent proteins, the
methods to observe biological rhythms are rapidly advancing
and becoming more diverse. In addition, researchers have
also established a number of circadian clock-related databases
to facilitate access to previous research results. Through the
combination of various in vivo and in vitro experiments, the
mechanisms underlying circadian oscillations are constantly
being elucidated, and the complicated connections between
circadian rhythm disorders and various diseases are also being
identified. Illuminating the crosstalk between circadian rhythm
and human diseases can help us better clarify the pathogenesis
of circadian-related diseases, which provides new strategies and
ideas for disease prevention and treatment.
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