
Characterization of the oral mycobiome of Portuguese with allergic rhinitis 
and asthma
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A B S T R A C T

Allergic rhinitis and asthma are two prevailing chronic airway diseases and serious public health concerns. 
Previous research has already described the role of the airway bacteriome in these two diseases, but almost no 
study so far has explored the mycobiome and its possible association to airway inflammation. Here we sequenced 
the internal transcribed spacers (ITS) 1 and 2 to characterize the oral mycobiome of 349 Portuguese children and 
young adults with allergic rhinitis alone (AR) or with asthma (ARAS), asthmatics (AS) and healthy controls (HC). 
Our genomic analyses showed that the two most abundant fungal phyla (Ascomycota and Basidiomycota) and 
3–5 of the 14 most abundant fungal genera (Cladosporium, Aspergillus, Aleurina, Candida and Rhodotorula) in the 
mouth differed significantly (P ≤ 0.04) between both rhinitic groups and HC. However, none of the same taxa 
varied significantly between the three respiratory disease groups (AR, ARAS and AS). The oral mycobiomes of 
respiratory ill patients showed the highest intra-group diversity (microbial richness and evenness), while HC 
showed the lowest, with all alpha-diversity indices varying significantly (P ≤ 0.0424) between them. Similarly, 
all disease groups showed significant differences (P ≤ 0.0052) in microbial structure (i.e., beta-diversity indices) 
when compared to HC samples. Thirty metabolic pathways (PICRUSt2) were differentially abundant (Wald’s 
test) between AR or ARAS and HC patients, but only one of them (D-galactose degradation I) was over abundant 
(log2 Fold Change >0.75) in the ARAS group. Spiec-Easi fungal networks varied greatly among groups, which 
suggests chronic respiratory allergic diseases may alter fungal connectivity in the mouth. This study increases our 
comprehension of the role of the oral mycobiome in allergy-related conditions. It shows for the first time that the 
oral mycobiota changes during health and allergic rhinitis (with and without asthma comorbidity) and highlights 
specific taxa, metabolic pathways and fungal interactions that may relate to chronic airway disease.

1. Introduction

Allergic rhinitis and asthma are two prevailing chronic airway 

diseases in many developed countries, where they cause significant 
health and economic stress to their governments and individuals 
(Sa-Sousa et al., 2012; Todo-Bom et al., 2007; Fonseca et al., 2021). In 
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Portugal allergic rhinitis has a prevalence of 26.1 % in adults and 9 %– 
10 % in children and adolescents (Todo-Bom et al., 2007; Falcão et al., 
2008; Muc et al., 2014). Similarly, asthma impacts about 695,000 Por
tuguese and has a prevalence of 6.8 % in adults and 8.4 % in children 
and adolescents (Sa-Sousa et al., 2012; Muc et al., 2014; Ferreir
a-Magalhaes et al., 2016).

Allergic rhinitis is a Th2 type of inflammation of the nasal mucosa, 
characterized by sneezing, congestion, itching and rhinorrhea (Savoure 
et al., 2022; Steelant et al., 2016, 2018; Acevedo-Prado et al., 2022). 
While asthma is considered a multifactorial condition of the airways 
characterized by chest tightness, with bronchial obstruction, inflam
mation and mucous production (Dharmage et al., 2019; Mims, 2015; 
Licari et al., 2018). Allergic rhinitis and asthma frequently coexist 
(Compalati et al., 2010; Bousquet et al., 2019; Ferreira-Magalhaes et al., 
2015; Pite et al., 2014; Small et al., 2018), which indicates that they may 
constitute a combined airway inflammatory syndrome with multiple 
epidemiological, pathophysiological and clinical connections 
(Compalati et al., 2010; Bergeron and Hamid, 2005; Kim et al., 2008; 
Pawankar, 2006); i.e., the so called concept of a united airway disease 
(Bousquet et al., 2023). In Portugal, about 46 % of the individuals with 
asthma also show allergic rhinitis (Acevedo-Prado et al., 2022; Valero 
et al., 2009).

Multiple studies of the nasal and oral (less explored) cavities have 
shown that the bacterial communities living on them act as gatekeepers 
of respiratory health (Man et al., 2017), playing a major role in the 
emergence, development and severity of both allergic rhinitis (Bender 
et al., 2020; Chen et al., 2022; Gan et al., 2021; Lal et al., 2017; Kim 
et al., 2022; Azevedo et al., 2023; Pérez-Losada et al., 2023a, 2023b) and 
asthma (Huang and Boushey, 2014, 2015; Brar et al., 2012; Dickson and 
Huffnagle, 2015; Castro-Nallar et al., 2015; Teo et al., 2015; Bogaert 
et al., 2011; Pérez-Losada et al., 2017, 2018, 2015, 2016a, 2016b; Raita 
et al., 2021; Dinwiddie et al., 2018; Hufnagl et al., 2020; Losol et al., 
2021; Frati et al., 2018). However, the role of the fungal microbiome (i. 
e., mycobiome) in respiratory health is less understood (de Dios Ca
ballero et al., 2022; Nguyen et al., 2015; Li et al., 2024; Oliveira et al., 
2023). Emerging evidence has already stated the importance of the 
lower airways mycobiome in asthma (Nguyen et al., 2015; van Tilburg 
Bernardes et al., 2020; Carpagnano et al., 2016; Goldman et al., 2018; 
Rick et al., 2020), but little to nothing is known about the contribution of 
the fungal communities of the upper respiratory tract to chronic respi
ratory disease (Oliveira et al., 2023; van Tilburg Bernardes et al., 2020; 
Goldman et al., 2018; Rick et al., 2020) – although its diversity and 
relevance have been already put forward (Diaz, 2021; Bandara et al., 
2019). Two studies so far have shown that nasal fungi are implicated in 
the onset and development of asthma (Yuan et al., 2023) and allergic 
rhinitis (Jung et al., 2015) in susceptible individuals; but, up to our 
knowledge, the contribution of the mycobiome of the mouth to rhinitis 
and asthma remains unexplored.

Here we have applied amplicon (ITS1-ITS2) next-generation 
sequencing to 349 mouth swabs from Portuguese children and adults 
with allergic rhinitis (with and without asthma comorbidity), asthma 
and healthy controls to characterize their oral mycobiomes. We reveal 
how the composition, structure, interactions and metabolic functions of 
their fungal communities vary across these four clinical groups.

2. Materials and methods

2.1. Participants

All participants enrolled in this study were part of the ASMAPORT 
Project (PTDC/SAU-INF/27,953/2017). We obtained written consent 
from all of them or their legal guardians using the informed consent 
documents approved by the ethics committee. This study was approved 
by the “Comissão de Ética para a Saúde” (Parecer_58–17, March 2017) 
of the Centro Hospitalar Universitário São João, Facultade de Medicina 
(Porto, Portugal).

ASMAPORT was a cross-sectional study of Portuguese adults and 
children created to investigate host-microbe during asthma and rhinitis. 
Participants were recruited from northern Portugal while attending the 
outpatient clinic of the Serviço de Imunoalergologia in the Centro 
Hospitalar Universitário São João from July 2018 to January 2020. 
Healthy volunteers from the Porto area with no history of respiratory 
illness were also enrolled in the study but did not fill out the questionary 
or facilitated clinical information. The diagnosis of allergic rhinitis was 
corroborated by an allergy specialist based on a specific IgE or positive 
skin test to at least one standard inhalant allergen in Portugal and 
available clinical information (Bousquet et al., 2009; Pereira et al., 
2006). Asthma diagnosis was determined by the attending physician 
according to the observed typical symptoms in the previous twelve 
months before sampling or a positive bronchodilator responsiveness test 
with salbutamol (Silva et al., 2019). Further details are provided in 
Pérez-Losada et al. (2023a, 2023b).

2.2. Sampling

A total of 349 adults and children (36 and 313, respectively) 
participated in this study (Table S1). Individuals were classified into 
four clinical groups: allergic rhinitis (AR = 47), allergic rhinitis with 
asthma (ARAS = 161), asthma (AS = 12) and healthy controls (HC =
129 individuals). Oral samples were collected by swabbing the buccal 
mucosa of the left and right cheeks during 30 s with the same cotton 
swab. Further detail is provided in Pérez-Losada et al. (2023a, 2023b). 
Since the sample size of the AS group was small (12 participants), we 
have only used this group in some analyses and applied statistical tests 
that account for small sample sizes (see below).

2.3. ITS high-throughput sequencing

Total DNA was extracted from swabs using the ZymoBIOMICS™ 
DNA Miniprep Kit D4300. DNA extractions were sequenced using the 
Schloss’ MiSeq_WetLab_SOP protocol in Kozich et al. (2013). DNA 
samples were amplified and sequenced for the internal transcribed 
spacers (ITS) 1 and 2 regions (~230 bp) following the Earth Microbiome 
Project’s protocols (Thompson et al., 2017) and primers ITS1F Fwd: 
CTTGGTCATTTAGAGGAAGTAA and primer ITS2 Rev: 
GCTGCGTTCTTCATCGATGC – https://earthmicrobiome.org. All sam
ples were sequenced in a single sequencing run of the Illumina MiSeq at 
the University of Michigan Medical School. Negative controls processed 
as indicated above displayed no PCR band on an agarose gel. We used 
five mock communities (i.e., reference samples with a known compo
sition) and eight water and reagent negative controls to detect reagents 
contaminated with microbial DNA and measure sequencing error rate. 
We did not detect evidence of contamination and our sequencing error 
rate was 0.0053 %.

2.4. Mycobiome analyses

ITS amplicon sequence variants (ASV) in each sample were inferred 
using dada2 version 1.18 (Callahan et al., 2016) and following author’s 
recommendations for the ITS region (https://benjjneb.github.io/dada 
2/ITS_workflow.html). Reads were filtered using standard parameters, 
with no uncalled bases, maximum of 2 expected errors and truncating 
reads at a quality score of 2 or less. Forward and reverse reads were 
merged, and chimeras were identified. Taxonomic assignment was 
performed against the UNITE v9.0 2023–07–18 database (Nilsson et al., 
2019) using the implementation of the RDP naive Bayesian classifier 
available in the dada2 R package (Quast et al., 2013; Wang et al., 2007). 
ASV sequences were aligned in MAFFT (Katoh and Standley, 2013) and 
used to build a tree with FastTree (Price et al., 2010). Phylogenetic in
formation and ASV tables were imported into phyloseq (McMurdie and 
Holmes, 2013) for further analysis. ITS files, clinical metadata and 
BioSample attributes for all samples in this study have been deposited in 
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the NCBI (PRJNA1107919). Metadata information and ASV counts with 
their corresponding taxonomy are presented in Tables S1 and S2, 
respectively.

Samples were normalized using the negative binomial distribution 
approach (McMurdie and Holmes, 2014) as indicated in the package 
DESeq2 (Love et al., 2014). Taxonomic and phylogenetic alpha-diversity 
(within sample) were estimated using Chao1 richness and 
Abundance-based Coverage Estimator (ACE), Shannon and Phylogenetic 
diversity indices. Beta-diversity (between-sample) was estimated using 
Bray–Curtis, Jaccard and phylogenetic Unifrac (unweighted and 
weighted) distances, while dissimilarity between samples was explored 
using principal coordinates analysis (PCoA).

Differences in fungal phyla and genera composition and alpha- 
diversity between disease groups (AR, ARAS and AS) and healthy in
dividuals (HC) were assessed using linear models (mixed and standard) 
analysis to account for the non-independence of subjects (random effect) 
– lmer4 R package (Bates et al., 2015). We also included age, season of 
the year and sex as covariables in all our initial model comparisons. 
Linear models with randomized subjects were not better than those 
without random effects, as suggested by their similar or lower scores for 
the Bayesian Information Criterion (BIC) and Akaike Information Cri
terion (AIC); hence we did not use random effects in our final linear 
models. Additionally, none of the covariables were significant for any of 
the taxonomic and diversity indices compared. Beta-diversity indices 
were compared using permutational multivariate analysis of variance 
(adonis) – vegan R package (Dixon, 2003). The Benjamini–Hochberg 
method at alpha = 0.05 (Benjamini and Hochberg, 1995; Cook, 1977) 
was applied to correct for multiple hypotheses testing. All the analyses 
were performed in R (Team RDC, 2008) and RStudio (RStudio RT, 
2015).

2.5. Functional analyses

Metabolic pathways were predicted by imputation of gene families 
and genomes as implemented in PICRUSt2 (Douglas et al., 2020). 
Briefly, we used the fungi ITS reference database provided by the de
velopers to align our ITS sequences (minimum alignment 0.6) and then 
place them onto an ITS phylogenetic tree. Using ASV abundances ob
tained in dada2, we predicted gene family profiles and ultimately 
sample pathway abundances. Pathways were annotated using the Met
aCyc database (Caspi et al., 2020) and differential pathway abundance 
among groups was determined in DESeq2 based on the Wald test 
(adjusted p-value <0.01). Statistical analyses and visualization were 
conducted using functions in the ggpicrust R package (Yang et al., 
2023).

2.6. Network analyses

To reveal changes in fungal community structure, we used covaria
tion network analysis as implemented in Spiec-Easi (Kurtz et al., 2015). 
We estimated networks for AR, ARAS and HC at the genus level 
(abundance filter threshold = 0.0005; mb method; greedy clustering). 
Network estimation, statistics, and visualization was carried out in the 
microeco R package (Liu et al., 2021).

3. Results

We collected oral swabs from a cohort of 349 participants (220 in
dividuals with respiratory disease and 129 healthy controls) from 
northern Portugal comprised mainly of young adults and children (Table 
S1). The median age of the participants was 12.7 ± 5.5 years and 54.2 % 
were female. Individuals with respiratory disease were classified into 
three groups: AR (Hufnagl et al., 2020), ARAS (161) and AS (12 sub
jects). We sequenced the ITS1-ITS2 gene to characterize the oral 
mycobiome of each participant. Seventy-four samples (i.e., technical 
replicates) from the following groups were sequenced twice due to 

seemingly faint PCR bands in agarose gels: AR (19 samples), ARAS (50 
samples), AS (4 samples) and HC (1 samples). ASV singletons and 
samples with <1030 reads were eliminated, rendering a final data set of 
392 samples from 323 participants with the following distribution: AR 
(62 samples from 44 individuals), ARAS (203 samples from 156 in
dividuals), AS (16 samples from 12 individuals) and HC (111 samples 
from 111 individuals).

3.1. Mycobiome taxonomic diversity and structure

Our oral mycobiome (392 samples after quality control) dataset 
comprised 8360,575 clean reads, ranging from 1030 to 139,338 se
quences per sample (mean = 21,328.0) and a total of 6263 ASVs (Table 
S2). AR samples had 1085 unique ASVs, ARAS samples had 2681, AS 
samples had 296 and HC samples had 1138 (Fig. S1). The four groups 
shared 104 ASVs, the disease groups shared 143 ASVs, while other pairs 
and trios of groups shared a variable number, ranging from 4 to 355 
ASVs (Fig. S1).

The oral mycobiome sequences across all 392 filtered samples were 
classified into two dominant (<1 % abundance) Phyla: Ascomycota 
(65.1 %) and Basidiomycota (33.5 %) (Table 1). Those Phyla comprised 
14 dominant (<1 %) genera (Table 1 and Fig. 1), being the most 
abundant Aleurina (16.4 %), Cladosporium (13.8 %), Candida (7.8 %) and 
Rhodotorula (6.7 %). All the other detected phyla and genera accounted 
for <1 % of the total ITS sequences each. No core microbiome (preva
lence <90 %) was detected for the respiratory disease or healthy 
patients.

We compared the mean relative abundance of specific taxa in sub
jects with respiratory disease and healthy controls. The two dominant 
fungal phyla (Ascomycota and Basidiomycota) comprising the oral 
microbiome showed significant differences (LME model test; P ≤
0.0246) in their mean relative proportions between AR or ARAS and HC 
(Table 1). Of the 14 dominant fungal genera comprising the oral 
microbiome (Fig. 1 and Table 1), three and five genera (Cladosporium, 
Aspergillus, Aleurina, Candida and Rhodotorula) showed significant dif
ferences in their mean relative proportions between AR-HC and ARAS- 
HC after FDR correction, respectively. None of the dominant fungal 
phyla and genera varied significantly between AS and HC or the three 
respiratory disease groups (Table 1).

Alpha-diversity indices (Shannon, Chao1, ACE, and PD) of microbial 
community evenness and richness varied among clinical groups (Fig. 2
and Table S3). Respiratory disease groups displayed the highest di
versity for all indices, while HC showed the lowest. ARAS, AR and AS 
versus HC comparisons were significantly distinct (LME model test; P ≤
0.0068) for all indices but PD, which only varied significantly for AR-HC 
(LME model test; P = 0.0424). All the other pairwise comparisons were 
not significant.

To characterize the structure of the oral mycobiomes (beta di
versity), we applied principal coordinates analysis (PCoA) to 
Bray–Curtis, Jaccard and Unifrac (unweighted and weighted) distance 
matrices. All the PCoAs showed noticeable separation of the mycobiotas 
from each clinical group (Fig. 3). Group dissimilarity was then 
confirmed by the adonis test, which detected significant differences (P ≤
0.0052) in beta-diversity between each of the respiratory disease groups 
(AS, AR and ARAS) and the healthy controls for all the distances except 
for AS-HC and Unifrac weighted (Fig. 3). This suggests that the myco
biomes of those patients may differ from those of healthy individuals in a 
similar compositional manner. Moreover, three of the nine pairwise 
comparisons between respiratory disease groups also resulted signifi
cant (P ≤ 0.0345).

3.2. Mycobiome functional diversity

We inferred the functional potential of the mycobiomes of the AR, 
ARAS, and HC groups. We found significant differences (adjusted p- 
value <0.01) in abundance in 30 pathways (MetaCyc annotated) 
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between AR and HC or ARAS (Fig. 4). Most changes in pathway abun
dance represented pathways enriched in HC compared to AR or ARAS 
with negative or nearly zero log2 Fold Change (FC). Only one pathway, 
D-galactose degradation I (Leloir pathway; PWY-6317), was enriched 
(log2 FC>0.75) in the ARAS group in comparison with the control group 
(Fig. 4B). The enzymes of this pathway catalyze the conversion of D- 
galactose to D-glucopyranose 6-phosphate, which allows microorgan
isms to ultimately use D-galactose for glycolysis. Interestingly, the 
comparison AR versus ARAS yielded no significant results (p-value >
0.1), suggesting both conditions share a similar oral mycobiome func
tional signature.

3.3. Mycobiome interactions

We also investigated the potential direct or indirect interactions 
among fungal groups. We inferred inverse covariance networks using 
the Spiec-Easi model to compare the structure and connectivity of the 
oral mycobiome. The HC group network was sparsely connected and 
characterized by positive interactions (8 modules), as evidenced by low 
degree connectivity (range 1–2) and betweenness centrality (range 0–1) 
(Fig. 5). Likewise, the ARAS network (9 modules) also exhibited low 
degree connectivity (range 1–5) but a higher betweenness centrality 
(range 0–35), suggesting the presence of key nodes connecting taxa. 
Nodes with highest betweenness centrality belonged to the genera 
Conocybe and Rhizophlyctis (14 and 35, respectively). The AR network, in 

Table 1 
Mean relative proportions (%) of fungal phyla and genera in the oral mycobiome of participants with allergic rhinitis (AR), AR with comorbid asthma (ARAS), asthma 
(AS) and healthy controls (HC). p-values for significant pairwise comparisons (linear model test) between groups are also displayed. ns=not significant.

Mean relative proportions (%) Linear model test significance

All AR ARAS AS HC AR-HC ARAS-HC AS-HC AR-ARAS AR-AS ARAS-AS

Phylum
Ascomycota 65.11 53.53 65.95 66.17 70.99 0.0109 ns ns ns ns ns
Basidiomycota 33.53 45.19 32.92 32.25 27.14 0.0066 0.0246 ns ns ns ns
Genus
Malassezia 1.48 1.75 1.59 1.61 1.05 ns ns ns ns ns ns
Alternaria 3.68 3.07 4.56 1.79 2.61 ns ns ns ns ns ns
Cladosporium 13.76 13.93 17.03 13.02 7.04 0.0151 0.0002 ns ns ns ns
Penicillium 1.4 1.06 1.06 0.29 2.53 ns ns ns ns ns ns
Aspergillus 3.32 3.16 2.87 0.81 4.85 ns 0.0381 ns ns ns ns
Candida 7.75 4.52 6.37 13.04 11.81 ns 0.013 ns ns ns ns
Aleurina 16.4 6.44 12.74 22.01 29.64 0.0226 0.0367 ns ns ns ns
Debaryomyces 1.98 3.98 2.14 0.23 0.62 ns ns ns ns ns ns
Wallemia 3.47 4.5 4.16 0.68 1.86 ns ns ns ns ns ns
Rhodotorula 6.72 12.42 7.32 4.53 2.05 0.0005 <0.0001 ns ns ns ns
Vishniacozyma 1.33 1.86 1.01 2.71 1.38 ns ns ns ns ns ns
Saccharomyces 4.33 5.08 5.35 0.28 2.47 ns ns ns ns ns ns
Filobasidium 1.39 2.26 1.39 1.87 0.71 ns ns ns ns ns ns
Agaricus 2.2 0.51 0.06 0.01 8.17 ns ns ns ns ns ns

Fig. 1. Bar plots of mean relative proportions of the top fungal genera in the oral cavity of participants with allergic rhinitis (AR), AR with comorbid asthma (ARAS), 
asthma (AS) and healthy controls (HC).
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turn, exhibited moderate degree of connectivity (range 1–4; 17 mod
ules), but a high betweenness centrality (0–350). The top 5 fungal 
genera with the highest betweenness centrality were Phlebia, Sidera, 
Symmetrospora, Skeletocutis, and Bullera, suggesting they play key roles 
in the structure of the oral mycobiota in patients with allergic rhinitis 
(Fig. 5). Overall, the structure of the three networks was different, as 
revealed by their low node and edge overlap. The HC and ARAS net
works only shared one node, and the HC and AR networks shared five 
nodes. No nodes were shared among the two rhinitic or three diseased 
groups. Similarly, the networks shared no edges, suggesting the struc
ture of the mycobiota in controls and disease groups is profoundly 
different.

4. Discussion

The contribution of the upper airways mycobiome to allergic rhinitis 
and asthma is practically unknown (Yuan et al., 2023; Jung et al., 2015). 
This cross-sectional study compares the oral mycobiome of 349 Portu
guese individuals with allergic rhinitis (with and without comorbid 
asthma), asthma and healthy controls.

The studied oral mycobiomes were comprised of basically two phyla 
(Ascomycota and Basidiomycota) and 14 genera (Fig. 1 and Table 1). 
These two phyla and all dominant genera (mean relative proportions ≥3 
%) have been previously described in the airways of both healthy, 
asthmatic and rhinitic individuals, although with different abundances 
(van Tilburg Bernardes et al., 2020; Carpagnano et al., 2016; Goldman 
et al., 2018; Rick et al., 2020; Yuan et al., 2023; Jung et al., 2015; Dupuy 
et al., 2014; Ghannoum et al., 2010). We detected common opportu
nistic pathogenic fungi like Malassezia, Aspergillus, Candida and Penicil
lium (Badiee and Hashemizadeh, 2014). Moreover, Alternaria has been 
associated with AR symptoms (Andersson et al., 2003). This suggests 
that the mouth may act as a reservoir for opportunistic respiratory 

pathogens (Dong et al., 2021), which can then enrich nasal–pharyngeal 
mycobiota (Fan et al., 2020) and lead to respiratory disease.

The mycobiomes of healthy controls differed greatly in composition 
from those of participants with chronic respiratory illnesses. The oral 
mycobiome of healthy controls contained 18.2 % unique ASVs, while the 
AR, ARAS and AS bacteriomes contained 17.3 %, 42.8 % and 4.7 % 
unique ASVs, respectively (Table S2 and Fig. S1). These ASVs may 
represent biomarkers of disease for each clinical group. Further genomic 
studies are needed to confirm these results and their potential as ther
apeutic targets for rhinitis and asthma (Pérez-Losada et al., 2023a, 
2023b; Castro-Nallar et al., 2015; Pérez-Losada et al., 2015).

Ascomycota and Basidiomycota varied significantly (P < 0.025) in 
their mean relative proportions between ARAS or AR and HC (Table 1). 
A total of five dominant genera also varied significantly (P < 0.039) 
between healthy and allergic rhinitic samples with or without asthma 
comorbidity (Table 1). None of the other pairwise comparison resulted 
significantly different. Cladosporium and Rhodotorula were significantly 
more abundant in rhinitic patients, while Aspergillus, Aleurina and 
Candida increased in healthy controls. No other studies have compared 
the oral mycobiotas of rhinitic and healthy individuals, but a single 
study of the nasal mycobiome (Jung et al., 2015) did not discover sig
nificant differences between both groups, although showed a higher 
abundance of Basidiomycota than Ascomycota in rhinitic patients, 
which disagrees with our findings here. Compositional changes in these 
fungal taxa may provide insights into the pathobiology of allergic 
rhinitis. Further studies are needed to confirm our findings and the 
contribution of fungal dysbiosis to chronic inflammatory disease 
(Nguyen et al., 2015; van Tilburg Bernardes et al., 2020; Goldman et al., 
2018; Rick et al., 2020; Yuan et al., 2023).

Fungal alpha-diversity (species richness and evenness) was signifi
cantly (P < 0.007) higher in ARAS, AR and AS compared to HC for all 
indices but PD (Fig. 2), which only resulted significant for AR-HC (P =

Fig. 2. Alpha-diversity estimates (Chao1, Shannon, ACE, and phylogenetic diversity) and statistical significance (LME model test) in oral fungal communities from 
participants with allergic rhinitis (AR), AR with comorbid asthma (ARAS), asthma (AS) and healthy controls (HC). ns=not significant.
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Fig. 3. Principal coordinates analysis (PCoA) plots of beta-diversity estimates (Unifrac, Bray-Curtis and Jaccard indices) and statistical significance (adonis test) in 
oral fungal communities from participants with allergic rhinitis (AR), AR with comorbid asthma (ARAS), asthma (AS) and healthy controls (HC). ns=not significant.

Fig. 4. Differential abundance analysis (Wald’s test; adjusted p-value <0.01) of functional profiles in the oral mycobiomes of participants with allergic rhinitis (AR) 
and healthy controls (HC) (A), and AR participants with comorbid asthma (ARAS) and HC (B).
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0.0424). All other pairwise comparisons resulted unsignificant. Again, 
the single study that has explored the diversity of the upper airway 
microbiota, albeit the nasal cavity, in individuals with rhinitis (Jung 
et al., 2015) also reported higher estimates of Shannon diversity for the 
AR group than for the healthy patients. Another study of the nasal 
mycobiome during asthma has also shown higher alpha-diversity during 
asthma exacerbations (Yuan et al., 2023). If confirmed, this may suggest 
that allergic rhinitis and asthma may increase microbial diversity in the 
upper airways, as seen in previous studies of the bacteriome (Gan et al., 
2021; Kim et al., 2022; Pérez-Losada et al., 2023a, 2023b; Choi et al., 
2014).

AR, ARAS and AS shown significant differences in community 
structure (i.e., beta-diversity) compared to HC for all tests but one 

involving AS-HC (Fig. 3). Additionally, pairwise comparisons of respi
ratory disease groups resulted not significant for three of the four indices 
compared. A previous study of the nasal mycobiota (Jung et al., 2015) 
also revealed that AR and HC communities were very differentiated. 
Hence, as indicated before (Pérez-Losada et al., 2023a, 2023b), these 
results suggest that fungal compositional shifts in the upper airways may 
be a reliable predictor of allergic rhinitis or asthma in the upper airways, 
given their lower stochasticity related to dysmycobiosis (Ma, 2020; Ma 
et al., 2019).

As with the taxonomic diversity and composition of the oral myco
biome of allergic rhinitis, its functional component is largely underex
plored. Here, we used an imputation method to indirectly explore the 
functional potential of the oral mycobiome (Fig. 4). We found modest 
yet significant differences in metabolic pathway abundance when 
comparing AR and ARAS to HC. Most of the differences indicated a 
significant reduction in the relative abundance of metabolic pathways in 
samples from AR and ARAS groups. These findings are consistent with 
the taxonomic analyses and suggests that taxonomy follows function in 
the oral mycobiome, either in health or disease. One exemption was the 
D-galactose degradation pathway, which was more abundant in ARAS 
patients than control patients. Up to our knowledge, the impact (if any) 
of the fungal D-galactose degradation pathway in airway human health 
has not been investigated, hence the implications of this result remain to 
be validated.

We used a network approach to explore mycobiome interactions in 
the oral cavity (Fig. 5). Those methods are generally based on co- 
occurrence or co-variation of microbes’ abundance to infer direct or 
indirect interactions. Positive interactions might be indicative of syn
trophy (i.e., a relationship in which one or both organisms benefit 
nutritionally from the presence of the other) or commensalism, while 
negative interactions may indicate competition or predation. In our 
study, the HC group showed fewer significant interactions, all of which 
were positive. In contrast, the ARAS and notably the AR group exhibited 
more diverse relationships with multiple modules with positive and 
negative interactions among fungal taxa. In oral fungal communities, 
several studies have focused on cross-kingdom bacteria-fungi in
teractions and their associations with disease (Du et al., 2022). How
ever, previous research has shown that these patterns of co-abundance 
and exclusion seem to be stable across body sites in the healthy human 
microbiome and that its alteration can be indicative of underlying dis
ease processes (Faust et al., 2012). In previous studies of the bacteriome 
in patients with allergic rhinitis (Pérez-Losada et al., 2023a, 2023b, 
2018) or of the mycobiome in asthmatics (Huang et al., 2020; Liu et al., 
2020), co-occurrence networks in diseased participants exhibited 
different interactions than in healthy controls. Our novel analyses of the 
oral mycobiome in rhinitic patients seem to confirm these results, 
although with the allergic rhinitis (AR) exhibiting a higher and more 
diverse mycobiome network. Interestingly, despite of the multiple con
nections of rhinitis and asthma and the proposed concept of a united 
airway disease (Compalati et al., 2010), recent omic data (Dizier et al., 
2007; Lemonnier et al., 2020) suggests that rhinitis alone and rhinitis 
with comorbid asthma may represent two distinct diseases with different 
allergen sensitization and onset (Siroux et al., 2018), severity (Savoure 
et al., 2023) and treatment response (Sousa-Pinto et al., 2022). More
over, the hypothesis that these two distinct diseases are possibly 
modulated by the microbiome has been recently proposed (Bousquet 
et al., 2023). Further research is needed to explore the role of fungi in 
chronic inflammation, particularly in allergic individuals.

There is emerging evidence of that the airway mycobiome has a 
significant impact on clinical outcome of chronic respiratory diseases 
such as asthma (Nguyen et al., 2015). A few studies have already shown 
that nasal fungal dysbiosis is associated to asthma (Yuan et al., 2023) 
and allergic rhinitis (Jung et al., 2015); little is known, however, about 
the role of the oral cavity mycobiota. We have shown that oral dysmy
cobiosis (i.e., imbalance in the fungal community) may contribute to 
allergic rhinitis with or without asthma comorbidity. This finding 

Fig. 5. Spiec-Easi networks of fungal taxa in the oral mycobiomes of partici
pants with allergic rhinitis (AR), AR with comorbid asthma (ARAS) and healthy 
controls (HC). Nodes represent taxa connected by edges whose width (0.05 to 
0.5) is proportional to the strength of their association. Cyan and pink edges 
indicate positive and negative correlations, respectively.
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warrants further research to elucidate the relationship between the oral 
mycobiota and airway pathology.
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M. Pérez-Losada et al.                                                                                                                                                                                                                         Current Research in Microbial Sciences 7 (2024) 100300 

10 

http://refhub.elsevier.com/S2666-5174(24)00083-X/sbref0038
http://refhub.elsevier.com/S2666-5174(24)00083-X/sbref0038
http://refhub.elsevier.com/S2666-5174(24)00083-X/sbref0038
http://refhub.elsevier.com/S2666-5174(24)00083-X/sbref0066
http://refhub.elsevier.com/S2666-5174(24)00083-X/sbref0066
http://refhub.elsevier.com/S2666-5174(24)00083-X/sbref0002
http://refhub.elsevier.com/S2666-5174(24)00083-X/sbref0002
http://refhub.elsevier.com/S2666-5174(24)00083-X/sbref0002
http://refhub.elsevier.com/S2666-5174(24)00083-X/sbref0023
http://refhub.elsevier.com/S2666-5174(24)00083-X/sbref0023
http://refhub.elsevier.com/S2666-5174(24)00083-X/sbref0023
http://refhub.elsevier.com/S2666-5174(24)00083-X/sbref0054
http://refhub.elsevier.com/S2666-5174(24)00083-X/sbref0054
http://refhub.elsevier.com/S2666-5174(24)00083-X/sbref0070
http://refhub.elsevier.com/S2666-5174(24)00083-X/sbref0070
http://refhub.elsevier.com/S2666-5174(24)00083-X/sbref0070
http://refhub.elsevier.com/S2666-5174(24)00083-X/sbref0084
http://refhub.elsevier.com/S2666-5174(24)00083-X/sbref0084
http://refhub.elsevier.com/S2666-5174(24)00083-X/sbref0084
http://refhub.elsevier.com/S2666-5174(24)00083-X/sbref0060
http://refhub.elsevier.com/S2666-5174(24)00083-X/sbref0060
http://refhub.elsevier.com/S2666-5174(24)00083-X/sbref0060

	Characterization of the oral mycobiome of Portuguese with allergic rhinitis and asthma
	1 Introduction
	2 Materials and methods
	2.1 Participants
	2.2 Sampling
	2.3 ITS high-throughput sequencing
	2.4 Mycobiome analyses
	2.5 Functional analyses
	2.6 Network analyses

	3 Results
	3.1 Mycobiome taxonomic diversity and structure
	3.2 Mycobiome functional diversity
	3.3 Mycobiome interactions

	4 Discussion
	Ethics statement
	Funding
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Supplementary materials
	datalink4
	References


