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Abstract
Interpolating a skewed conditional spatial random field with missing data is cumbersome in the absence of Gaussianity 
assumptions. Copulas can capture different types of joint tail characteristics beyond the Gaussian paradigm. Maintaining 
spatial homogeneity and continuity around the observed random spatial point is also challenging. Especially when interpo-
lating along a spatial surface, the boundary points also demand focus in forming a neighborhood. As a result, importing the 
concept of hierarchical clustering on the spatial random field is necessary for developing the copula model with the interface 
of the Expectation-Maximization algorithm and concurrently utilizing the idea of the Bayesian framework. This article 
introduces a spatial cluster-based C-vine copula and a modified Gaussian distance kernel to derive a novel spatial probability 
distribution. To make spatial copula interpolation compatible and efficient, we estimate the parameter by employing differ-
ent techniques. We apply the proposed spatial interpolation approach to the air pollution of Delhi as a crucial circumstantial 
study to demonstrate this newly developed novel spatial estimation technique.

Keywords Von-Mises distribution · Expectation-Maximization algorithm · Hierarchical Spatial Clustering · Spatial Copula 
Interpolation · Bayesian Spatial Copula Interpolation

Introduction

The upward trend of Particulate Matter (PM) concentrations 
in the atmosphere and air pollution has become the greatest 
threat to human civilization daily. Every year, nearly 0.8 
million people die due to the direct and indirect effects of 
air pollution, and approximately 4.6 million people endure 
from serious diseases such as chronic obstructive pulmonary 
disease (COPD), respiratory hazards, premature deaths, and 
so on (Auerbach and Hernandez 2012; Lim et al. 2012). It is 
unavoidable, that the air-pollutant concentration is estimated 
with greater accuracy to control air pollution. The spatial 

and spatio-temporal application of geostatistics is crucial 
during prediction.

A very interesting task in geostatistics is interpolating a 
target variable at a particular time stand, in an unobserved 
location, considering its surroundings. In this scenario, the 
researchers prefer to use Inverse Distance Weight (IDW), 
Ordinary Kriging (OK), Universal Kriging (UK), Disjunc-
tive Kriging (DK), etc (Isaaks and Srivastava 1989; Cres-
sie 1990). Because of significant advances in data science, 
many scientists prefer neural networking-based spatial and 
spatio-temporal interpolation techniques like Geo-Long 
Short Time Memory (Geo-LSTM), Random Forest Regres-
sion Kriging (RFK), and others (Ma et  al. 2019; Shao 
et al. 2020). The previously mentioned algorithms use the 
variance-covariance function as a measure of dependence. 
The main drawback of this traditional spatial interpolation 
algorithm is the gaussianity assumption, is rarely met. The 
neural networking-based algorithms outperform, but the 
mathematical justification is difficult. As a result, applying 
this model in other cases can be challenging. These signifi-
cant limitations promote the use of the copula-based spatial 
and spatio-temporal interpolation approach. This copula-
based spatial interpolation technique is both theoretically 
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and practically flexible. A spatial copula can easily capture a 
Geo-spatial variability. Spatial lag-based Gaussian and non-
Gaussian bivariate copulas interpolate four different ground-
water quality parameters in Baden-Wurttemberg (Bárdossy 
2006). Following that, many advances in spatial copula are 
established, for example, the utilization of asymmetric copu-
las to measure spatial independence (Bárdossy and Pegram 
2009), the use of Gaussian and non-Gaussian vine copula to 
derive the conditional distribution in the unobserved loca-
tion (Bárdossy 2011), and employing the convex combina-
tion of archimedean copulas to kriging (Sohrabian 2021). 
Besides these, application of the Gaussian Copula (GC) 
via Bayesian framework to predict the maximum tempera-
tures in the Extremadura region in southwestern Spain, for 
the period 1980-2015 (García et al. 2021), and a bivariate 
copula (Masseran 2021) measures the association between 
air pollution severity and its duration. Copula-based bias-
correction method Alidoost et al. (2021) develops three 
multivariate copula-based quantile regression to map daily 
air temperature data. They (Khan et al. 2020) apply regular 
(C- and D-) Vine copula and the Student t-copula to explore 
the structure of spatial dependence of different climate var-
iables, for instance, precipitation, and air temperature. A 
combination of extreme value models like the Generalized 
Pareto Distribution (GPD) with copulas (Masseran and Hus-
sain 2020) illustrate a dependence between PM10 and a set of 
four major pollutant variables, namely, CO, NO2 , SO2 , and 
O 3 . Employing extra-parameterized multivariate extreme 
valued copula (Carreau and Toulemonde 2020) introduces 
a spatial copula model. Application of D-vine copula in 
quantile regression (D’Urso et al. 2022) has explained the 
spatial and spatio-temporal behavior of COVID-19 in Italy. 
After capturing the seasonality and temporal dependency 
of the daily mean temperature a new spatial distance-based 
R-vine copula is introduced (Erhardt et al. 2015). Usage of 
spatial lag as an important dependence parameter of a vine 
copula (Gräler 2014; Bostan et al. 2021) introduce a spatial 
vine copula. With the help of the Metropolis-Hastings Algo-
rithm (MHA), (Kazianka and Pilz 2011) they have improved 
spatial copula in the Bayesian framework to approximate the 
posterior predictive density whereas, this method is limited 
to the GC family. Spatial vine copula and dimension reduc-
tion transformation (Musafer and Thompson 2017) create 
a non-linear optimal multivariate spatial design to mitigate 
the prediction uncertainty of more than one variable. Intro-
ducing the copula-based semi-parametric algorithm (Quessy 
et al. 2015) models intrinsic stationary and isotropic spatial 
random fields. A pairwise composite likelihood with the 
help of a pair copula is defined using the generalized method 
of moments (Bai et al. 2014). A spatial factor copula model 
Krupskii et al. (2018) combines the flexibility of a copula, 
accountability of factor models, and the tractability of GC 
in higher dimensions, to fit spatial data at different temporal 

replicates. Extension of spatial Gaussian copula interpola-
tion method (Gnann et al. 2018) predicts the primary vari-
able, groundwater quality, and the categorical information 
of the primary variable as a secondary variable. A mixture 
copula explains the spatial dependency of an air temperature 
of a location on its Geo-spatial neighborhood (Alidoost et al. 
2018). A translation process (TP) is discovered (Richardson 
2021) for a non-Gaussian spatial copula interpolation pro-
cess and is too effective to model in the absence of a link 
function. A spatio-temporal heterogeneous copula-based 
kriging (HSTCAK) (Wang et al. 2021) measures the space-
time dependency by the copula function and mitigates the 
heterogeneity problem by fuzzy clustering. Crucial advance-
ments in the spatial copula approach like tail dependency, 
asymmetric dependency, and extension of the linear model 
of coregionalization specifically model the multivariate spa-
tial data (Krupskii and Genton 2019), and they use cross-
covariance function as the measure of spatial dependence.

The research articles used copulas in the spatial interpola-
tion very well in the literature, but there are some constraints 
that the previous authors have ignored. (i) To estimate 
parameters, they use the Maximum Likelihood estimate, 
which does not provide a good estimate in presence of miss-
ing data. (ii) After creating spatial copula interpolation, they 
fix one point and calculate the probability distribution at dif-
ferent lags from that point. As a result, the copula is limited 
within the fixed reference frame, but the reference frame is 
random in reality. Therefore, we consider the random points 
to form a cluster, prioritizing a relative distance. (iii) At the 
time of spatial clustering, they disregard the significance of 
disjoint Geo-spatial regions. Thus the intersection part is 
the most affected area, where the different effects of differ-
ent clusters become confounded. (iv) They use conditional 
expectation for interpolation, but it is invalid for the extreme 
valued Probability Density Function (PDF).

In this study we evolve a novel spatial cluster-based copula 
modeling in different frameworks. We divide the entire spa-
tial domain into k spatial clusters to get m number of spatial 
regions i.e. L ⊆ �2×2 which is the class of all possible set of 
points in a spatial region. We create a conditional spatial ran-
dom field Y ∶ L ×F�∗ → M  . Here, F�∗ is an induced prob-
ability space created using caratheodory’s extension theorem 
and F�∗ = {A ∈ L ∣ A is �∗ −measurable i.e. �∗(A) ≤ �} 
and Y is < L ×F𝜇∗ ,M > measurable random field and 
M ⊆ � . Our objective in this research is to predict Y at an 
unobserved location on s0 ∈ Li based upon the n distinct 
observed location s1, s2, ...., sn ∈ Li using spatial copula 
interpolation algorithm in classical and Bayesian framework.

The outline of this study is as follows: the details of the 
algorithm are introduced in “Method” section, the study area 
and the behavior of data are described in “Study area and 
data” section, the results and discussion regarding the case 
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study are summarized in “Results and discussion” section 
and the conclusion is made in “Conclusion” Section.

Method

Fitting marginal distribution

In this section, we illustrate how to fit an ideal univariate 
parametric distribution on the empirical distribution. We 
have divided the choice of PDF into three steps: (i) choice 
of a family of distributions, (ii) suitable marginal PDF of 
that family, and (iii) to estimate a parameter of these mar-
ginal PDF. For step (i), we use the Cullen and Frey graph 
of skewness-kurtosis plot. We utilize Kernel Density Esti-
mation (KDE) for step (ii). In this step we prioritize the 
value of Akaike Information Criteria (AIC), and Bayesian 
Information Criteria (BIC), Log-Likelihood value (Log-
Lik), and Kolmogrov Smirnov (KS) statistic. Although, we 
face a real challenge in coordination (iii) because there is 
missing data. Therefore, the Maximum Likelihood Estima-
tion (MLE) of a parameter is not recommendable. For the 
Parametric Exponential Family distribution (PEF) we use 
Expectation-Maximization algorithm (EM) (McLachlan 
and Krishnan 2007). We use Uniformly Minimum Variance 
Unbiased Estimator (UMVUE) technique for the circular 
probability distributions. For PEF we consider the fitted dis-
tribution is Log-Normal (LN) probability distribution then, 
logW ∼ N(�, �2) . Let, wi;i = 1, 2, 3,… , n1 are the observed 
data points and wi;i = n1 + 1, n1 + 2, n1 + 3,… , n2 are the 
un-observed data points. The likelihood function of (�, �) 
based upon the observed data:

T h e  c o m p l e t e ,  o b s e r v e d  a n d  m i s s -
i n g  d a t a  v e c t o r s  a r e  r e s p e c t i v e l y , 
� = (w1,w2,w3,… ,wn2

)T ;� = (w1,w2,w3,… ,wn1
)T  a n d 

� = (wn1+1
,wn1+2

,wn1+3
,… ,wn2

)T  reveals � = � 
⋃

� . The 
complete data log-likelihood function is:

Let’s consider the E-step on the (m + 1)th iteration of 
the EM algorithm where 

(
�(m), �(m)

)
 is the value after the 

mth iteration of EM. Using the Eq. (2) we compute the 

(1)

log Lo(�, �) =
−1

2�2
⋅

n1�

i=1

(logwi − �)2

− � ⋅

√
2�

n1�

i=1

logwi

(2)

log Lc(�, �) =
−1

2�2
⋅

n2�

i=1

(logwi − �)2

−� ⋅

√
2�

n2�

i=1

logwi

conditional expectation of Log-Likelihood of the Complete 
data (CElikC) based upon the updated value at the mth itera-
tion, defined as Q

(
(�, �) ∣

(
�(m), �(m)

))
 in the following:

Using the Eqs. (1), (2) we simplify the Eq. (3) and then 
in M-step we maximize Q

(
(�, �) ∣

(
�(m), �(m)

))
 . Therefore, 

the updated values are 
(
�(m+1), �(m+1)

)
 which is defined in 

the following:

We estimate the parameter from Eq. (4). But to esti-
mate the parameter of a circular probability distribution for 
example, Von-Mises (VM) distribution, we avoid the com-
putational complexity of EM algorithm due to absence of 
closed form. Presence of Bessel Function ( In(k) ) promotes 
us to introduce a new theorem regarding the completeness 
and sufficiency of an estimator to deduce a UMVUE of the 
parameter of VM distribution in the following:

Theorem 1 If Xi ∼iid VM then I0(k)⋅cos(xi)
I1(k)

 and I0(k)⋅sin(xi)
I1(k)

 are the 
UMVUE of cos� and sin� respectively and their corre-
sponding variances are

Proof See Appendix (6)   ◻

Using Theorem (1) and trigonometric inverse function we 
get the initial value and, update the parameter values of VM 
distribution like LN (see Appendix (A.1)).

Copula

A copula is used to model the dependence between two or 
more random variables, for formulating the joint multivari-
ate distribution from the marginal Cumulative Distribution 
Function (CDF). Let, X1,X2,… ,Xn be n Random Variables 
(RV) with corresponding marginal CDF s are respectively, 
F1(x1),F2(x2),… ,Fn(xn) . The joint distribution function can 

(3)

Q
(
(𝜇, 𝜎) ∣

(
𝜇(m), 𝜎(m)

))

= E(𝜇(m),𝜎(m))
[
log Lc(𝜇, 𝜎) ∣ �

]

= ��

(
logLc(𝜇, 𝜎) ∣ y⃗

)
⋅ f (� ∣ �,

(
𝜇(m), 𝜎(m)

)
d�

= ��

(
logLc(𝜇, 𝜎) ∣ �

)

f (�;
(
𝜇(m), 𝜎(m)

) ) ⋅ f (�, �;
(
𝜇(m), 𝜎(m)

)
d�

≤ E(𝜇(m),𝜎(m))

[
log Lc(𝜇, 𝜎)

log Lo(𝜇
(m), 𝜎(m))

]

(4)
(
�(m+1), �(m+1)

)
= argmax(�,�)Q

(
(�, �) ∣

(
�(m), �(m)

))

(5)
var(cos(xi)) =

1

2
+

I2(k) ⋅ cos(2�)

2I0(k)
−

(
I1(k) ⋅ cos(�)

I0(k)

)2

var(sin(xi)) =
1

2
−

I2(k) ⋅ sin(2�)

2I0(k)
−

(
I1(k) ⋅ sin(�)

I0(k)

)2
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be defined as, FX1,X2,…,Xn
(x1, x2,… , xn) which is the product 

of marginal and conditional distribution but, because of the 
complexity of this approach with the increasing number of 
random variables this approach is not applicable for the large 
number of random variables. Therefore, the copula function 
is defined to create a multivariate distribution from the n 
marginal distribution (Nelsen 2007; Sklar 1973) to model 
the dependence between the multidimensional variables in 
the following way: C ∶ [0, 1]n → [0, 1]

There are different copula families, for example, Gauss-
ian, Archimedean, Product, etc. They behave differently in 
the tail part of the distribution. Compared to the other tra-
ditional multivariate, elliptical, Archimedean copulas, and 
Vine Copulas (VC) are more flexible to capture the inherent 
dependency. Under some certain regularity conditions it’s 
possible to express the n−dimensional multivariate copula 
mentioned in the Eq. (6) as multiplication of pair-copulas 
(Aas et al. 2009) in the following iterative approach. For 
n = 2 the bi-variate probability density function (BPDF) is:

In the Eq. (7) c12(., .) is the applicable Pair-Copula Den-
sity Function (PCDF) for F1(x1) and F2(x2) . For n = 3 the 
Tri-Variate Probability Density Function (TPDF) is:

In Eq. (8) c23(., .), c13∣2(., .) are the applicable PCDF and 
Conditional PCDF (CPCDF) respectively. Likewise, for 
n = 4 the four-variate probability density function (FPDF) 
is:

(6)
FX1,X2,…,Xn

(x1, x2,… , xn) = C(F1(X1),F2(X2),… ,Fn(Xn)).

(7)
f (x1, x2) = f12(x1 ∣ x2) ⋅ f2(x2) = c12(F1(x1),F2(x2))

⋅ f1(x1) ⋅ f2(x2).

(8)

f (x1, x2, x3) = f123(x1 ∣ x2, x3) ⋅ f23(x2 ∣ x3) ⋅ f3(x3)

= c12(F1(x1),F2(x2)) ⋅ c23(F2(x2),F3(x3))

⋅ c13∣2(F(x1 ∣ x2),F(x3 ∣ x2)) ⋅ f1(x1) ⋅ f2(x2) ⋅ f3(x3).

VC is a graphical approach representing an n-dimensional 
Multivariate PDF (MPDF) using 

(
n

2

)
 suitable PCDF in a hier-

archical manner where the dependence structures of (n − 1) 
have unconditional PCDF and that of the remaining has 
Conditional PCPDF (CPCDF). In this paper, we focus on 
C-Vine Copula (C-VC), because of its better flexibility.

A C-VC with 4-variables has 3 trees, Tj and each tree, 
Tj has 4 − j + 1 nodes and 4 − j edges where j = 1, 2, 3 like 
Fig. 1. In tree T1 each edge between two nodes represent 
the PCDF. From Fig. 1 in tree T2 the edges between each 
node is CPCDF where c13∣4 denotes the CPCDF of the first 
and third variable given the fourth variable and c23∣4 rep-
resents the CPCDF of the second and third variable given 
the fourth variable. In the tree T3 each node is connected 
by an edge representing CPCDF (Fig. 1) of the first and 
second variable given third and fourth variable where 
C12∣34 = F(x1, x2 ∣ x3, x4).

Spatial interpolation

Here, we propose two novel spatial interpolation approaches 
combining spatial clustering, knowledge of copula, and 
C-VC assuming the directional stationarity of data is defined 
in the following:

Spatial copula estimation

Let S  be the spatial domain of interest for the spatial inter-
polation purpose. Salient features of this spatial clustering 

(9)

f (x1, x2, x3, x4) = f4123(x4 ∣ x1, x2, x3) ⋅ f312(x3 ∣ x1, x2)

⋅ f21(x2 ∣ x1) ⋅ f1(x1) = c12(F1(x1),F2(x2))

⋅ c13(F1(x1),F3(x3)) ⋅ c14(F1(x1),F4(x4))

⋅ c23∣1(F(x2 ∣ x1),F(x3 ∣ x1)) ⋅ c24∣1(F(x2 ∣ x1),F(x4 ∣ x1))

⋅ c34∣2(F(x3 ∣ x2),F(x4 ∣ x2)) ⋅ f1(x1) ⋅ f2(x2) ⋅ f3(x3) ⋅ f4(x4)

Fig. 1  Detail of the tree of the Vine Copula
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technique are distance and degree of similarity between 
two spatial points. Hierarchical Spatial Clustering (HSC) 
is defined using the complete linkage method (Hubert 
1974). The threshold criterion of inclusion is a cutoff value 
of Haversine Distance (HD) (Gade 2010) and correlogram 
between each pair of points. Here, the number of HSCs 
and HSC’s radius are the two most important parameters. 
According to the principle of HSC, the Sum of Squares 
Within a Cluster (SSW) is lesser than Between the Clusters 
(SSB). We consider an optimal number of HSCs while SSW 
reaches a plateau according to the Elbow method. To deter-
mine HSC’s radius, we arrange HSC’s height in ascending 
order and consider a significant height as a radius. Therefore, 
in this context, we can think of the HSC as a spatial field 
defined in the following Eq. (10)

Let N1,N2,… ,Nk be the k clusters, yij be the jth unob-
served point, and obij be the jth observed point of the ith HSC 
where, j = 1, 2,… , ni ; i = 1, 2, 3,… , k where ni be the num-
ber of the unobserved points in ith HSC and ci , the centre of 
ith cluster. A threeshold HD ( HDcut ) is chosen ∋ 
dist(ci, yij) ≤ HDcut that is surrounding the centre of each 
HSC, a circle is constructed with radius of HDcut units and 
rcut refers the spatial auto-correlation cutoff to maintain the 
spatial continuity of HSC. For k clusters maximum number 
of distinct Spatial Regions (SR) is 2k − 1 . Let v⃗ be the pres-
ence vector of all unobserved points yij = (lon, lat) , where 
lon and lat stand for longitude and latitude of an unobserved 
point respectively. Now, we create a linear map in the 
following:

In the Eq. (11) v⃗ is a binary vector of length k, where

The maximum number of presence vectors for k clusters 
is 2k − 1 . As a result, we obtain at most 2k − 1 distinct SR in 
our entire study area. Let R1,R2,… ,Rm be the m SR where 
m ≤ 2k − 1 . Let vi = 0∀i = 1, 2,… , (i − 1), (i + 1),… , k and 
vi = 1 that denotes yij is inside Ni only.

In Fig. 2 we divide the entire spatial domain into some 
HSC grounded on the HD of monitoring stations and the 

(10)

Ni = {
(
obi1 , obi2

)
∶ HD(obi1 , obi2 ) ≤ HDcut

�(||obi1 − obi2 ||) ≥ rcut & i1 ≠ i2}
⋃

{
(
obij , yij

)
∶ HD(obij , yij)

≤ HDcut �(||obij − yij||) ≥ rcut}

(11)f ∶ R
2×1

→ R
k×1

⇒ f (yij) = v⃗

(12)

v⃗ = [v1, v2,… , vk]

vl =

{
1 if (lon,lat) ∈ Nl

0 otherwise

where l = 1, 2, 3,… , k.

degree of homogeneity where each circle denotes an HSC, 
and the dotted points represent the observed monitoring sta-
tions contained in that HSC. As a result, the whole area is 
split into some disjoint SR and the dotted points represent 
the monitoring stations, included in that SR (Fig. 3) are sali-
ent points to interpolate along the surface of each SR.

Utilizing the concept of the copula, we transform an HSC 
into a Spatial Random Field (SRF) to predict the values on 
the unobserved location. Therefore, we concentrate on the 
inclusion probability of the latitude ( �i ) and longitude ( �i ) 
of an observed location in Ri using univariate Marginal 
PDF (MDF). The corresponding MDFs are respectively 
P({� ∶ � ∈ Ri}) and P({� ∶ � ∈ Ri}) . Then, we evaluate 
bivariate PDF (BDF) of inclusion of latitude and longitude 
in the ith SR, and Kendall’s � as the measure of association 
between two RVs. So, the joint BDF is as follows:

To evaluate the CDF of that spatial random process (SRP), 
a composite function of two RVs i.e.,

Y(., .) ≡ {Y(�, �) ∶ � ∈ Ri, � ∈ Ri} we implement the 
KDE to get the MDF of Y i.e., F(y) and making use of cop-
ula we deduce the joint Tri-variate probability distribution 
(TDF) as follows:

H(x1, x2) = C(F�(X1�),F�(X2�)) where C ∶ [0, 1]2 → [0, 1].

Fig. 2  The entire spatial domain, Delhi is divided into four clusters 
and the corresponding monitoring stations
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H(x1, x2, y) = C(F�(X1�),F�(X2�),F(Y))  w h e r e 
C ∶ [0, 1]3 → [0, 1].

After getting, the BDF ( H(x1, x2) ) and TDF ( H(x1, x2, y) ) 
using copula we find out the conditional PDF (CPDF) 
defined in the following two equations:

Here, we assume two RVs, latitude ( X1 ) and longitude 
( X2 ) follow Uniform [ a1, b1 ] and Uniform [ a2, b2 ] respec-
tively. Now we generate random points (x1, x2) along, S  to 
measure the CDF of SRP i.e., Y(x1, x2) having different CDF 
for each geographical position. We employ EM algorithm to 
estimate the parameter at the time of fitting MDF. Applying 
copula we get the joint TDF of Y(x1, x2),X1,X2 is defined as 
F(y, x1, x2) . Next, we will introduce the HSC-based SI 
namely, Spatial Copula interpolation (SC). We split S  in m 
number of regions making use of the HSC algorithm, dis-
cussed earlier. Let’s consider, R1 has three observed loca-
tions ob1, ob2, ob3 . In that region we can generate a number 
of gridded points not necessarily of uniform size, out of 
those unobserved points we consider one unobserved point, 
defined as un

j

R1
 which is the jth point in R1

 . Applying the 
conditional copula (from Eq. (13)) we establish the Condi-
tional Copula-based Probability Distribution Function 
(CCDF) for each un-observed point in a SR i.e. Fun

j

R1

(y).

(13)f (y1 ∣ x1, x2) =

�3H(x1,x2,y)

�x1�x2,�y

�2H(x1,x2)

�x1�x2

From the Eq. (14) we get the CCDF of jth un-observed 
point included in the first SR. That lets us calculate the 
CCDF of SRP, Y at the unobserved centroid of a cluster, 
and making the use of CCDF we can calculate the condi-
tional copula-based probability density function (CCPDF). 
The mathematical formulation is described in the following:

In the Eq. (15) the weights are defined as �ij . These 
weights are proportional to the spatial auto correlation func-
tion (ACF) but inversely proportional to the degree of sepa-
ration. So the required �ij is defined in the following assum-
ing the fact that, obi, unj ∈ R1

(14)
F
un

j

R1

(y) = P[Y(x
1,un

j

R1

, x
2,un

j

R1

) ≤ y ∣ X1

= x
1,un

j

R1

,X2 = x
2,un

j

R1

]

(15)

F
un

j

R1

(y) =
∑

i∈R1

�ij ⋅ P[Y(x1,obi , x2,obi)

≤ y ∣ X1 = x1,obi ,X2 = x2,obi]

⇒ f
un

j

R1

(y) =
∑

i∈R1

�ij ⋅ fobi(y ∣ x1, x2)

⇒ argmaxyfunj
R1

(y) =
∑

i∈R1

�ij ⋅ argmaxyfobi(y ∣ x1, x2)

(16)�ij =
dij ⋅ �(∣∣ obi − unj ∣∣)

∑
i∈R1

dij ⋅ �(∣∣ obi − unj ∣∣)

Fig. 3  The entire geographical area is split up into some disjoint regions which are shaded by different colour and the corresponding observed 
points belonging into each region



Modeling Earth Systems and Environment 

1 3

In the Eq. (16), dij is the degree of seperation established 
upon the HD and the degree of departure of two PDFs 
defined on the SRF in the following Eq. (17)

In the Eq. (17) � is included for the computational 
adjustment (Machuca-Mory and Deutsch 2013) along the 

(17)

dij = � + e
−

��∫ 1

0
∣fobi

(y∣x1,x2)−funj (y∣x1,x2)∣
p
�1∕p

dy

�

⋅

e
−
�
sin−1

�√
A+cos(x1,obi

)⋅cos(x
2,unj

)⋅B
��

where, A = sin2
�
x1,obi − x1,unj

2

�

B = sin2
�
x2,obi − x2,unj

2

�

boundary points of each SR. e
−

([∫ 1

0
∣fobi

(y∣x1,x2)−funj (y∣x1,x2)∣
p
]1∕p

dy

)

 
specifying modified gaussian distance kernel and here, as 
a distance we apply the degree of separation between two 
Conditional Copula-based Spatial PDF (CCSPDF) to cap-
ture the probabilistic spatial dissimilarity, and the last part 
is HD. For �(∣∣ obi − unj ∣∣) in the eq. (16) choice of suitable 
covariance function is necessary. Therefore, we choose the 
suitable covariance function among well-defined variogram 
clouds, for example, Exponential, Gaussian and Spherical, 
Cressie (1990) etc. Applying this concept we adopt the 
Algorithm (1) to interpolate over the entire spatial surface:

Algorithm 1 Algorithm of SC Interpolation
Require: 0 < m ≤ 2k − 1; Ri ∩Rj = φ

1: S ←
⋃k

i=1 Ni =
⋃m

j=1 Rj

2: Genj = {(lonj , latj)} � Set of randomly generated points
3: for each j ∈ Genj do
4: �v ← Presence(Genj) � Presence(.) is a binary vector like f(.) in

Equation(11)
5:

6: if freq(�v) = 1 then � freq(.) returns the sum of �v
7:

8: index ← Index(�v) � Index(.) returns position of 1 in �v
9:

10: {ob1, ob2, ..., obr} ← observed location in indexth HSC
11:

12: SR(j) ← Choose pth closest SR from {ob1, ob2, ..., obr} close to
(lonj , latj)

13:

14: SCj ←
∑

i∈SR(j) αijargmaxyfobj (y | lon, lat)
15: else
16: �Ind ← Index(�v)
17:

18: for each q ∈ �Ind do
19: {ob1, ob2, ..., obr} ← observed location in qth HSC
20:

21: S ← S.append({ob1, ob2, ..., obr}) � X.append(.) adds the
argument to existing X values

22: end for
23: SR(j) ← Unique(S) � Unique(.) removes the duplicate elements

from its argument
24: SR(j) ← Choose pth closest SR from {ob1, ob2, ..., obr} close to

(lonj , latj)
25:

26: SCj ←
∑

i∈SR(j) αijargmaxyfobj (y | lon, lat)
27: end if
28: end for
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Spatial Bayesian Vine‑Copula estimation

We introduce spatial vine copula estimation based upon the 
Bayesian statistical approach (SBVC). Under the square 
error loss function employing MHA we do the posterior 
estimate of the parameter in the following way:

In Eq. (18) f (. ∣ .) defines the Conditional Copula-based 
PDF (CCPDF) applying the inherited concept of Fig. 1. p(𝜃) 
denotes the prior PDF of 𝜃 , and 𝜋(𝜃) defines the Posterior 
PDF (PPDF) of 𝜃 . Using the PPDF we’ll calculate the pos-
terior estimation of 𝜃 under the absolute error loss function. 
After getting the most updated values 𝜃 using MHA we find 
out the conditional bayesian prediction of two variables in 
the following:

Using Eq. (19) we interpolate the target vari-
ables on target locations. Here, we assume two SRPs, 
Y1(x1, x2) and Y2(x1, x2) and apply the concept of tail-
dependency of a bivariate copula to measure their hid-
den reliance. Utilizing VC we find the CCPDF i.e., 
F(y1, y2 ∣ x1, x2;𝜃) = P[Y1(x1, x2) ≤ y1, Y2(x1, x2)]≤ y2 ∣ X1 = x1,X2 = x2;𝜃] . Regarding parameter estimation, 
during fitting MDF, we use UMVUE, EM etc, but to esti-
mate the parameter of the copula family we only consider the 
posterior estimate. Then using the conditional expectation 
technique we estimate the Y1 & Y2 values all the randomly 
generated gridded points and interpolate the values.

Model validation

The accuracy of the models are validated by the following 
three methods where, Y(s⃗i) is the observed data points and, 
Ŷ(s⃗i) is the predicted value: 

1. Mean of Absolute Error (MAE) 

2. Root of Mean Square Error (RMSE) 

(18)𝜋(𝜃) =
fX1,X2∣X3,X4

(x1, x2, x3, x4 ∣ 𝜃) ⋅ p(𝜃)

∫ fX1,X2∣X3,X4
(x1, x2, x3, x4 ∣ 𝜃) ⋅ p(𝜃)d𝜃

(19)

E(
̂⃗
𝜃 ∣ X1,X2,X3,X4) = ∫ 𝜃 ⋅ 𝜋(𝜃)d𝜃

E(X1,X2 ∣ X3,X4)

= ∫ ∫ x1 ⋅ x2 ⋅ fX1,X2∣X3,X4
(x1, x2, x3, x4 ∣

̂⃗
𝜃)dx1dx2

(20)MAE =

∑n

i=1
∣ Y(s⃗i) − Ŷ(s⃗i) ∣

n

3. K-fold CV

Then, using Eqs. (21) and (20) we measure the accuracy 
of the proposed model. K-fold CV assumes K as 10. The 
10-folded CV indicates that the data set is divided into the 
10 random sub-sets, and among these data sets, 9 sub-sets 
as training data set, and the rest 1 is a test data set, termed as 
one-leave-one out CV (OLOCV). It helps compare the MAE 
of proposed and old models

Study area and data

To demonstrate the SC, SBVC, and to compare with OK we 
take Delhi-air pollution as a circumstance study. Delhi, the 
capital of India is the most polluted due to, rapid urbaniza-
tion, boosting amounts of traffic, increasing population, and 
energy consumption at an alarming level. Sometimes, the 
level of PM2.5 concentration in the air has reached up to 
999 μg∕m3 (Mukherjee et al. 2018) and, among all other 
air pollutants, it affects public health (Zheng et al. 2015) 
badly. Boosting levels of automobiles, cars, etc cause higher 
pollutant concentrations in the air (Samal et al. 2013). We 
look at the air pollution data collected by the monitoring 
stations, maintained by the Central Pollution Control Board 
(CPCB), Delhi Pollution Control Committee (DPCC), and 
the Indian Institute of Tropical Meteorology (IITM). To get 
the research goal, we collected data on several air pollutants, 
such as PM2.5 , PM10 , NO, NO2 , NOx and wind direction 
(WD), from the CPCB websites. To map the Spatio-tempo-
ral distribution of air quality and deduce the effect of WD 
on the air pollution in Delhi, these data play an important 
role. The data were collected over 24 hours, and the period 
was taken from 1st February 2017 to 31st December 2021. 
The Fig. 5 depicts the temporal variability of daily PM2.5 
emission which is cyclic after a fixed time stand. There is 
always a higher concentration witnessed from almost the 
end of November to the end of December (Fig. 5) around 
400 μg∕m3 and sometimes it grows up to 800 μg∕m3 which 
is very much alarming for the human life, primarily dur-
ing winter due to burning of firecrackers, agricultural crop 
burning, etc.

There are 38 monitoring stations in this data set, as shown 
in Fig. 3. According to Fig. 4, we detect that the Northern 
part of Delhi is very much sensitive to pollution whereas 
the Central, East, and West parts of Delhi are less sensitive 
regarding the pollutant concentrations in the air. According 
to Fig. 4, the PM2.5 concentration in the Northern part of 
Delhi can reach up to 220 μg∕m3 whereas in the Central, 

(21)RMSE =

�∑n

i=1

�
Y(s⃗i) − Ŷ(s⃗i)

�2

n
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East, and West part of Delhi that is limited into 190 to 200 
μg∕m3 . As a result, the Spatio-temporal variability in air 
pollutant concentrations is visible. However, there are two 
shortcomings to applying spatial interpolation techniques to 
interpolate (i) the Delhi NCR region is far away from other 
monitoring stations in Delhi, (ii) The missing Data.

We can easily conclude from the Fig. 6 that the observed 
frequency distribution of daily PM2.5 emission during this 
period is positively skewed which gives an idea of how to 
fit the positively skewed distribution such as log-Normal, 
Gamma, Exponential, Weibull, etc depending upon the tail 
distribution.

Precisely there is a higher concentration in the interval 
from 30 − 40 μg/m3 . Figure 7 provides a brief overview of 
the variability and a five-point summary of the pollutants 
and WD which establishes the fact that PM10 and PM2.5 have 
higher variability compared to other pollutants and the vari-
ance of WD also sensitive. We can easily conclude from the 
Fig. 6 that the observed frequency distribution of daily PM2.5 
emission during this period is positively skewed which gives 
an idea of how to fit the positively skewed distribution such 
as log-Normal, Gamma, Exponential, Weibull, etc depend-
ing upon the tail distribution. Precisely there is a higher 

Fig. 4  The interpolated PM2.5 values of November in the year, 2019

Fig. 5  The time series plot 
of daily PM2.5 emission from 
1st Feburary, 2017 to 31st 
December, 2021 in the study 
area, Delhi



 Modeling Earth Systems and Environment

1 3

concentration in the interval from 30 − 40 μg/m3 . Figure 7 
provides a brief overview of the variability and a five-point 
summary of the pollutants and WD which establishes the 
fact that PM10 and PM2.5 have higher variability compared 
to other pollutants and the variance of WD also sensitive.

Results and discussion

This section goes over how to compare two new models, SC 
(Algorithm (1)) and SBVC (“Spatial Bayesian Vine-Copula 
estimation” Section) to other well-known spatial models step 
by step. Following that, we will attempt to provide a brief 
overview of pollutant concentrations in the future, as well 
as discuss how an important meteorological parameter can 
affect pollution concentrations mathematically.

We fit the parametric marginal CDF and PDF on the 
empirical CDF and PDF of an RV based on the AIC, BIC 
value, and KS test statistic value in Fig. 8. Because the 
empirical PDF is positively skewed, we only consider well-
known positively skewed distributions such as Weibull, 
Log-normal (LN), Gamma, and Exponential distributions, 
and Table 1 shows that the LN distribution is suitable to fit 
based on the lowest AIC, BIC, and KS test statistic value. 
Similarly, we fit the circular family distributions on WD and 
discover that the VM distribution is the best PDF to fit.

Fig. 6  The Box-Plot of daily 
PM2.5 emission from 1st 
Feburary, 2017 to 31st Decem-
ber, 2021 in the study area, 
Delhi

Fig. 7  The Box-Plot of daily PM2.5
 , PM10

 , NO2 , NOx emission and 
WD from 1st Feburary, 2017 to 31st December, 2021 in the study area, 
Delhi
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The next step is to estimate the parameter of the MDF. 
We already discussed the disadvantages of using MLE to 
estimate the parameter in “Fitting marginal distribution” 
section. As a result, we can use the EM algorithm to obtain 

the updated shape and scale parameters of the LN distribu-
tion. We discuss how the LogLik value converges to a fixed 
value after a certain number of iterations in Fig. 14. The 
required number of iterations for the EM algorithm in this 
case study is 223, after which the difference between the two 
LogLik values is negligible. In Fig. 9 depicts how the PM2.5 
value varies with respect to latitude and longitude. While 
the Longitude (Lon) ranges from 77.0 to 77.1 and the Lati-
tude (Lat) varies, from 28.5 to 28.6, the PM2.5 concentration 
is generally within 100 − 150 μg/m3 but if Lon varies from 
77.15 to 77.3, the PM2.5 concentration becomes high and it 
ranges from 150 − 200 μg/m3 . Similarly, while Lat is varying 
from 28.6 − 28.7 then the most spatial variability of PM2.5 
is detected in every interval of Lon and sometimes reaches 
up to 300 μg/m3 while the Lat varies from 28.7 − 28.8 the 
spatial variation is identified and the variation of PM2.5 is 
almost lying between 200 − 250 μg/m3 . However, during fit-
ting VM distribution we use the concept of UMVUE which 
is mentioned in the Theorem (1) in the “Fitting marginal 
distribution” section to get the shape and scale parameter of 
the VM distribution with better accuracy. In the following 
Table 2 we discuss the shape and scale parameters of LN and 
VM PDF and corresponding the last updated LogLik values.

Our goal now is to run the two novel spatial interpola-
tion algorithms mentioned in “Spatial copula estimation” 
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Fig. 8  The emperical marginal CDF is fitted by the marginal positively skewed parametric CDF and the fitting of marginal PDF

Geo-Spatial variability of a PM2.5
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Fig. 9  The nature of spatial variation of a RV

Table 1  The value of KS statistic, AIC and BIC to determine the fea-
sible marginal parametric PDF

Test Criteria Weibull Log-normal Gamma Exponential

KS 0.06884229 0.02849193 0.06276518 0.1478233
AIC 365.360 322.296 346.187 413.547
BIC 373.098 330.035 353.926 417.416

Table 2  Details and updated values of shape and scale parameter and 
the corresponding Log-likelihood values

PDF Shape Scale LogLik

LN 4.3764856 0.7701984 -1959.331124
VM 3.583 1.908 -32.41559
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and “Spatial Bayesian Vine-Copula estimation” sections 
and compare them to other spatial interpolation approaches. 
Using the threshold criteria mentioned in “Spatial copula 
estimation” section we divide the entire spatial domain into 
4 HSC (Fig. 18) and consider the cutoff radius is 18026m as 
shown in Fig. 17. In the cluster dendrogram, the height rep-
resents the HD, and in the optimal number of clusters sec-
tion, we plot SSW along the Y-axis and the optimal number 
of HSC along the X-axis. The following section focuses on 
the tail dependence of two RVs, as shown in Fig. 10. These 
two RVs in this case study are PM2.5 and WD.

The upper tail dependence and lower tail dependence are 
defined in the Eq. (22). It describes the relationship between 
two RVs when one goes to extreme values and what the 
behavior of the other one is (Czado and Nagler 2022). We 
can conclude from this Fig. 10 that after 0.8 the upper tail 
of their distributions is independent and lesser than 0.1, the 
lower tail of their distributions is independent. As a result, 
we can say that higher values of PM2.5 concentration are 
unaffected by WD because there is a very low concentra-
tion at that point but where the marginal PDF of PM2.5 is 
moderate, there is a significant tail dependence on WD. The 
joint CDF of PM2.5 and WD are plotted in the Fig. 10 on 

(22)

du = lim
u→1

P
[
Y ≥ F−1

y
(u) ∣ X ≥ F−1

x
(u)

]

= lim
u→1

C(1 − u, 1 − u)

(1 − u)

dl = lim
u→0

P
[
Y ≤ F−1

y
(u) ∣ X ≤ F−1

x
(u)

]

= lim
u→0

C(u, u)

u

right applying BiCopSelect() function in R, where the fit-
ted copula is Rotated Twan Type-2 Copula with estimated 
Kendall’s � = 0.1341 and the LogLik value is −1.204 which 
is the highest of any copula family, including GC, t-Copula, 
Frank, Clayton, Joe, and so on. We apply our novel copula-
based spatial interpolation algorithm (SC) in a Bayesian 
framework after fitting the copula using CDVineCondFit() 
function in R. The posterior distribution and posterior esti-
mate of the parameter are critical in this context. MHA is 
used in this context to obtain the posterior estimate of the 
parameters. According to this Fig. 15 we use the concept of 
Bayesian Inference to give the posterior estimate, assuming 
that the parameter prior distributions are uniform and trun-
cated normal distributions. Following that, we use MHA to 
obtain the posterior estimate under the MSE loss function, 
which is 0.04898261 and −13.61893 , respectively. The rate 
of convergence of two parameters is plotted in the Fig. 15 
depicting that the rate of convergence of parameter 1 is faster 
than that of Parameter 2. Now we will look at how WD and 

Tail-dependency and Joint-CDF
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Fig. 10  In the left part the discussion regarding the lower tail and upper tail dependency of two RV and in the right part the joint CDF of two RV

Table 3  Two-way ANOVA to explain the dependence of PM2.5 
emission on WD and SC

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Treatment Df SS MS F Ratio P-Value

WD 21 20599.2864 980.9184 3.696 0.02404∗

Cluster 3 3623 1207.8 4.550 0.0334∗

Cluster⋅ WD 3 1283 427.7 1.611 0.2543
Residuals 9 2389 265.4
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spatial clustering affect the variance of PM2.5 in Table 3 and 
the Fig. 16.

In the Two-Way Analysis Of the Variance model (Two 
way ANOVA), we consider PM2.5 as a dependent vari-
able and WD and clusters as independent variables. In the 
columns of Table 3, we represent Treatments, Degrees of 

freedom (Df), Sum of square (SS), Mean Square (MS), 
F-Ratio, and P-value, and along the rows, we represent WD, 
Cluster, their interaction effect, and residuals. We can see 
from Table 3 that there is a significant impact of WD and 
clustering on PM2.5 emission at the 0.05 level of signifi-
cance. However, the interaction effect of WD and Clusters 
has no significant impact on PM2.5 emission. To aid com-
prehension, we present a graphical representation of these 
ANOVA tables in Fig. 16 in “Appendix C two-way ANOVA” 
section where WD is represented along the X-axis, PM2.5 is 
represented along the Y-axis, and each spatial cluster is used 
as a panel. In the SC interpolation method, we investigate 
another factor, spatial ACF, which is employed as an impor-
tant weight to counteract spatial variability across all lags.

As a result, in the Fig. 11, we depict the variation of 
ACF concerning the spatial lag. In this Fig. 11, we notice 
that the value of ACF is comparatively higher for nearby 
stations than for stations far away. We use the blue shaded 
region to give a brief idea of the interval of variation of 
ACF values. In this case study the fitted variogram model 
is Matern variogram model with nugget: 0; sill: 617; range: 
0.02 and kappa: 0.09. Utilizing this value and the other dis-
tance weights in the Eq. (15) we calculate CCPDF in every 
unobserved location. We assume � is 0.4224 and p = 2 in 
the Eq. (15).

The entire framework is now ready to execute the new 
spatial copula interpolation (SC) described in “Spatial 
copula estimation” section and Bayesian Spatial-Vine Cop-
ula (SBVC) described in “Spatial Bayesian Vine-Copula 
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Fig. 11  Spatial ACF corresponding to every spatial lag, we plot the 
lag distance along the X-axis and the ACF along the Y-axis

Spatial Interpolation
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Fig. 12  Spatial Interpolation of PM2.5 during the month of November, 
in 2019, 2020 and 2021. In Top the spatial interpolation technique SC 
is used and in below the SBVC algorithm is used as a spatial interpo-

lation algorithm. Along X-axis we plot Longitude, along Y-axis we 
plot latitude and along the whole surface we plot the PM2.5
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estimation” section. As a result, we create an SRF within 
each HSC and focus on the spatial region between them. For 
SC, we assume that Lat and Lon have a bivariate uniform 
distribution, PM2.5 has an LN distribution, and the suitable 
copula is Clayton Copula among other copula families like 
Gaussian, t-copula, archimedean-copulas, based on AIC, 
BIC, and LogLik values, to find their joint CDF using mvdc() 
function in R, with a parameter of 0.01697 and a dimension 
of 3. Then, using the Eq. (23), we obtain the required CCDF.

Using the Eqs. (15) and (16), and (17) we get the CCPDF 
of each unobserved location. Then using the Algorithm (1) 
we get the interpolated values.

In the Fig. 12 we plot the monthly PM2.5 emission dur-
ing November for the three years, 2019, 2020, and 2021. 
According to this Fig. 12 we detect that using SC in Novem-
ber, 2019, the PM2.5 emission varies from 180 − 220 μg/m3 . 
Using SBVC it ranges from 120 − 280 μg/m3 (Fig. 12). A 
similar pattern is carrying on in 2020 and 2021 as well. We 
detect from Fig. 12 that the variation of SBVC is greater 
than that of SC. The northern and southeast part of Delhi 
is highly sensitive. In the western part of Delhi, the SBVC 
is ineffective to interpolate. As a result the PM2.5 emission 
is random (Fig. 12). We illustrate the relationship between 
the observed and predicted values of three methods: SC, 
SBVC, and Ok in Fig. 13. We follow that there is a strong 
relationship between the observed and predicted values in 

(23)

F(y1 ∣ x1, x2)

=
k1 ⋅ (x1x2)

−k2 ⋅ ∫ y1
−∞

(
1 + � ⋅ FY1

(t)
)−k3

⋅ (FY1
(t))k3−k2 ⋅ fY1

(t)dt

c(x1, x2)

SC, followed by SBVC, and lastly OK. Thus we conclude, 
that the power of explainable variation in SC is greater than 
SBVC and better than OK. MAE, RMSE of SC is lesser than 
SBVC, and lastly OK in Fig. 19.

Although the SC method outperforms the other two, there 
are some areas where improvements are possible, such as: 
(i) We assume the rate of inclusion of geo-spatial points in 
a cluster is constant, during clustering but this can vary in 
practice. (ii) We ignore the effect of extreme values during 
interpolation. (iii) Degree of departure of characteristics 
between observed and unobserved points sometimes contra-
dicts the concept of spatial continuity but we ignore that. (iv) 
We do not pay enough attention to its temporal stationarity. 
SBVC accepts the same drawbacks with the incapability of 
exploration of spatial trends.

Conclusion

The proposed models’ SC and SBVC are extensions of the 
previous spatial copula-based models that majorly addressed 
issues such as bin selection, usage of MLE to estimate the 
parameter in missing data sets, and so on. When compared 
to other geostatistical models, the proposed SC and SBVC 
are very effective and provide nearly accurate results (from 
Fig. 19). The SC model produces better results for spatially 
skewed spatial random fields and provides a mathemati-
cal argument for selecting essential covariates. This study 
provides an idea of alternative distance weights and dis-
tance functions that are very effective in capturing spatial 

Fig. 13  Relationship between the observed and predicted values of three methods: SC, SBVC, and OK
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variation. A temporal extension of this algorithm is possible, 
which motivates further research. This model is explained in 
this study using a real-world data set of PM concentrations 
in the air. Still, this algorithm can be used in other scenarios 
such as mining, temperature modeling, meteorological mod-
eling, and so on. This algorithm may be more advantageous 
than other spatial estimation models because it makes no 
assumptions about Gaussian distribution, intrinsic stationar-
ity, dynamic behavior, or skewed data sets.

Appendix A Proof of Theorem (1)

Proof If X ∼ VM(k,�) then we know the corresponding 
charachteristic function of X is �n(x) = E

[
einx

]

In the Eq. (A1) the term In(k) =
∫ �

0
ek⋅cos(x) cos(nx)dx

�
 . In Eq. (A1) 

putting 
n = 1

 we get,

and putting n = −1 we get,

Adding and subtracting Eqs. (A2) and (A3) we get

Therefore, from the Eq. (A4) the statistic T1(x) =
I0(k)⋅cos(x)

I1(k)  
and T2(x) =

I0(k)⋅sin(x)
I1(k)

 are the unbiased estimators of 
cos� 

and sin� respectively.
Here, the PDF of X is denoted as f(x) and the parameter 

space is defined as Φ and support is defined as X .

(A1)
E
[
einx

]
= ∫

2�

0

einx ⋅ ek⋅cos(x−�)

2�I0(k)
dx

=
I|n|(k) ⋅ e

in�

I0(k)

(A2)E(eix) =
I1(k) ⋅ e

i�

I0(k)

(A3)E(e−ix) =
I1(k) ⋅ e

−i�

I0(k)

(A4)
E

(
I0(k) ⋅ cos(x)

I1(k)

)
= cos�

E

(
I0(k) ⋅ sin(x)

I1(k)

)
= sin�

(A5)

f (x) =
ek⋅cos(x−�)

2� ⋅ I0(k)

= exp
[
k ⋅ cos(x − �) − log(2�I0(k))

]

= exp[k ⋅ cos(x) cos(�) + k ⋅ sin(x) sin(�)

− log(2�) − log(I0(k))
]

From the Eq. (A5) we write the likelihood function as prod-
uct of two terms moreover this VM distribution satisfying 
the following properties: 

1. X  is [0,2� ] therefore, it is independent upon the param-
eter.

2. Φ = {(𝜇, k) ∶ 𝜇 ∈ R;k > 0} which indicating it is an 
open interval.

3. Here {1, cos(x), sin(x)} and {1, cos(�), sin(�)} are Lin-
early Independent (LIN).

Therefore, we tell that the PDF is belonging Two-PEF. 
Therefore, cos(x) and sin(x) are complete and sufficient sta-
tistic of cos(�) and sin(�) . Using Lehmann-Scheffe Theorem 
they are the UMVUE. Moreover, using Eq. (A1) replacing 
n = 2 we get

Using Eq. (A6) we get

  ◻

A.1 EM algorithm estimation of parameters of VM 
distribution

Likewise LN distribution Q
(
(�, k) ∣

(
�(m), k(m)

))
 is the 

updated CElikC at mth iteration is:

Using the Eq. (A8) we complete M-step and find the most 
updated values.

(A6)

E[cos2x] =
I2(k)

I0(k)

⇒ E(cos2(x)) =
1

2
+

I2(k) ⋅ cos(2�)

2I0(k)

⇒ E(sin2(x)) =
1

2
−

I2(k) ⋅ sin(2�)

2I0(k)

(A7)

var(cos(x)) =
1

2
+

I2(k) ⋅ cos(2�)

2I0(k)
−

(
I1(k) ⋅ cos(�)

I0(k)

)2

var(sin(x)) =
1

2
−

I2(k) ⋅ sin(2�)

2I0(k)
−

(
I1(k) ⋅ sin(�)

I0(k)

)2

(A8)

Q
�
(�, k) ∣

�
�(m), k(m)

��

= Ec

(�(m),k(m))

�∑n2
i=1

k cos(wi − �) − n2 ⋅ log(2�I0(k))
∑n1

i=1
k cos(wi − �) − n1 ⋅ log(2�I0(k))

�
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Appendix B Convergence rate of MHA 
and EM

Fig. 15  The rate of convergence of the two parameters of Rotated Tawn Type-2 copula family. In (left) the first parameter of the copula family 
and in (right) the second parameter of the copula family are estimated

Fig. 14  The convergence of 
the Log-Likelihood value after 
updating the value of the param-
eters in each iteration using EM 
algorithm
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Appendix C two‑way ANOVA

Fig. 16  How WD and Spatial 
cluster make an impact on PM2.5 
in this case study
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Appendix D Optimal number of Spatial HSC 
and its size

Fig. 17  Optimal HSC size and 
its cutoff HD
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Fig. 19  Comparison of the per-
formance of three methods: SC, 
SBVC, and OK. Along Y-axis 
we plot the RMSE and MAE 
of the four years from January, 
2018 to December, 2021

Fig. 18  Optimal number of 
HSC using Elbow Method

Appendix E RMSE and MAE of SC, SBVC, 
and OK
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