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Background: Thrombolysis with r-tPA is recommended for patients after acute ischemic
stroke (AIS) within 4.5 h of symptom onset. However, only a few patients benefit from this
therapeutic regimen. Thus, we aimed to develop an interpretable machine learning
(ML)–based model to predict the thrombolysis effect of r-tPA at the super-early stage.

Methods: A total of 353 patients with AIS were divided into training and test data sets. We
then used six ML algorithms and a recursive feature elimination (RFE) method to explore
the relationship among the clinical variables along with the NIH stroke scale score 1 h after
thrombolysis treatment. Shapley additive explanations and local interpretable
model–agnostic explanation algorithms were applied to interpret the ML models and
determine the importance of the selected features.

Results: Altogether, 353 patients with an average age of 63.0 (56.0–71.0) years were
enrolled in the study. Of these patients, 156 showed a favorable thrombolysis effect and
197 showed an unfavorable effect. A total of 14 variables were enrolled in the modeling,
and 6ML algorithms were used to predict the thrombolysis effect. After RFE screening,
seven variables under the gradient boosting decision tree (GBDT) model (area under the
curve � 0.81, specificity � 0.61, sensitivity � 0.9, and F1 score � 0.79) demonstrated the
best performance. Of the seven variables, activated partial thromboplastin clotting time
(time), B-type natriuretic peptide, and fibrin degradation products were the three most
important clinical characteristics that might influence r-tPA efficiency.

Conclusion: This study demonstrated that the GBDT model with the seven variables
could better predict the early thrombolysis effect of r-tPA.
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INTRODUCTION

Acute ischemic stroke (AIS) is a disturbance in cerebral blood
flow and has been the leading cause of serious disability and death
worldwide (Khandelwal et al., 2016; Kamel et al., 2020). As an
acute emergency, AIS is estimated to lead to a loss of 1.9 million
neurons per minute, causing irreversible brain injury around the
infarction area (Saver, 2006). Timely treatment to remove the
obstruction and restore the blood flow has been shown to
improve the outcomes in AIS patients (Herpich and Rincon,
2020).

Intravenous thrombolysis with r-tPA is widely recommended
to be beneficial for patients with ischemic stroke within 4.5 h of
symptom onset (Dong et al., 2017; Phipps and Cronin, 2020).
Nevertheless, not all patients can benefit from this therapeutic
regimen. Only approximately 40% of the treated patients show
improvement, whereas other patients still experience a low
recanalization rate (Orban-Kalmandi et al., 2021). Thus,
predicting the intravenous thrombolytic effect at an early stage
is important for both the clinician and patient.

Machine learning (ML) algorithms are a crucial branch of
artificial intelligence and can learn from complex data by using
computational techniques to find potential characteristics to
make predictions (Heo et al., 2019; Rajkomar et al., 2019;
Sirsat et al., 2020). Compared to conventional statistics, ML
includes multiple unique algorithms, such as the random
forest classifier, support vector machine, and extreme gradient
boosting (XGBoost), which can allow computers to create a
model by iterative learning (Deo, 2015; Wang et al., 2020). As
a multidisciplinary approach, ML algorithms are gaining
popularity in addressing complex problems of healthcare
decision-making, and some studies have demonstrated that
ML tools provide better accuracy and discrimination (Kamal
et al., 2018; Fan et al., 2021). Kalscheur et al. (2018) reported the
use of ML to create a model that can help doctors discriminate
clinical outcomes in those accepting cardiac resynchronization
therapy and improve the shared decision-making with patients.
In addition, Lee et al. (2020) also found that ML algorithms using
magnetic resonance imaging features were much more sensitive
than human readings in identifying patients after a stroke within
the time window for acute thrombolysis.

Although ML algorithms have been widely used in the
prediction of stroke outcomes, few studies have reported the
predictive value of the thrombolysis effect at 1 h after r-tPA
infusion. In this study, we aimed to develop a model using the ML
algorithm to predict the potential effect of r-tPA at admission in
patients with AIS.

METHODS

Study Design and Patients
We retrospectively conducted an analysis using a cohort of AIS
patients who received intravenous thrombolysis with r-tPAbetween
January 2019 andOctober 2020 at the Beijing TiantanHospital. The
inclusion and exclusion criteria were previously reported by Zhu
et al. (2021). Briefly, patients were recruited if theymet the following

criteria: diagnosis with AIS through magnetic resonance imaging or
computed tomography and admittance to the emergency
department within 4.5 h of symptom onset. Patients with a
history of the following conditions were excluded from the
study: having received a mechanical thrombectomy and having a
large vessel occlusion. The study was approved by the ethics
committee of the Beijing Tiantan Hospital. The requirement for
written informed consent was waived because of the retrospective
nature of the study. Confidential patient information was deleted
from the entire data set prior to the analysis.

Laboratory values before r-tPA use were recorded. Other
medical records, including demographic data and the NIH
stroke scale (NIHSS) score at admission and 1 h after r-tPA
infusion, were carefully extracted.

Machine Learning Algorithms
Missing values were replaced before the development of the ML-
based predictive models. In our analysis, the median value and
model were employed for continuous variables and dispersive
eigenvalues, respectively. Six ML algorithms, including logistic
regression (LR), random forest (RF), XGBoost, adaptive boosting
(AdaBoost), gradient boosting decision tree (GBDT), and light
gradient boosting machine (LGBM) were applied to determine
the best performing model. In addition, the recursive feature
eliminationmethod was used to calculate the contribution of each
of the variables. The most optimal variables were further
validated using the GBDT method.

Model Validation
All patients were randomly divided into training and testing sets at
a ratio of 8:2. Once the models were derived, the performances of
the different models were validated using the receiver–operating
characteristic (ROC) curve as the evaluationmetric. The area under
the curve (AUC) was calculated to evaluate the performance of the
ML algorithm between the training and testing sets. The F1 score
was calculated to evaluate the performance of each model. Finally,
the optimal ML algorithm was selected.

Model Interpretation
The Shapley additive explanations (SHAP) value, which was
developed from the cooperative game theory, was used to
interpret the predictions made by the models. By marginally
calculating the contributions of the variables, the SHAP method
can better explain the importance of each variable in all factor
sequences. The local interpretable model–agnostic explanation
(LIME) was also used to explain the predictions. The rationale by
which a model predicts a single sample using a local linear
approximation of the model behavior can be better trusted.

Statistical Analysis
According to the NIHSS score at admission and 1 h after r-tPA
infusion, all patients were divided into two groups, i.e., those
having a favorable effect and those with an unfavorable r-tPA
effect. Those with a 1-h NIHSS score of≤1 point after thrombolysis
or a 1-h NIHSS score that decreased by at least four points below
the score at admission were considered favorable. By contrast,
other effects were considered unfavorable (Guo et al., 2020).
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Data are presented as medians with interquartile ranges (IQRs)
(for non–normally distributed variables), means with standard
deviations, or percentages (%). A Fisher exact test or a χ2 test

was conducted for binary variables, and a Student t-test or
Mann–Whitney U test was used for the continuous variables.
The six ML algorithms were developed and validated using

TABLE 1 | Demographic and laboratory data of the AIS patients stratified according to the NIHSS score.

Variable Total Favorable prognosis Unfavorable prognosis p-value

353 156 197

Age, ya 63.0 (56.0, 71.0) 63.0 (55.0, 70.25) 63.0 (56.0, 71.0) 0.438
BMI, kg/m2a 25.24 (23.05, 27.36) 25.33 (23.03, 27.46) 25.15 (23.12, 27.34) 0.373
Gender 0.095
Male 261 (73.94%) 108 (69.23%) 153 (77.66%)
Female 92 (26.06%) 48 (30.77%) 44 (22.34%)

TIA, n (%) 0.045
No 261 (73.94%) 108 (69.23%) 153 (77.66%)
Yes 70 (19.83%) 39 (25.0%) 31 (15.74%)

Missing 22
NIHSS score at admissiona 5.0 (3.0, 9.0) 4.0 (2.0, 9.0) 5.0 (3.0, 8.5) 0.003
NIHSS score after rt-PA 1 ha 3.0 (1.0, 6.0) 1.0 (0.0, 2.0) 4.0 (2.0, 8.0) <0.001

BNPa 35.6 (16.9, 97.28) 28.0 (13.65, 81.75) 42.4 (21.6, 103.4) 0.003
APTT (time)a 29.6 (27.2, 31.5) 29.8 (28.18, 31.58) 29.0 (26.7, 31.5) 0.011
RDW-CV, %a 12.7 (12.4, 13.2) 12.7 (12.4, 13.1) 12.8 (12.4, 13.2) 0.01
MO, %a 5.2 (4.2, 6.5) 5.65 (4.65, 6.73) 5.0 (4.0, 5.9) 0.002
FDP, ng/mla 1.33 (0.96, 2.0) 1.205 (0.88, 1.8) 1.5 (1.03, 2.13) 0.001
MYO, ng/mla 42.0 (30.35–63.65) 38.95 (27.8, 58.58) 44.4 (33.45, 68.0) 0.007
EO, %a 1.2 (0.5, 2.2) 1.3 (0.6, 2.4) 1.1 (0.4–2.1) 0.04
GR, %b 69.68 ± 12.038 67.04 ± 11.98 71.741 ± 11.98 0.001
Glu, mmol/La 6.84 (5.92, 8.80) 6.44 (5.68, 8.33) 7.27 (6.15, 9.11) 0.003
cTnl, ng/mla 0.003 (0.001, 0.006) 0.002 (0.001, 0.004) 0.003 (0.002, 0.007) 0.001
CK-MB, ng/ml 1.2 (0.8, 1.6) 1.1 (0.8, 1.5) 1.2 (0.8, 1.7) 0.036
D-D, ug/mla 0.6 (0.4, 0.9) 0.6 (0.4, 0.8) 0.61 (0.45, 0.99) 0.012
NLRa 2.87 (2.08, 4.63) 2.59 (1.90, 4.16) 3.04 (2.28, 4.79) 0.002

aValues are presented as median (IQR).
bFor continuous variables, values are presented as mean ± SD.
cTIA:Transient Ischemic Attacks.

TABLE 2 | Patient characteristics divided by training data set and testing data set.

Characteristic Total (n = 353) Training data set (n = 282) Testing data set (n = 71)

Age, ya 63.0 (56.0, 71.0) 63.0 (56.0, 70.0) 63.0 (56.0, 72.5)
BMI, kg/m2a 25.24 (23.39, 27.06) 25.24 (23.38, 27.04) 25.249 (23.41, 27.14)
Gender
Male 261 (73.94%) 208 (73.76%) 53 (74.65%)
Female 92 (26.06%) 74 26.24%) 18 (25.35%)

TIA, n (%)
No 283 (80.17%) 225 (79.79%) 58 (81.69%)
Yes 70 (19.83%) 57 (20.21%) 13 (18.31%)

BNPa 35.6 (17.8, 96.7) 35.6 (17.0, 91.78) 39.3 (19.15, 102.25)
APTT (time)a 29.6 (27.2, 31.5) 29.6 (27.33, 31.2) 29.2 (26.95, 31.95)
RDW-CV, %a 12.7 (12.4, 13.2) 12.7 (12.4, 13.2) 12.8 (12.4, 13.15)
MO, %a 5.2 (4.6, 5.9) 5.2 (4.6, 5.8) 5.2 (4.8, 6.55)
FDP, ng/mla 1.33 (0.97, 2.0) 1.3 (0.94, 1.96) 1.52 (1.025, 2.02)
MYO, ng/mla 42.0 (31.0, 63.0) 42.15 (31.83, 62.53) 38.8 (26.25, 64.0)
EO, %a 1.2 (0.5, 2.2) 1.1 (0.43, 2.2) 1.5 (0.6, 2.3)
GR, %b 69.36 ± 10.44 69.78 ± 10.27 67.69 ± 10.27
Glu, mmol/La 6.84 (6.23, 7.96) 6.84 (6.19, 8.01) 6.84 (6.23, 7.03)
cTnl, ng/mla 0.003 (0.001, 0.006) 0.003 (0.001, 0.005) 0.003 (0.002, 0.007)
CK-MB, ng/mla 1.2 (0.8, 1.6) 1.2 (0.8, 1.6) 1.1 (0.8, 1.49)
D-D, μg/mla 0.6 (0.41, 0.9) 0.6 (0.43, 0.87) 0.6 (0.4, 0.92)
NLRa 2.87 (2.08, 4.63) 2.9 (2.13, 4.67) 2.709 (1.94, 4.34)

aValues are presented as median (IQR).
bFor continuous variables, values are presented as mean ± SD.
cTIA:Transient Ischemic Attacks.
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Python software. Statistical significance was set at p≤ 0.05. Statistical
analyses were conducted using Python software (version 3.8).

RESULTS

AIS patients were divided into favorable and unfavorable effects
according to the NIHSS score at admission and 1 h after r-tPA.
The baseline characteristics of the patients have been reported
elsewhere. Briefly, 353 patients with an average age of 63.0
(56.0–71.0) years were enrolled in the study. Of them 156
patients with an average age of 63.0 (55.0–70.25) years had a
favorable effect and 197 patients with an average age of 63.0
(56.0–71.0) years had an unfavorable effect. At admission, the
average NIHSS score for the patients with a favorable effect was
4.0 (2.0, 9.0) and for those with an unfavorable effect was 5.0 (3.0,
8.5). About 1 h after receiving rt-PA, the NIHSS scores were 1.0
(0.0, 2.0) and 4.0 (2.0, 8.0) for the favorable and unfavorable effect
groups, respectively (Table 1).

Model Performance
A total of 14 variables including activated partial thromboplastin
clotting time [APTT], monocytes percent (MO), B-type natriuretic
peptide (BNP), red cell distribution width (RDW-CV), fibrin
degradation products (FDP), glucose (Glu), granulocyte
ratio (GR), cardiac troponin I, eosinophil ratio (EO, %), creatine
kinase-MB (CK-MB), myoglobin (Myo), D-dimer (D-D), and
neutrophil–lymphocyte ratio (NLR) were enrolled in our
modeling (Supplementary Material). The AIS patients were
randomly stratified (8:2) into the training set for developing the
models and the testing set for evaluating themodel performance. The
clinical characteristics of the two data sets are presented in Table 2.

Six ML algorithms including LR, RF, XGBoost, AdaBoost,
GBDT, and LGBM were used to find the model with the
best predictive performance. The results showed that the GBDT
model demonstrated the best performance (AUC� 0.82, specificity
� 0.68, sensitivity � 0.87, and F1 score � 0.80). In addition, the
AUC, sensitivity, specificity, F1 score, positive predict (PPV),
negative predict (NPV), positive likelihood ratio (PLR), and
NLR values of the other five models in the training and testing
data sets are shown in Table 3 and Figure 1.

To further optimize the GBDT model, all 14 samples were
filtered individually using the F method. Finally, seven variables
were employed for the optimal GBDT algorithm (AUC � 0.81,
specificity � 0.61, sensitivity � 0.9, and F1 score � 0.79) (Table 4;
Figure 2A,B).

TABLE 3 | Summary of prediction results of six ML algorithms based on the training data set and testing data set.

Model LR RF XGBoost AdaBoost GBDT LGBM

Train data set AUC (95% CI) 0.58 (0.52, 0.65) 0.8 (0.75, 0.85) 0.88 (0.84, 0.92) 0.842 (0.80, 0.89) 0.97 (0.96, 0.99) 0.96 (0.94, 0.98)
Testing data set AUC (95% CI) 0.70 (0.57, 0.82) 0.79 (0.69, 0.90) 0.80 (0.69, 0.90) 0.77 (0.66, 0.88) 0.82 (0.72, 0.92) 0.81 (0.71, 0.91)
Specificity 0.54 0.69 0.65 0.70 0.68 0.64
Sensitivity 0.78 0.85 0.88 0.80 0.87 0.91
F1 0.75 0.77 0.77 0.78 0.80 0.79
Youden index 0.32 0.53 0.53 0.50 0.54 0.55
NPV 0.75 0.79 0.86 0.68 0.82 0.89
PPV 0.58 0.77 0.70 0.81 0.74 0.67
PLR 1.69 2.71 2.51 2.69 2.67 2.53
NLR 0.41 0.22 0.18 0.29 0.20 0.15

FIGURE 1 | ROC curves of six ML algorithms based on variables in the
testing data set.

TABLE 4 | Results of LIME with GBDT model under seven most important
variables. Four patients were random selected to interpret of sample
prediction results using true negative, true positive, false negative, and false
positive.

Model GBDT

Train data set AUC (95% CI) 0.83 (0.78, 0.87)
Testing data set AUC (95% CI) 0.81 (0.71, 0.91)
Specificity 0.61
Sensitivity 0.9
F1 0.79
Youden index 0.51
NPV 0.89
PPV 0.63
PLR 2.31
NLR 0.16
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Interpretation and Evaluation of Machine
Learning Model
The SHAP method was also used to interpret the predictions
achieved by the GBDT model. Based on the SHAP results, the
feature ranking interpretation showed that APTT, BNP, and FDP
were the three most important features. Overall, the
characteristics of Myo, RDW-CV, FDP, BNP, Glu, and GR
correlated positively with the outcomes, indicating increased
risk; in addition, the effect of APTT on the patient outcome is
nonlinear and fluctuates (Figure 3).

Moreover, the LIME algorithm was applied to explain the
influence of different variables of the GBDT model on the
prediction results. Four cases (true positive, true negative, false
positive, and false negative) in the testing data set were randomly
selected to interpret the visualized prediction results (Figure 4).

DISCUSSION

Extensive efforts have been made to stratify the long-term
outcomes of AIS after r-tPA (Di Lorenzo et al., 2021; Goh
et al., 2021). However, early intervention for AIS is particularly
important as a disease with a high mortality and disability rate.
Thus, this study was designed to evaluate the risk factors which
may influence the thrombolytic effect of r-tPA in the early stage of
AIS by using ML algorithm. Our study using GBDT model
demonstrated that Myo, RDW-CV, FDP, BNP, Glu, and GR are
risk factors and should be considered before thrombolysis is
applied in clinical scenarios. As an important tool in artificial
intelligence, ML has recently received increasing attention and is
widely utilized inmedical data processing. One of the advantages of
ML is the development of predictive models for prognostic
outcomes among various confounding factors. Ou et al. (2020)
reported a positive result in aneurysm rupture risk assessment
using the ML method when compared with a conventional
statistical model. Sung et al. (2020) found that ML algorithms

FIGURE 2 | Using recursive feature elimination method to screen the
optimal variables. (A) Seven variables were employed for the optimal GBDT
algorithm. (B) ROC curves of the GBDT model based on selected variables.

FIGURE 3 | Seven most important variables and their impact on the
GBDT model output by SHAP analysis. (A) Summary of SHAP analysis on the
data set. One dot represents a case in the data set, and the color of a dot
indicates the value of the feature. Blue indicates the lowest range and red
the highest range. (B) Ranking of the seven variables’ importance indicated by
SHAP analysis.
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that integrate clinical and neuroimaging information can better
predict early neurological deterioration in patients after an acute
minor stroke. Although these studies showed a good performance
through the use of ML, they were not aimed at predicting the
super-earlier therapeutic response of r-tPA. To the best of our
knowledge, this is the first study to useML algorithm to predict the
1-h clinical outcome of AIS patients after r-tPA thrombolysis.

Making an accurate prediction under a clinical scenario is usually
difficult owing to the existence of too many potential heterogeneous
factors and the inherent noise of data encountered in clinical care.
Thus, it is preferable to use a simple model if it is sufficiently
accurate for a particular application. In our study, we used both 14
and seven variables during the modeling. Both showed good
prediction efficiency; however, because the use of seven
variables is more feasible under real clinical scenarios, we
applied the seven variables to the GBDT model.

Although ML algorithms enable a computer to process
complex calculations between variables and outcomes to
achieve a more relevant prediction, some aspects of ML
algorithms, such as their “black box” characteristic, have
limited their predictive value (Petch et al., 2021). Owing to the

black box characteristic, ML algorithms are considered to lack a
transparent interpretation of the learning. Thus, anML algorithm
model should be used along with the experiences of the physician,
rather than as a clinical judgment tool.

To overcome the weaknesses of ML, the SHAP method, which
employs a game theory–based approach, was used to interpret the
predictions made by the best model. As a unified framework that
improves the interpretability and maintains the predictability of
complex models, the Shapley value can provide insight for
determining the relationships among numerous variables. By
using the SHAP method, we identified the characteristics of
the important variables that contribute to a prediction,
including APTT (time), Myo, and BNP.

The present study has several limitations that should not be
ignored. First, this was a single-center retrospective study with a
small sample size, which may influence the model efficiency.
Further validation in a multicenter setting is required. Second,
only the NIHSS score at 1 h was employed in the analysis to
evaluate the thrombolytic effect, and long-term follow-up results
should be added in the future study. Third, further validation and
assessment of the model is required. Because AIS is a complex

FIGURE 4 | Results of LIME with GBDT applied to four random selected patients.
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disease which may be influenced by various factors (such as
disease history and home therapies), the analysis of this study was
mainly based on the NIHSS score, which may not be enough to
accurately predict the thrombolysis effect.

CONCLUSION

In summary, this study demonstrated the feasibility of applyingML
algorithm in predicting the curative effect 1 h after thrombolysis.
However, further studies with a larger cohort are needed to validate
the model accuracy in the future, and the predictive value of the
model needs to be further examined in clinical practice.
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