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Abstract: The thermodynamically constrained averaging theory (TCAT) is a comprehensive theory
used to formulate hierarchies of multiphase, multiscale models that are closed based upon the second
law of thermodynamics. The rate of entropy production is posed in terms of the product of fluxes and
forces of dissipative processes. The attractive features of TCAT include consistency across disparate
length scales; thermodynamic consistency across scales; the inclusion of interfaces and common
curves as well as phases; the development of kinematic equations to provide closure relations for
geometric extent measures; and a structured approach to model building. The elements of the TCAT
approach are shown; the ways in which each of these attractive features emerge from the TCAT
approach are illustrated; and a review of the hierarchies of models that have been formulated is
provided. Because the TCAT approach is mathematically involved, we illustrate how this approach
can be applied by leveraging existing components of the theory that can be applied to a wide range of
applications. This can result in a substantial reduction in formulation effort compared to a complete
derivation while yielding identical results. Lastly, we note the previous neglect of the deviation kinetic
energy, which is not important in slow porous media flows, formulate the required equations to
extend the theory, and comment on applications for which the new components would be especially
useful. This work should serve to make TCAT more accessible for applications, thereby enabling
higher fidelity models for applications such as turbulent multiphase flows.

Keywords: entropy production; multiscale models; multiphase systems; averaging theory; porous
media; turbulent flows

1. Introduction

Multiphase systems often must be resolved at a length scale that averages over all of the phases
present rather than resolving the dynamics of the morphology of the phase distribution. Multiple
approaches exist for deriving macroscale models based upon microscale model precursors. Previous
work has reviewed three important classes of approaches: the method of volume averaging, averaging
conservation equations with rational thermodynamics, and the thermodynamically constrained
averaging theory (TCAT) [1]. Other approaches exist as well, such as the Müller and Liu approach
developed and applied for multiphase systems [2], which is based on rational thermodynamics.
Because we desire models that include phase, interface, common curve, and common point entities
and are based on microscale classical irreversible thermodynamics that is averaged to the macroscale,
our focus herein is on TCAT.
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Modeling of multiphase porous medium systems poses special challenges because of the range of
length scales of concern and the need to formulate and close models that are consistent across length
scales, while capturing the operative physics with appropriate fidelity. TCAT provides a means to link
disparate length scales, produce hierarchies of models of varying complexity, and ensure consistency
with the second law of thermodynamics [3–5]. The production of entropy due to dissipative processes
is used to specify permissibility conditions for constitutive relations needed to produce closed, solvable
models. The typical formulation of conservation and balance equations for phases is supplemented in
TCAT by inclusion of the corresponding equations for interfaces and common curves. This enables
the natural formulation of interfacial transport phenomena and interface behavior. Furthermore,
the thermodynamics of phases, interfaces, and common curves, referred to collectively as entities,
are posed at the small scale and then averaged to ensure that the expressions obtained are both
mathematically rigorous and physically meaningful.

TCAT makes use of a variety of mathematical tools, including general curvilinear coordinate
systems, generalized functions, variational methods, change of scale theorems, and differential
geometry (e.g., [4–8]). Substantial manipulations are required to arrive at the desired expressions for
the entropy density production rate, which we will refer to as entropy inequalities (EIs). The EIs for
a given hierarchy of models can span multiple pages of text, which can appear to be impenetrable for
the non-specialist.

While the details of the TCAT approach are involved, the guiding principles can be clearly
and concisely elucidated to enable the rapid development of high-level understanding. With such
an understanding, the substantial quantity of available TCAT results can be leveraged, enabling the
formulation of a wide range of closed models with relatively modest manipulations compared to
an ab initio model-building approach.

To be sure, many additional model formulation, closure, evaluation, and validation issues must
be considered to mature fully the TCAT approach. One of the unresolved theoretical issues worth
considering is the deviation kinetic energy. The focus to date on TCAT models involving porous
medium systems with relatively slow flow has resulted in the treatment of the deviation kinetic
energy as a secondary quantity, which is typically removed using a simple thermodynamic system
approximation (e.g., [5,9–13]). To extend TCAT models to other systems involving potentially turbulent
flows, the deviation kinetic energy could be treated as a leading-order quantity. To do so would require
the derivation of conservation equations that have not yet been reported in the literature for lower
dimensional entities such as interfaces and curves.

The overall goal of this work is to advance the general understanding and scope of problems
accessible using the TCAT approach. The specific objectives of this work are: (1) to present the
elements of the TCAT approach to enable a clear conceptual understanding; (2) to summarize the
model components that have been derived and can be reused; (3) to illustrate how entropy density
production rate equations lead to permissibility conditions for closure relations; and (4) to extend
the classes of problems that can be modeled with high fidelity by deriving the necessary deviation
kinetic energy equations useful for modeling turbulent transport phenomena in incompressible or
compressible systems.

2. Elements of the Thermodynamically Constrained Averaging Theory

The purpose of this section is to present some fundamental elements of the TCAT approach
to facilitate conceptual and qualitative understanding of the method without delving into the
mathematical details. TCAT is useful for deriving multiscale mathematical models of multiphase
systems that can contain, in principle, any combination of liquid and solid phases without restriction
on the thermo-mechanical properties of these phases. The method assumes that Newtonian continuum
physics apply at the smallest scale considered, which we will refer to as the microscale. The desired
result is to derive models consistent with known microscale principles at a larger scale, the macroscale,
where a “point” is defined as the state of an averaging region known as a representative elementary
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volume (REV) [14–16]. An REV is large enough to contain a representative sampling of all entities
in the system. Entities refer to phases, which exist in IR3; interfaces, which form at the boundary
between two phases and exist in IR2; common curves, which form at the shared boundary of three
phases and exist in IR1; and common points, which form at the shared boundary of four phase
and exist in IR0. The scale of the system of concern is the megascale, and TCAT can be used to
formulate megascale models as well, where spatial variation within the averaging region is not
resolved. TCAT can also produce mixed-scale models in which a three-dimensional system is megascale
in one or two dimensions and a smaller scale, say the macroscale, in the remaining dimensions. The key
concepts here are thus the nomenclature for the scales involved in a TCAT model, and the objective
to start from the microscale to derive a larger scale model that is consistent with the microscale.
This consistency implies that if information exists at the microscale, then all macroscale or megascale
quantities appearing in the resultant model can be computed precisely and unambiguously.

Two classes of elements of TCAT are discussed: mathematical foundational elements, and model
building components. The mathematical foundational elements represent some key concepts and
methods used in TCAT to derive the model building components. The mathematical foundational
elements are not essential if only a general understanding of TCAT is desired. If one wishes to
understand TCAT at a deeper more fundamental level, all the way down to being able to reproduce
the available models in complete detail, then the mathematical foundational elements will be of use.
The mathematical foundational elements also support a description of how TCAT differs from other
common approaches used to formulate continuum models for porous medium systems.

Selected mathematical foundational elements of TCAT are summarized in Table 1. If one considers
a multiphase porous medium system at the microscale, the description of entities is challenging because
the domain of any single entity can be arbitrarily complex and difficult to describe using a fixed
Cartesian coordinate system. General curvilinear coordinate systems [6] are used at the microscale
for TCAT to distinguish the outward normal from phases, interfaces, and common curves, and the
orientation of a common curve. This set of microscale vectors provides the basis for describing the
complex morphology of entities and provides support for differential geometry needed to formulate
descriptions of geometric properties such as curvatures and orientations [5]. Curvatures and orientation
tensors have analogs at the macroscale, which are needed to support higher fidelity models and
geometric-based descriptions of quantities such as the state equation for capillary pressure and
preferential flow directions.

Table 1. Mathematical foundational elements of TCAT.

Element Use References

Curvilinear coordinates Microscale description of entity domains and boundaries [5,6]

Averaging operators General change of scale operators for entities of varying
dimensions and weighting [4,5]

Generalized functions
Formulation of divergence, gradient, and transport
theorems to relate averages of derivatives to derivatives of
averages for all entities

[5,6]

Variational methods Derivation of thermodynamic equilibrium conditions for
multiphase systems [5,17–19]

Differential geometry Geometric characteristics of entities and boundaries [5,6]

Some aspects of coordinate systems and averaging operators warrant consideration.
A three-dimensional Cartesian coordinate system is typically applicable at the macroscale, as the
microscale details of the entity morphology and topology described with curvilinear coordinates at the
microscale are averaged. However, the microscale and macroscale coordinates must be described jointly.
TCAT uses dual coordinate systems to accomplish this union, as depicted in Figure 1. To fix ideas on
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the coordinate systems involved, let us consider a microscale variable fα and a macroscale variable f α,
where α in an entity index with a subscript denoting a microscale quantity, and a superscript denoting
a macroscale quantity. In TCAT, the macroscale variable is computed as some precisely-defined average
involving microscale quantities. Given the variety of ways in which averages are computed and the
need to be precise, some notational complexity results; this cannot be avoided. The way in which
various averages are denoted are through adornments to the superscripted variables (e.g., none
for an intrinsic average, a single overbar for a density-weighted average, and a double overbar
for an explicitly defined average of some other kind). Macroscale averages are defined over some
averaging region Ω, which is taken as an REV. We will refer to the spatial location of a point using the
position vector r. It is usual in the averaging literature to introduce a decomposition of a microscale
quantity into a mean and a fluctuation of the form

fα(r) = f α(r) + f̃α(r) for r ∈ Ωα , (1)

where an intrinsic average at the macroscale is assumed, and f̃α is the deviation between the microscale
value and the average. This decomposition can only be specified when r is a point in the α entity
because microscale values of fα do not exist except in that entity. With this decomposition, all quantities
are specified uniquely at a coordinate location. Formulating the deviations in this way is standard,
for example, in the method of volume averaging (e.g., [20]) or turbulence analyses when averaging
is over time. With TCAT, the decomposition is formulated in terms of both a macroscale coordinate
x, and a microscale coordinate ξ. The macroscale coordinate locates the centroid of the REV and ξ is
a position vector relative to an origin located at x, as in Figure 1. The formulation for the decomposition
analogous to Equation (1) is thus

fα(x + ξ) = f α(x) + f̃α(x, ξ) for x + ξ ∈ Ωα . (2)

This difference in decomposition is subtle, yet important. The deviation quantity, f̃α, is a function
of both x and ξ and not just of their sum. By making use of a dual coordinate system, the TCAT
decomposition ensures that the average of the deviations must vanish over an REV. In turbulence,
this is sometimes referred to as an optimal filter, and it cannot be assured using the approach of
Equation (1). This concept extends to different sorts of averages as well.
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Figure 2.1. Use of the equivalent position vectors r and x + x to locate a point within

an REV. The vector x locates the centroid of the REV while x is the position relative
to the centroid. 
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Figure 1. Dual coordinate system used with a fixed x coordinate system and a ξ coordinate system
associated with the centroid of an averaging volume.

Typically in modeling multiphase systems, models are based on phases alone and jump conditions
are used to account for exchange of conserved or balanced quantities between phases. TCAT diverges
from this common approach by formulating dynamic conservation and balance equations for all
entities (phases, interfaces, common curves, and common points) such that all entities have properties
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themselves. This approach has been shown to enable higher fidelity models [21]. This approach also
produces models with more equations that must be closed and solved.

Another complication resulting from the inclusion of the lower-dimensional entities is that an REV,
Ω, contains a set of entities of varying dimensions that require theorems that allow the exchange
of the order of differential and integral operations. Unlike the simple case of averaging over a time
interval or of spatial averaging of microscale system consisting of a single phase, spatial differentiation
and integration cannot simply be exchanged with multiphase systems due to boundaries between
entities within the averaging volume. Resolution of this issue requires the formulation of theorems
that provide a transformation between scales for phases, interfaces, common curves, and common
points. To derive the needed theorems, generalized functions can be used to enable integration over the
domain even for lower dimensional entities; these functions vanish from the final result. Thus, they are
a mathematical tool that provides an alternative, and perhaps simpler, way of deriving formal change
of scale theorems relative to other approaches. A large number of such theorems have been derived
and are available in the literature [5,6].

Thermodynamics enables the description of equilibrium states of matter. Certain extremum
principles are known to exist at equilibrium, such as a state of minimum energy and maximum
entropy. While classical irreversible thermodynamics can be developed for phases (fluids and solids),
interfaces, and common curves, conditions that must hold for systems that contain some combination
of these variable dimension entities are not obvious, even in light of the guiding extremum principles.
TCAT formulates expressions for entropy production rate densities of a form that involves the sum of
the product of fluxes and forces, such that all fluxes and forces vanish at equilibrium. To identify these
sets of fluxes and forces and guide the formulation of the desired entropy inequality (EI), it is useful
to know all conditions that must hold at equilibrium. To derive these conditions, TCAT relies upon
variational methods.

In general, one can write

F =
∫

Ω
fn(u)dr (3)

where F is the quantity to be minimized, fn is a functional, and u is a vector of unknown functions.
Variational methods can be used to solve this minimization problem, thus satisfying extremum
conditions for F and identifying the form of the functional fn. Thus, for a given prescription of the
entities in a system, one is able to deduce the conditions that must hold at equilibrium. These equilibrium
results provide insights into the optimal use of an EI for the system in deriving closure relations.

Geometry plays a crucial role in the description of physical phenomena [22]. This is certainly the
case for multiphase porous medium systems even in the limit of strictly Newtonian continuum physics,
where the added complexities of quantum and relativistic effects can be ignored. The geometric aspects
of such systems involve the description of curvatures of interface and common curve entities and
the orientation of these entities in IR3. Differential geometry enables the derivation of invariants that
reduce the description of the geometric aspects of a system to their simplest possible form. Recent work
has shown that capillary pressure can be described in terms of invariants related to measures of
volume, area, mean curvature, and the Gaussian curvature [23]. Such a state equation has the benefit
of applying under both equilibrium and dynamic conditions and being supported by established
theorems from topology. TCAT relies upon differential geometry to formulate the invariants needed to
provide a robust geometric description of the state of a system.

The mathematical foundations underpin a set of components shown in Figure 2 that are combined
to formulate closed, solvable models of transport phenomena in a wide variety of systems. Figure 2
also shows the general progression of model development, which is denoted by the arrows. Note that
arrows terminate at the desired endpoint shown on the bottom middle of the figure, a closed solvable
model at a larger scale (e.g., macroscale). TCAT integrates many components in producing a model.
Conservation and balance equations are written for each entity, or for the chemical species in the
entity, at the microscale. A set of thermodynamic equations are also written for each entity, and a set
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of conditions that must hold at equilibrium are deduced using variational methods. An averaging
operator is applied to the conservation and thermodynamic equations to derive larger-scale equations.
Averaging theorems are used to exchange the order of differentiation and integration when averaging
microscale equations over an REV, yielding a set of accessible quantities with minimal cardinality.
The macroscale entropy balance equation is arranged to solve for the non-negative entropy density
production rate by summing over all entities. The problem that arises is that this entropy production
expression is not explicitly connected to the physical processes that produce entropy. To make this
connection, TCAT augments the entropy production equation with the sum of Lagrange multipliers
multiplying each of the macroscale conservation equations for mass, momentum, and energy for all
entity types as well as the expression for thermodynamics and body force potentials. Because these
equations are all arranged to be zero, they do not alter the magnitude of the rate of entropy production.
Augmentation with the conservation equations enables the derivation of an expression that relates the
sum of products of fluxes and forces to the non-negative entropy production rate. The form closest
to the flux–force form that can be derived is referred to as the constrained entropy inequality (CEI).
Approximations are needed to yield a strict flux–force form of the EI, which is referred to as a simplified
entropy inequality (SEI). The SEI is then used to develop approximations for each of the fluxes in terms
of the forces. These approximations must be consistent with the SEI. The conservation equations and
closure approximations do not form a closed set of equations under general conditions. This is because
in multiphase systems entity extent measures such as volume fractions, specific interfacial areas, and
specific common curve lengths are included. Evolution equations based purely on the averaging
theorems and simplifying approximations are used to produce the needed geometric equation balances
required for a closed model [5,24].

Larger-scale 

Microscale equilibrium 
conditions

Microscale entropy
inequality

Microscale
conservation equations

Microscale
thermodynamics

Subscale modeling
and applications

Larger-scale entropy
inequallity

Larger-scale
conservation equations

Evolution
equations

Larger-scale
thermodynamics

Larger-scale equilibrium
conditions

Hierarchy of closed,
parameterized models

Constrained entropy
inequality

Simplified entropy
inequality

Closure relations

Primary
restrictions

Approximations
and secondary

restrictions

Averaging operators
and theorems

Figure 2. Schematic representation of the TCAT model formulation approach.

Because of the scale consistency of TCAT, all macroscale quantities can be computed from the
microscale dynamics of the system. Increasingly, pore-scale experimental methods and modeling are
being used to provide detailed values of these variables that can be averaged to obtain their macroscale
counterparts. With this macroscale information, the approximations used to posit a macroscale TCAT
model and the solutions of the macroscale equations can be assessed, general state equations can be
reduced to specific forms, and closure parameters, and their functional dependence, can be examined
in detail. Symbiotically, the detailed microscale information and the derived macroscale TCAT models
can be employed to obtain robust, closed, and validated governing equations.

3. Existing Hierarchies of Models

Many small-scale elements of TCAT are available and can be used as a basis for the derivation of
consistent larger scale models. For example, all microscale conservation and balance equations for
all entities are available, all change of scale theorems needed have been derived, complete microscale
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thermodynamic equations based upon classical irreversible thermodynamics and potential equations
exist. The averaging of these equations directly yields their macroscale counterparts. Additionally,
a spectrum of macroscale evolution equations for geometric quantities can be obtained from the
averaging theorems. If one wishes to derive models for various physical systems, these macroscale
components can be used directly rather than having to rederive them. This results in a substantial
savings of effort. An even more efficient way to develop TCAT models is to leverage the existing
hierarchies of models.

As indicated in Figure 2, the usual approach for TCAT model formulation is to make a set
of primary restrictions that specify the general entities and compositional aspects of a model.
With conservation equations for these entities known, a thermodynamic theory, and the requirement
that an REV exist such that the averages defined are mathematically well behaved allows one to
proceed. The primary restrictions are a balance between a desire to produce a completely general
model framework and the desire to keep the analysis from being onerously complex. On one extreme,
the primary restrictions could be so extensive as to admit only one very specific model (e.g., [25]).
On the other extreme, the primary restrictions could be so general as to produce a model for a very
wide range of systems such that most applications would be some subset of the derived formulation.
Neither of these two extremes is optimal in our view. Formulating a single specific model using
TCAT is inefficient because of the significant manipulations involved. If the model is found to be
inadequate, the entire process would need to be repeated. On the other hand, the complexity of the
formulation process grows with the complexity of the system making the derivation of the necessary
SEI increasingly burdensome as the number of phases, compositional characteristics, and complexity of
the transport phenomena increase. An all-inclusive model would require a lengthy derivation, both in
time and space needed to write the equations, which would be unnecessary for simpler systems. As the
number of entities increases, the need for geometric evolution equations increases; these equations are
challenging expressions to develop. Thus, if a system of interest contains few entities, the derivation of
the TCAT model is easier to accomplish.

TCAT work to date has pursued a middle ground between the extremes of complexity and
simplicity. General hierarchies of specific classes of models have been targeted in the development
of EIs. These classes of models can be identified by the thermodynamic theory, the entities considered,
the compositional components modeled, the scale of the resultant model, and operative processes.
Even with specification of each of these aspects of a model identified, a hierarchy of potential
models results that can serve many potential applications. This hierarchy results for several reasons.
First, the primary restrictions will lead to a CEI, which is essentially exact. However, approximations
are needed to produce an SEI; these approximations are subject to change, and hopefully improvement,
as new insights and methods become available. Changing the SEI will result in a change in the
permissibility conditions for the closure relations, which will echo through the model closure. Second,
a set of secondary restrictions may be applied to a general SEI to simplify its form to a restricted SEI.
As an example, if after deriving a general SEI one wishes to consider only isothermal systems with
no mass or internal energy exchange between entities, a much simpler SEI will result as some of the
terms will go to zero. Alternatively, one might choose to neglect some lower dimensional entities or
ascribe certain properties to an entity. For example, a common simplification is that interfaces and
common curves are considered to be massless. Such choices reduce the SEI to a more condensed form
but do not require a complete reformulation of the model. Third, whatever the form of the SEI, it only
provides permissible constraints on closure relations. The closure relations that are proposed from
an SEI can be conjugate flux–force or cross-coupled in form; they may also vary in their order of the
approximation. Thus, multiple sets of closure relations, and specific model instances, can be derived
from a single SEI. Stated concisely, hierarchies of models result because a given CEI can yield a set
of SEIs and a given SEI can yield a set of different closure relations; the cardinality of the sets results
in a hierarchy of models of varying sophistication. Model sophistication can be matched to a given
application, without the need to completely reformulate the model from scratch.
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Because substantial TCAT work has been accomplished in recent years, many hierarchies of
models are available, which comprise a resource that can be drawn upon for rapid model building.
While significant mathematical machinery and manipulations are required to derive the EI expressions
that form the bases of the model hierarchies, it is not necessary to understand the details of the
mathematical manipulations that led to these expressions in order to use the results productively.
Table 2 summarizes hierarchies of models that have been derived. These substantial results form the
bases for a large number of specific instance models that can be formulated with minimal effort.

Table 2. TCAT model hierarchies of existing CEI and SEI expressions.

Entities Composition Scale Reference

One fluid, one solid, and
one interface Entity based Macroscale in three dimensions [5,9]

One fluid, one solid, and
one interface Entity based Megascale in three dimensions [10]

One fluid, one solid, and
one interface

Species based for mass and entity
based for momentum and energy Macroscale in three dimensions [5,9]

One fluid, one solid, and
one interface

Species based for mass and
momentum and entity based
for energy

Macroscale in three dimensions [9]

Two fluids, one solid, three
interfaces, and one
common curve

Entity based Macroscale in three dimensions [5,11]

Two fluids, one solid, three
interfaces, and one
common curve

Species based for mass and entity
based for momentum and energy Macroscale in three dimensions [13]

Two fluids, one solid, three
interfaces, and one
common curve

Species based for mass and entity
based for momentum and energy

Macroscale in two dimensions
and megascale in one dimension [12]

4. Deviation Kinetic Energy

4.1. Overview

While existing TCAT results can be used and leveraged to derive models for a variety of systems,
further theoretical advancements are needed to address new classes of models. The goal of this section
is to illustrate how new TCAT components can support the development of new hierarchies of models.
This is accomplished by identifying a class of model of interest, assessing the additions needed to
existing TCAT components, deriving certain aspects that are needed to serve as both an example of the
details of the model component formulation process and to serve as an archival source of the derived
results for future use.

Consider the case of sediment transport in shallow waters that may be turbulent. This system
consists of a solid phase and two fluid phases, air and water. At first glance, this seems to be similar to
application types considered previously using TCAT. However, some aspects of this problem deserve
further consideration. First, with TCAT, and other continuum mechanical approaches, it is necessary
to reference all velocities to a common frame of reference. For small Reynolds number porous medium
applications considered to date, this reference velocity has been the solid-phase velocity, due to its very
small magnitude relative to the fluid. This frame of reference is not a reasonable choice for sediment
transport where the solid particle velocity is of the same order of magnitude as the fluid velocities.
This means material derivative expressions appearing in the formulation must be changed from
a reference to the solid phase to a more appropriate frame of reference. Multiple choices exist for such
a choice, and the manipulations to change from a solid-phase reference to another reference velocity,
while tedious, are straightforward and will not be detailed here. Second, for the applications considered
to date a term related to the average of the product of deviation velocities between the macroscale
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and microscale has been considered of lower order importance and not specifically considered in
formulating the EI. Specifically, the term not considered is the kinetic energy of the deviation velocities
per unit mass. For turbulent flow, this term that arises in the energy equation cannot be neglected.
A way in which this effect can be included is to formulate deviation kinetic energy equations for phases,
interfaces, and common curves that are applicable under general conditions such as compressible or
incompressible flows and a specified stress tensor for the entities. The formulation of these equations
are detailed below and contribute to the archival model building components.

4.2. Macroscale Deviation Kinetic Energy for a Phase

The purpose of this section is to formulate macroscale deviation kinetic energy equations for
a phase. We will manipulate and average conservation equations for conservation of momentum
and mass at the microscale to formulate this equation. No assumptions will be required. Therefore,
the resultant expressions will be applicable for both incompressible and compressible conditions.
We also will not assume a form of the stress tensor at either the microscale or the macroscale. Closure
relations can be substituted into the final forms as needed.

We can write the microscale velocity as

vα(x + ξ) = vα(x) + ṽα(x, ξ) , (4)

and the macroscale fluctuation kinetic energy density as

εαραKα
E(x) = 〈ραKEα〉Ωα ,Ω =

〈
ρα

ṽα·ṽα

2

〉
Ωα ,Ω

, (5)

where εα is the volume fraction, ρα is the mass density, KEα and Kα
E are the microscale and macroscale

deviation kinetic energies per unit mass, respectively; α is a phase index; and 〈·〉Ωα ,Ω is a spatial
averaging operator. A subscripted index denotes a microscale quantity and a superscripted index
denotes a macroscale quantity.

The macroscale deviation kinetic energy described in Equation (5) is a quantity that arises as
a result of applying an averaging operator to the kinetic energy term in a conservation of energy
equation. Because it is desirable to express averages in terms of macroscale averaged quantities,
a decomposition of the sort described in Equation (4) can be used to convert expressions to resolvable
independent expressions of mean quantities and an unknown product of deviations from the mean.
The deviations from the mean result from the nature of averaging a microscale quantity to the
macroscale. A complex velocity field at the microscale is averaged to produce a single mean velocity.
The existence of any solid phase not moving with the same velocity as the fluid (e.g., a fixed porous
medium, or a relatively large dense particle settling in a water column) will necessarily result in
a microscale velocity that differs from an averaged macroscale velocity. For many porous medium
systems, the averaged product of these velocity deviations are small, and resultantly the macroscale
deviation kinetic energy term is often neglected (e.g., [11]). For cases of complex flow fields with a wide
range of velocities over an averaging region, the macroscale deviation kinetic energy is not small.
We wish to derive an expression for the deviation kinetic energy that can be applied to such cases.

The averages discussed here are spatial averages, which is the standard approach used to derive
TCAT models [4]. Temporal and ensemble averages are often used in the fluid mechanics literature
as well [26]. Under conditions of ergodicity, macroscale models are invariant in form with respect to
the type of averaging used to derive these models, although the underlying definitions of variables
must be expressed in terms of the averaging approach relied upon. While volume averaging has been
used routinely for multiphase systems to derive averaged macroscale models, the scale over which
averaging is performed must yield well-defined averages for all quantities in the model that are not
sensitive to the size of the averaging region, which we will call a representative elementary volume
(REV). If the resultant model can be solved at the REV scale, then only closure of the macroscale
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model is needed. However, for cases in which the upper bound on the size of REV exists due to
significant changes in the underlying quantities, a second level of averaging can be applied—resulting
in a so-called doubly-averaged model. The second level of averaging can be of different form than the
initial averaging. For example, volume averaging can be followed by time averaging. Doubly-averaged
systems result in the need for additional closure relations when compared to singly-averaged models.
Doubly-averaged formulations are relatively common in the literature (e.g., [27,28]). In this work,
we will focus only on volume-averaged quantities over an REV. The resultant expressions will
then be of use for direct numerical simulation done at the macroscale, or as a starting point for
a multiply-averaged model.

The microscale conservation of mass equation for a phase is

Mα :=
∂ρα

∂t
+∇· (ραvα) = 0 for α ∈ IP , (6)

where IP is the index set of all phases. The microscale conservation of momentum equation for
a phase is

Pα :=
∂(ραvα)

∂t
+∇· (ραvαvα)−∇·tα − ραgα = 0 for α ∈ IP , (7)

where tα is the stress tensor, and gα is the gravitational acceleration vector.
Equation (7) can be simplified using Equation (6) to the expression

Pα − vαMα = ρα
∂vα

∂t
+ ραvα·∇vα −∇·tα − ραgα = 0 , (8)

which can be written using Equation (4) as

ρα
∂

∂t

(
vα + ṽα

)
+ ραvα·∇

(
vα + ṽα

)
−∇·tα − ραgα = 0 . (9)

Taking the dot product of Equation (9) with ṽα and expanding terms yields

ṽα· (Pα − vαMα) =ραṽα·
∂vα

∂t
+ ραṽα·

∂ṽα

∂t
+ ραvα·(∇vα)·ṽα

+ ραvα·(∇ṽα)·ṽα − (∇·tα)·ṽα − ṽα·ραgα = 0 ,
(10)

which can be reexpressed as

ραṽα·
∂vα

∂t
+ ρα

∂

∂t

(
ṽα·ṽα

2

)
+ ραvα·(∇vα)·ṽα

+ ραvα·∇
(

ṽα·ṽα

2

)
− ṽα·(∇·tα)− ṽα·ραgα = 0 .

(11)

With the microscale deviation kinetic energy per unit mass defined as

KEα :=
ṽα·ṽα

2
, (12)

Equation (11) is alternatively written as

ραṽα·
∂vα

∂t
+ ρα

∂KEα

∂t
+ ραvα·(∇vα)·ṽα

+ ραvα·∇KEα − ṽα·(∇·tα)− ṽα·ραgα = 0 .
(13)

We can average this equation over the α phase within an REV, which yields
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〈ṽα· (Pα − vαMα)〉Ωα ,Ω =

〈
ραṽα·

∂vα

∂t

〉
Ωα ,Ω

+

〈
ρα

∂KEα

∂t

〉
Ωα ,Ω

+
〈

ραvα·(∇vα)·ṽα

〉
Ωα ,Ω

+ 〈ραvα·∇KEα〉Ωα ,Ω

− 〈ṽα·(∇·tα)〉Ωα ,Ω − 〈ṽα·ραgα〉Ωα ,Ω = 0 .

(14)

Now, make use of the facts that the density-weighted average of the deviation velocity is zero
and that macroscale quantities can be moved outside the averaging operator to simplify this equation
to arrive at

〈ṽα· (Pα − vαMα)〉Ωα ,Ω =

〈
ρα

∂KEα

∂t

〉
Ωα ,Ω

+ 〈ραvα·∇KEα〉Ωα ,Ω

+ 〈ραṽαṽα〉Ωα ,Ω :∇vα − 〈ṽα·(∇·tα)〉Ωα ,Ω = 0 .
(15)

Apply the product rule to the first two terms, which gives

〈ṽα· (Pα − vαMα)〉Ωα ,Ω =

〈
∂(ραKEα)

∂t

〉
Ωα ,Ω

+ 〈∇·(ραvαKEα)〉Ωα ,Ω

−
〈

KEα

[
∂ρα

∂t
+∇·(ραvα)

]〉
Ωα ,Ω

+ 〈ραṽαṽα〉Ωα ,Ω :∇vα − 〈ṽα·(∇·tα)〉Ωα ,Ω = 0 .

(16)

The third term on the right-hand side may be eliminated by noting from Equation (6) that the
expression in brackets is zero so that

〈ṽα· (Pα − vαMα) + KEαMα〉Ωα ,Ω =〈
∂(ραKEα)

∂t

〉
Ωα ,Ω

+ 〈∇·(ραvαKEα)〉Ωα ,Ω

+ 〈ραṽαṽα〉Ωα ,Ω :∇vα − 〈ṽα·(∇·tα)〉Ωα ,Ω = 0 .

(17)

Next, we take note of the averaging theorems for a phase. First, the average of the divergence of
a microscale vector may be related to the divergence of the average of the quantity according to

〈∇·fα〉Ωα ,Ω = ∇·〈fα〉Ωα ,Ω + ∑
κ∈I−cα

〈nα·fα〉Ωκ ,Ω , (18)

where nα is the unit vector outward normal from the α phase, and I−cα is the index set of connected
entities of one dimension lower than the dimension of the α entity, which would be the set of interfaces
formed at the boundary between the α phase and another phases in the system.

The average of a time derivative of a microscale quantity in a phase is related to the time derivative
of the average with 〈

∂ fα

∂t

〉
Ωα ,Ω

=
∂

∂t
〈 fα〉Ωα ,Ω − ∑

κ∈I−cα

〈nα·vκ fα〉Ωκ ,Ω . (19)

In Equations (18) and (19), the last terms relate to processes occurring at the boundary of the
phase within the averaging volume. Applying these theorems to Equation (17) yields

〈ṽα· (Pα − vαMα) + KEαMα〉Ωα ,Ω =

∂

∂t
〈ραKEα〉Ωα ,Ω +∇·〈ραvαKEα〉Ωα ,Ω

+ ∑
κ∈I−cα

〈nα·ρα(vα − vκ)KEα〉Ωκ ,Ω

+ 〈ραṽαṽα〉Ωα ,Ω :∇vα − 〈ṽα·(∇·tα)〉Ωα ,Ω = 0 .

(20)
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Note that the third line of Equation (20) contains a difference between the velocity of a phase and
a velocity of an interface evaluated on the interface. This term will vanish for the case in which no
mass exchange between the phase and the interface occurs at the microscale.

Arranging Equation (20) further, making use of the definition of the average of the kinetic energy
term and the definition of the mass exchange from the κ interface to the α phase,

M
κ→α

:= −nα·ρα(vα − vκ) for κ ∈ I−cα , (21)

and the expression for the momentum transfer from the κ interface to the α phase,

T
κ→α

:= −nα·tα for κ ∈ I−cα , (22)

to obtain
〈ṽα· (Pα − vαMα) + KEαMα〉Ωα ,Ω =

∂
(

εαραKα
E

)
∂t

+∇·
(

εαραKα
Evα
)
+∇·〈[ραṽαKEα − tα·ṽα]〉Ωα ,Ω

− ∑
κ∈I−cα

〈[
M

κ→α
KEα + T

κ→α
·ṽα

]〉
Ωκ ,Ω

+ 〈ραṽαṽα〉Ωα ,Ω :dα + 〈tα:∇ṽα〉Ωα ,Ω = 0 ,

(23)

where dα is the rate of strain tensor.
Apply the product rule to the first two terms on the right side of Equation (23) and collect terms

which gives

Kα
∗1 = 〈ṽα· (Pα − vαMα) + KEαMα〉Ωα ,Ω =

εαρα DαKα
E

Dt
+ Kα

E
Dα(εαρα)

Dt
+
(

εαραKα
EI+ 〈ραṽαṽα〉Ωα ,Ω

)
:dα +∇·〈[ραṽαKEα − tα·ṽα]〉Ωα ,Ω

− ∑
κ∈I−cα

〈[
M

κ→α
KEα + T

κ→α
·ṽα

]〉
Ωκ ,Ω

+ 〈tα:∇ṽα〉Ωα ,Ω = 0 .

(24)

As an alternative, subtract Kα
EMα

∗ from this equation to yield:

Kα
∗2 = 〈ṽα· (Pα − vαMα) + KEαMα〉Ωα ,Ω − Kα

EMα
∗ =

εαρα DαKα
E

Dt
+ 〈ραṽαṽα〉Ωα ,Ω :dα +∇·〈[ραṽαKEα − tα·ṽα]〉Ωα ,Ω

− ∑
κ∈I−cα

〈[
M

κ→α
(KEα − Kα

E) + T
κ→α
·ṽα

]〉
Ωκ ,Ω

+ 〈tα:∇ṽα〉Ωα ,Ω = 0 .

(25)

Note that Equation (25) is related to Equation (24) by

Kα
∗2 = Kα

∗1 − Kα
EMα

∗ . (26)

Whether Kα
∗2 or Kα

∗1 is used in constraining the entropy inequality does not really matter as the
difference between the two will be accounted for by the Lagrange multipliers.

4.3. Macroscale Deviation Kinetic Energy for an Interface

Equation (25) provides the deviation kinetic energy for a phase explicitly in terms of averaged
quantities but also in terms of general expressions for macroscale equations. The corresponding
deviation kinetic energy equation for an interface will be different because the interface is in IR2 rather
than IR3. We expect that the equation will involve the same equations for an interface as were used for
a phase such that
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Kα
∗2 = 〈ṽα· (Pα − vαMα) + KEαMα〉Ωα ,Ω − Kα

EMα
∗ for α ∈ II , (27)

where II is the index set of interfaces in the system.
The TCAT averaging operator for an interface is a normalized weighted integration over all of the

interfaces of a given type in the REV, or explicitly for a density-weighted velocity of an interface as

vα = 〈vα〉Ωα ,Ωα ,ρα
=

∫
Ωα

ραvα dr∫
Ωα

ρα dr
for α ∈ II . (28)

It is also important to note that at the microscale the differential operators must be restricted to
a two-dimensional form such that a microscale point remains on the potentially moving interface.

The microscale conservation of mass equation for an interface is

Mα =
∂′ρα

∂t
+∇′· (ραvα)− ∑

κ∈I+cα

M
κ→α

= 0 for α ∈ II , (29)

where I+cα is the index set of phases that form interface α, and the microscale expression for conservation
of interface momentum is

Pα =
∂′(ραvα)

∂t
+∇′· (ραvαvα)−∇′·

(
I′·tα

)
− ραgα

− ∑
κ∈I+cα

(
vκ M

κ→α
+ T

κ→α

)
= 0 for α ∈ II .

(30)

In these equations, the time derivative and divergence operator are indicated as being restricted
to a surface by the prime. Additionally the mass exchange term is

M
κ→α

:= −nκ· [ρκ(vα − vκ)] for κ ∈ I+cα , (31)

and the expression for the momentum transfer from the κ interface to the α phase is

T
κ→α

:= −nκ·tκ for κ ∈ I+cα . (32)

In light of Equation (27), we combine Equations (30) and (29) to obtain

Pα − vαMα = ρα
∂′vα

∂t
+ ραvα·∇′vα −∇′·

(
I′·tα

)
− ραgα

− ∑
κ∈I+cα

[
(vκ − vα) M

κ→α
+ T

κ→α

]
= 0 .

(33)

Introduction of Equation (4) into this expression yields

ρα
∂′
(
vα + ṽα

)
∂t

+ ραvα·∇′
(

vα + ṽα

)
−∇′·

(
I′·tα

)
− ραgα

− ∑
κ∈I+cα

[
(vκ − vα) M

κ→α
+ T

κ→α

]
= 0 .

(34)

Taking the dot product of Equation (34) with ṽα, expanding terms, and applying the product
rule yields
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ṽα· (Pα − vαMα) = ραṽα·
∂′vα

∂t
+ ρα

∂′

∂t

(
ṽα·ṽα

2

)
+ ραvα·

(
∇′vα

)
·ṽα

+ ραvα·∇′
(

ṽα·ṽα

2

)
−∇′·

(
I′·tα

)
·ṽα − ραṽα·gα

− ∑
κ∈I+cα

ṽα·
[
(vκ − vα) M

κ→α
+ T

κ→α

]
= 0 .

(35)

This may be written in terms of the microscale kinetic energy deviation as:

ṽα· (Pα − vαMα) = ραṽα·
∂′vα

∂t
+ ρα

∂′KEα

∂t
+ ραvα·

(
∇′vα

)
·ṽα

+ ραvα·∇′KEα −∇′·
(
I′·tα

)
·ṽα − ραṽα·gα

− ∑
κ∈I+cα

ṽα·
[
(vκ − vα) M

κ→α
+ T

κ→α

]
= 0 .

(36)

Here, we make use of the relation:

∂′

∂t
+ vα·∇′ =

∂

∂t
+ vα·∇ (37)

to rewrite Equation (36) as:

ṽα· (Pα − vαMα) = ραṽα·
∂vα

∂t
+ ρα

∂′KEα

∂t
+ ραvα·

(
∇vα

)
·ṽα

+ ραvα·∇′KEα −∇′·
(
I′·tα

)
·ṽα − ραṽα·gα

− ∑
κ∈I+cα

ṽα·
[
(vκ − vα) M

κ→α
+ T

κ→α

]
= 0 .

(38)

Take the average of this equation and move macroscale quantities outside the operator while
dropping terms that average to zero. The result is

〈ṽα· (Pα − vαMα)〉Ωα ,Ω =

〈
ρα

∂′KEα

∂t

〉
Ωα ,Ω

+
〈
ραvα·∇′KEα

〉
Ωα ,Ω

+ 〈ραṽαṽα〉Ωα ,Ω :dα −
〈
∇′·

(
I′·tα

)
·ṽα

〉
Ωα ,Ω

− ∑
κ∈I+cα

〈
ṽα·
[
(vκ − vα) M

κ→α
+ T

κ→α

]〉
Ωα ,Ω

= 0 .

(39)

Apply the product rule to the first, second, and fourth terms in this equation to obtain

〈ṽα· (Pα − vαMα)〉Ωα ,Ω =

〈
∂′(ραKEα)

∂t

〉
Ωα ,Ω

+
〈
∇′·(ραvαKEα)

〉
Ωα ,Ω

−
〈

KEα

[
∂′ρα

∂t
+∇′·(ραvα)

]〉
Ωα ,Ω

+ 〈ραṽαṽα〉Ωα ,Ω :dα −
〈
∇′·

(
I′·tα·ṽα

)〉
Ωα ,Ω +

〈
I′·tα:(∇′ṽα)

T
〉

Ωα ,Ω

− ∑
κ∈I+cα

〈
ṽα·
[
(vκ − vα) M

κ→α
+ T

κ→α

]〉
Ωα ,Ω

= 0 .

(40)
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Add to this expression the quantity 〈KEαMα〉Ωα ,Ω so that we have

〈ṽα· (Pα − vαMα) + KEαMα〉Ωα ,Ω =〈
∂′(ραKEα)

∂t

〉
Ωα ,Ω

+
〈
∇′·(ραvαKEα)

〉
Ωα ,Ω

−
〈

∑
κ∈I+cα

KEα M
κ→α

〉
Ωα ,Ω

+ 〈ραṽαṽα〉Ωα ,Ω :dα

−
〈
∇′·

(
I′·tα·ṽα

)〉
Ωα ,Ω +

〈
I′·tα:(∇′ṽα)

T
〉

Ωα ,Ω

− ∑
κ∈I+cα

〈
ṽα·
[
(vκ − vα) M

κ→α
+ T

κ→α

]〉
Ωα ,Ω

= 0 .

(41)

Next, we make use of the averaging theorems for surfaces. For a surface divergence, the relation is〈
∇′·fα

〉
Ωα ,Ω = ∇·

〈
I′α·fα

〉
Ωα ,Ω −

〈
∇′·I′α·fα

〉
Ωα ,Ω + ∑

κ∈I−cα

〈nα·fα〉Ωκ ,Ω , (42)

while the expression for the partial time derivative constrained to the surface is〈
∂′ fα

∂t

〉
Ωα ,Ω

=
∂

∂t
〈 fα〉Ωα ,Ω +∇·

〈(
I− I′α

)
·vα fα

〉
Ωα ,Ω

+
〈
∇′·I′α·vα fα

〉
Ωα ,Ω − ∑

κ∈I−cα

〈nα·vκ fα〉Ωκ ,Ω .
(43)

Apply these to the first two terms after the equal sign in Equation (41) and to the divergence of
the operator in the fifth term so that we obtain, after recombining terms,

〈ṽα· (Pα − vαMα) + KEαMα〉Ωα ,Ω =

εαρα DαKα
E

Dt
+ Kα

E
Dα(εαρα)

Dt
+
(

εαραKα
EI+ 〈ραṽαṽα〉Ωα ,Ω

)
:dα

+∇·
〈(

ραKEαṽα − I′·tα·ṽα

)〉
Ωα ,Ω

+ ∑
κ∈I−cα

〈nα· [ρα(vα − vκ)KEα − tα·ṽα]〉Ωκ ,Ω

− ∑
κ∈I+cα

〈
[ṽα· (vκ − vα) + KEα] M

κ→α
+ ṽα· T

κ→α

〉
Ωα ,Ω

+
〈
I′·tα:(∇′ṽα)

T
〉

Ωα ,Ω
= 0 .

(44)

Make use of the definitions for the exchange terms between entities given by Equations (21), (31),
and (32) to simplify the notation to

Kα
∗1 = 〈ṽα· (Pα − vαMα) + KEαMα〉Ωα ,Ω =

εαρα DαKα
E

Dt
+ Kα

E
Dα(εαρα)

Dt
+
(

εαραKα
EI+ 〈ραṽαṽα〉Ωα ,Ω

)
:dα

+∇·
〈
ραKEαṽα − I′·tα·ṽα

〉
Ωα ,Ω

− ∑
κ∈I−cα

〈
M

κ→α
KEα + T

κ→α
·ṽα

〉
Ωκ ,Ω

− ∑
κ∈I+cα

〈
M

κ→α
KEα +

[
T

κ→α
+ (vκ − vα) M

κ→α

]
·ṽα

〉
Ωα ,Ω

+
〈
I′·tα:(∇′ṽα)

T
〉

Ωα ,Ω
= 0 for α ∈ II .

(45)
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We also obtain

Kα
∗2 = 〈ṽα· (Pα − vαMα) + KEαMα〉Ωα ,Ω − Kα

EMα
∗ =

εαρα DαKα
E

Dt
+ 〈ραṽαṽα〉Ωα ,Ω :dα

+∇·
〈
ραKEαṽα − I′·tα·ṽα

〉
Ωα ,Ω

− ∑
κ∈I−cα

〈
M

κ→α

(
KEα − Kα

E

)
+ T

κ→α
·ṽα

〉
Ωκ ,Ω

− ∑
κ∈I+cα

〈
M

κ→α

(
KEα − Kα

E

)
+
[

T
κ→α

+ (vκ − vα) M
κ→α

]
·ṽα

〉
Ωα ,Ω

+
〈
I′·tα:(∇′ṽα)

T
〉

Ωα ,Ω
= 0 for α ∈ II .

(46)

4.4. Macroscale Deviation Kinetic Energy for a Common Curve

The difference between the expressions for Kα
∗1 and Kα

∗2 for phases and the corresponding
expressions for interfaces are in the presence of interactions with a higher dimensional entity and the
stress tensor being in the appropriate space. Based on these observations, we can write the expressions
for the common curve as

Kα
∗1 = 〈ṽα· (Pα − vαMα) + KEαMα〉Ωα ,Ω =

εαρα DαKα
E

Dt
+ Kα

E
Dα(εαρα)

Dt
+
(

εαραKα
EI+ 〈ραṽαṽα〉Ωα ,Ω

)
:dα

+∇·
〈
ραKEαṽα − I′′·tα·ṽα

〉
Ωα ,Ω

− ∑
κ∈I+cα

〈
M

κ→α
KEα +

[
T

κ→α
+ (vκ − vα) M

κ→α

]
·ṽα

〉
Ωα ,Ω

+
〈
I′′·tα:(∇′′ṽα)

T
〉

Ωα ,Ω
= 0 for α ∈ IC .

(47)

We also obtain

Kα
∗2 = 〈ṽα· (Pα − vαMα) + KEαMα〉Ωα ,Ω − Kα

EMα
∗ =

εαρα DαKα
E

Dt
+ 〈ραṽαṽα〉Ωα ,Ω :dα

+∇·
〈
ραKEαṽα − I′′·tα·ṽα

〉
Ωα ,Ω

− ∑
κ∈I+cα

〈
M

κ→α

(
KEα − Kα

E

)
+
[

T
κ→α

+ (vκ − vα) M
κ→α

]
·ṽα

〉
Ωα ,Ω

+
〈
I′′·tα:(∇′′ṽα)

T
〉

Ωα ,Ω
= 0 for α ∈ IC ,

(48)

where the double prime denotes restriction to the one-dimensional common curve. In these equations,
there is no exchange with a lower dimensional entity, which would be a common point, since common
points are excluded in this system.

5. Formulation of CEI

In the formulation of a CEI for porous media analyses, the macroscale entropy balance for each
entity (Sα

∗ ) is summed over all entities. This equation is then constrained using Lagrange multipliers
that multiply the macroscale conservation equations for each entity consisting of the total energy
equation (Eα

∗ ), the momentum equation (Pα
∗), and the mass conservation equation (Mα

∗). Additional
constraints are provided by the macroscale relation between the body force potential for a phase and
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body force (Gα
∗ ), the thermodynamic formalism (T α

∗ ), and an expression for the material derivative of
the body force potential (T α

G∗). Thus, the CEI, with Lagrange multipliers indicated as λ coefficients,
has previously been written as

∑
α∈I
Sα
∗ + ∑

α∈I
λα
EEα
∗ + ∑

α∈I
λα
P ·Pα

∗ + ∑
α∈I

λα
MMα

∗

+ ∑
α∈I

λα
GGα
∗ + ∑

α∈I
λα
T T α
∗ + ∑

α∈I
λα
T GT α

G∗ = ∑
α∈I

Λα ≥ 0 .
(49)

Solution for the Lagrange multiplier coefficients to eliminate the material time derivatives provided

∑
α∈I
Sα
∗ − ∑

α∈I

1
θα
Eα
∗ + ∑

α∈I

1
θα

vα·Pα
∗

+ ∑
α∈I

1
θα

(
µα + ψα − vα·vα

2
+ Kα

E

)
Mα
∗

− ∑
α∈I

1
θα
Gα
∗ + ∑

α∈I

1
θα
T α
∗ + ∑

α∈I

1
θα
T α
G∗ = ∑

α∈I
Λα ≥ 0 .

(50)

With these coefficients, the time derivative of the deviation kinetic energy Kα
E survives in the

inequality. For a porous media system, this term is very small and thus its presence does not impact the
derivation. However, for a turbulent flow, this term is significant and should be addressed by making
use of an Kα

∗ equation. We can include either Equation (24) or Equation (25) as an additional constraint
in the entropy equation if it is included prior to identifying the Lagrange coefficients. However, we can
alternatively use Equation (25) as an add-on to the entropy inequality as given in Equation (50) with
the Lagrange coefficient 1/θα to obtain

∑
α∈I
Sα
∗ − ∑

α∈I

1
θα
Eα
∗ + ∑

α∈I

1
θα

vα·Pα
∗

+ ∑
α∈I

1
θα

(
µα + ψα − vα·vα

2
+ Kα

E

)
Mα
∗ + ∑

α∈I

1
θα
Kα
∗2

− ∑
α∈I

1
θα
Gα
∗ + ∑

α∈I

1
θα
T α
∗ + ∑

α∈I

1
θα
T α
G∗ = ∑

α∈I
Λα ≥ 0 .

(51)

After substitution of the definition of Kα
∗2 as given by the first equality in Equation (25) and

rearrangement of terms, this becomes

∑
α∈I
Sα
∗ − ∑

α∈I

1
θα

〈
Eα∗ − vα·Pα∗ +

vα·vα

2
Mα∗

〉
Ωα ,Ω

+ ∑
α∈I

1
θα

(
µα + ψα

)
Mα
∗

− ∑
α∈I

1
θα
Gα
∗ + ∑

α∈I

1
θα
T α
∗ + ∑

α∈I

1
θα
T α
G∗ = ∑

α∈I
Λα ≥ 0 .

(52)

This is noteworthy because we can identify Eθα∗ as the microscale internal energy equation given by

Eθα∗ := Eα∗ − vα·Pα∗ +
vα·vα

2
Mα∗ . (53)

The CEI in general then takes the form

∑
α∈I
Sα
∗ − ∑

α∈I

1
θα
Eα

θ∗ + ∑
α∈I

1
θα

(
µα + ψα

)
Mα
∗

− ∑
α∈I

1
θα
Gα
∗ + ∑

α∈I

1
θα
T α
∗ + ∑

α∈I

1
θα
T α
G∗ = ∑

α∈I
Λα ≥ 0 ,

(54)
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where
Eα

θ∗ =
〈
Eα∗ − vα·Pα∗ +

vα·vα

2
Mα∗

〉
Ωα ,Ω

. (55)

Note that, although Equation (53) applies at the small scale,

Eα
θ∗ 6= Eα

∗ − vα·Pα
∗ +

vα·vα

2
·Mα

∗ . (56)

The proper definition of the thermal energy equation at the macroscale has been a source of error
in the study of diffusive processes (e.g., [29]) as has been discussed elsewhere [30].

These results provide the components needed to treat deviation kinetic energy as a leading-order
quantity, which will be of use in extending TCAT to turbulent flow conditions. Examples of where this
will be important are plentiful in the geosciences, including land–atmosphere interaction and sediment
transport in streams, rivers, and oceans.

6. Leveraging Existing Entropy Production Equations

As previously noted, SEI expressions in flux–force form have been derived for several TCAT
model hierarchies. It is stated that these legacy entropy production expressions can be used to produce
closure relations that enable the formulation of solvable models. The purpose of this section is to
provide a simple example to show how closure relations can be determined from an SEI.

Let us consider single-fluid-phase flow through porous media. The index set of entities is
I = {w, s, ws} denoting a water and solid phase, and water–solid interface, respectively. An REV
is assumed, classical irreversible thermodynamics relied upon, and compositional effect are assumed
to be unimportant. This system has been examined and a CEI and SEI have been produced [5,9].
We will focus this example on a particular form of the SEI that is available (Gray and Miller [5],
Equation (9.63)). The example SEI can be written as

1
θ

(
εwtw + εw pwI

)
:dw +

1
θ

(
εsts − εsts

)
:ds

+
1
θ

[
εwstws − εwsγws (I−Gws)

]
:dws

+
1
θ

[
∇
(

εw pw
)
− εwρw∇

(
µw + ψw

)
− εwρwgw +

w→ws
T
]
·
(

vw − vs
)

− 1
θ

{
∇·
[
(I−Gws) εwsγws

]
+

w→ws
T +

s→ws
T
}
·
(

vws − vs
)

− 1
θ

[
pws

w + 〈ns · ts·ns〉Ωws ,Ωws
+ γws J ws

s

] Dsεs

Dt
= ∑

α∈I
Λα ≥ 0 ,

(57)

where pw is pressure of the water phase, Gws is the orientation tensor of the interface, µw is the chemical
potential of the w phase, ψw is the gravitational potential of the w phase, pws

w is the pressure of the w
phase averaged over the interface, ns is the unit vector outward normal to the solid phase, γws is the
interfacial tension of the interface, and J ws

s is twice the mean curvature of the interface.
The general SEI has been simplified in writing Equation (57) for the case of isothermal conditions,

no mass exchange, slow flow, and a massless interface, which comprise a set of secondary restrictions
that were applied after a general SEI was derived and are not in general necessary. This is an example
of how a general CEI, obtained by substituting the appropriate macroscale equations into Equation (50),
can yield a set of different SEIs. As a further example of this notion, we could assume a rigid,
incompressible solid phase, and choose to ignore the effects of the interface. These additional secondary
restrictions would further simplify the resultant SEI to a form given by
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1
θ

(
εwtw + εw pwI

)
:dw

+
1
θ

[
∇
(

εw pw
)
− εwρw∇

(
µw + ψw

)
− εwρwgw +

w→ws
T
]
·
(

vw − vs
)

= ∑
α∈I

Λα ≥ 0 ,

(58)

Equation (58) contains the sum to two flux–force products. The forces are dw and vw − vs, and the
fluxes are terms that multiply these quantities. Both of the forces and both of the fluxes vanish at
equilibrium. It is known that away from equilibrium, these flux–force pairs may produce entropy.
Each of these pairs must independently satisfy this entropy production condition, because the fluxes
are a set with independent members and so too are the forces.

TCAT uses the entropy production requirement in SEIs, such as Equation (58), as constraints,
or permissibility conditions, on the development of closure relations needed to formulate closed,
solvable models. Let us consider the first line in this SEI. We know that this line cannot be less than
zero, so the approximation for the stress tensor must ensure this is the case. For porous medium
systems at the macroscale, momentum transfer between the fluid phase and the solid phase at slow
flow tends to overwhelm viscous stress effects. Because of this, a zero-order closure provides a good
approximation for macroscale porous medium flow, which is equivalent to treating the fluid phase as
macroscopically inviscid. This macroscopic condition means that the average velocity of the system is
not affected by the boundary of the domain—an advective front in a one-dimensional flow field with
a homogeneous domain will be invariant in the directions normal to the direction of flow. With this
approximation, the stress tensor becomes

tw = −pwI . (59)

A consequence of Equation (59) is that the first line in Equation (58) is always zero, which satisfies
the entropy inequality for any dw.

The second line in Equation (58) must also be satisfied.
w→ws

T is an important term in this line,
and it is unknown from any conservation, thermodynamic, or potential equation in the formulation.
In a conjugate flux–force approximation, it is posited that the flux depends solely on the force appearing
in this line. Any permissible approximation for the flux must be of a form such that the second line in
Equation (58) is non-negative under all conditions. A conjugate first-order closure approximation for
the flux is

∇
(

εw pw
)
− εwρw∇

(
µw + ψw

)
− εwρwgw +

w→ws
T = R̂

w·
(

vw − vs
)

, (60)

where R̂
w is a second-rank, symmetric, positive semi-definite resistance tensor. Substituting

Equations (59) and (60) into Equation (58) yields(
vw − vs

)
·R̂w·

(
vw − vs

)
= ∑

α∈I
Λα ≥ 0 , (61)

which must hold according to the properties assigned to R̂
w and provides an expression for the

entropy density production rate of the system subject to derivative restrictions and approximations.
Equation (60) can in turn be used to formulate a closed solvable model for single-fluid-phase flow.

This example illustrates how available SEIs can be used to produce closure relations and in turn
closed solvable models. Since a significant, and growing, set of such expressions are available, existing
TCAT results can be leveraged simply to develop new models for a wide range of systems. Such results
can also be used to evaluate ad hoc models developed without the rigor of TCAT to evaluate if the forms
in common use meet the entropy production constraint needed to assure validity. The deviation kinetic
energy results derived above would enable the inclusion of deviation kinetic energy in an entropy
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production equation without the neglect of terms such as the material derivative of this quantity,
which has been commonly done for porous medium applications [5]. This result could be used to
evaluate if commonly used closure relations for applications such as sediment transport are consistent
with the second law entropy production rate expression. Previously published results have concluded
that some multiphase models in common use violate the second law of thermodynamics [31], although
important issues of even a precise definition and appropriate scale at which turbulence should be
modeled remain open issues (e.g., [32]). Furthermore, entropy production expressions provide a means
to resolve the rate of entropy production as a function of space and time in a rigorous fashion, which can
in turn be used to add an appropriate level of dissipation to numerical approximations, such as the
finite element method (e.g., [33,34]).

7. Conclusions

We conclude the following:

1. TCAT is a mature framework for developing scale-consistent models of transport phenomena for
multiphase system based upon the rate of entropy production.

2. While TCAT has many desirable attributes, the underlying mathematical methods relied upon
are several in number and can be complicated for those not familiar with the approaches.

3. The key results from TCAT are entropy inequality expressions, which can span multiple pages of
heavily adorned symbols that can inhibit understanding and use.

4. Some mathematical machinery relied upon in TCAT is summarized along with how such methods
contribute to the theory.

5. The overall process to model building is described at a component level to provide a basic
understanding of the approach.

6. Available component results and model hierarchies are summarized.
7. An extension of TCAT methods to turbulent systems is considered and useful deviation kinetic

energy components for such an extension are formulated, and the consequences of using these
components for entropy production is shown.

8. An example is provided to show how entropy production can be used to provide closure relation
approximations, thereby leveraging the growing set of TCAT model hierarchies already derived.
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Notation

Roman Letters

d rate of strain tensor, d = 1
2

[
∇v + (∇v)

T]
E internal energy density
E conservation of energy equation
Eθ conservation of internal energy equation
F quantity to be minimized
f arbitrary continuous function

fn a functional
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G body force potential balance equation
G orientation tensor
g gravitational acceleration vector
I unit tensor
I′ unit tensor in a surface
I′′ unit tensor in a common curve
I index set of entities

IC index set of common curve entities
I−cα index set of entities connected to entity α that are of one dimension lower than entity α

II index set of interface entities
IP index set of phase entities

Jws
s twice the mean curvature of the interface between the solid and wetting phases
K deviation kinetic energy equation

KE deviation kinetic energy per unit mass due to velocity fluctuations
M

κ→α
microscale mass transfer rate from the κ entity to the α entity

κ→α
M macroscale mass transfer rate from the κ entity to the α entity
M conservation of mass equation
nα unit normal vector on the boundary of entity α oriented to be positive outward
P conservation of momentum equation
p pressure

IR the set of real numbers
R̂

w resistance tensor
r position vector
r general integration variable
S entropy balance equation
s solid phase entity index

T
κ→α

microscale transfer of momentum from entity κ to entity α due to stress
κ→α
T macroscale transfer of momentum from entity κ to entity α due to stress and deviation from

mean processes
T thermodynamic equation
TG material derivative of the body force potential equation

t time
t stress tensor
u vector of unknown functions
v velocity

W weighting function used in averaging
x position vector

Greek Letters

α member of I referring to phase, interface, or common curve α

γ interfacial tension
εα specific entity measure
θ temperature

θα entropy-weighted macroscale temperature of entity α

κ member of I referring to phase, interface, or common curve κ

Λ entropy production rate
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µ chemical potential
ξ microscale position vector
ρ mass density
ψ body force potential
Ω spatial domain of the averaging volume

Ωα domain occupied by entity α within the averaging volume

Subscripts (for Microscale) and Superscripts (for Macroscale)

s solid-phase qualifier, scalar qualifier
w wetting-phase qualifier

ws interface qualifier for surface between the wetting phase and solid phase
α entity qualifier
∗ qualifier for particular form of equation, which can be further qualified with an integer

Symbols

˜ above a variable denotes the deviation between the microscale quantity and the
macroscale average quantity
above a superscript refers to a density-weighted macroscale average
above a superscript refers to a uniquely defined macroscale average

〈 fα〉Ωb ,Ωc ,W =

( ∫
Ωb

W fα dr

)
/

(∫
Ωc

W dr

)
, general average of a microscale property fα

〈 fα〉Ωb ,Ωc
= 〈 fα〉Ωb ,Ωc ,1

f β
α = 〈 fα〉Ωβ ,Ωβ

, general average

f α = 〈 fα〉Ωα ,Ωα
, intrinsic average

f β
α = 〈 fα〉Ωβ ,Ωβ ,ρα

, general density-weighted average

f α = 〈 fα〉Ωα ,Ωα ,ρα
, intrinsic density-weighted average

Dα/Dt macroscale material derivative with macroscale velocity vα, Dα/Dt = ∂/∂t + vα·∇
∇ spatial gradient operator
∇· spatial divergence operator
∇′ microscale surficial gradient operator on a microscale interface
∇′· microscale surface divergence vector
∇′′ microscale gradient operator along a curve
∇′′· microscale divergence operator for a curve
∂/∂t time derivative with all spatial coordinates fixed

∂′/∂t partial time derivative fixed to point on a surface of a function dependent on microscale
spatial coordinates and time

∂′′/∂t partial time derivative fixed to a point on a curve of a function dependent on microscale
spatial coordinates and time

T transpose operator

Abbreviations

CEI constrained entropy inequality
EI entropy inequality

REV representative elementary volume for averaging from the microscale to the macroscale such
that average values are stable and independent of the averaging scale

SEI simplified entropy inequality
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TCAT thermodynamically constrained averaging theory
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