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Simple Summary: Computational modeling of bacterial infection is an attractive way to simulate
infection scenarios. In the long-term, such models could be used to identify factors that make
individuals more susceptible to infection, or how interference with bacterial growth influences the
course of bacterial infection. This study used different mouse infection models (immunocompetent,
lacking a microbiota, and immunodeficient models) to develop a basic mathematical model of a
Yersinia enterocolitica gastrointestinal infection. We showed that our model can reflect our findings
derived from mouse infections, and we demonstrated how crucial the exact knowledge about
parameters influencing the population dynamics is. Still, we think that computational models will be
of great value in the future; however, to foster the development of more complex models, we propose
the broad implementation of the interdisciplinary training of mathematicians and biologists.

Abstract: The complex interplay of a pathogen with its virulence and fitness factors, the host’s
immune response, and the endogenous microbiome determine the course and outcome of gastroin-
testinal infection. The expansion of a pathogen within the gastrointestinal tract implies an increased
risk of developing severe systemic infections, especially in dysbiotic or immunocompromised individ-
uals. We developed a mechanistic computational model that calculates and simulates such scenarios,
based on an ordinary differential equation system, to explain the bacterial population dynamics
during gastrointestinal infection. For implementing the model and estimating its parameters, oral
mouse infection experiments with the enteropathogen, Yersinia enterocolitica (Ye), were carried out.
Our model accounts for specific pathogen characteristics and is intended to reflect scenarios where
colonization resistance, mediated by the endogenous microbiome, is lacking, or where the immune
response is partially impaired. Fitting our data from experimental mouse infections, we can justify
our model setup and deduce cues for further model improvement. The model is freely available, in
SBML format, from the BioModels Database under the accession number MODEL2002070001.
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1. Introduction

The gastrointestinal microbiome provides resistance to pathogen colonization and
infection by contributing to the development of the host immune system [1,2] and confer-
ring colonization resistance (CR) [3], as well as the direct competition of a pathogen with
members or compounds produced by the microbiota [4]. Consequently, the disruption of
the endogenous microbiome results in an increased susceptibility to infection [5–7] and can
be induced by several means, including the host’s inflammatory response to infection or
antibiosis [8,9]. Together with the physical barriers provided by the epithelial surface lining
and the adherent mucus, several effectors of the intestinal immune system prevent the entry
and systemic spread of pathogenic bacteria present in the gut lumen, while allowing for
the existence of a complex microbiome. Several measures of the immune system contribute
to this involved process; amongst them are the production of secretory IgA, the release
of antimicrobial peptides (AMP), the expression of pro-inflammatory cytokines, and the
recruitment of, e.g., neutrophils [10,11].

Gastrointestinal infection is a frequent disease that causes significant morbidity and
a high economic burden [12,13]. Being self-resolving in most cases, the symptomatic
treatment (e.g., rehydration) is sufficient for otherwise healthy individuals. In contrast,
gastrointestinal tract (GIT) infection can cause high morbidity, and even fatal diseases, in
healthcare settings and specific populations, such as newborns, the elderly, and immuno-
compromised individuals. According to the OECD Health Report 2016–2017, approximately
9% of healthcare-associated infections were related to the GIT (OECD/European Union
Paris/European Union, (2018)). Therefore, understanding the underlying mechanisms and
identifying the crucial factors for a mild or severe course of infection is highly desirable.

The Gram-negative, facultative anaerobe pathogen, Yersinia enterocolitica (Ye), has
been used previously to study pathogen interactions in the GIT within the host to identify
virulence factors that are crucial for the successful colonization of Ye and to find out how
individual virulence factors interact with the host [14–23]. Within the small intestine (SI), Ye
can adhere to, and invade, the intestinal epithelial lining, mainly via the adhesins, Yersinia
adhesin A (YadA) [24] and Invasin [25–28]. Upon attachment, Ye can engage its type-three
secretion system (T3SS). The T3SS facilitates the injection of effector proteins (Yersinia
outer proteins, Yops), which contribute to the immune evasion and the establishment of
infection [28,29]. Ye can invade the Peyer’s patches (PP) to form abscesses and disseminate
into peripheral lymphatic tissues [30,31]. YadA is the most crucial individual virulence
factor of Ye. It was shown that a YadA-deficient strain was impaired in the colonization and
systemic spread in mouse infection [19]. The first line of host defense against invading Ye is
a massive infiltration of phagocytic cells. However, Ye can counteract phagocytosis via its
T3SS [28,29]. This Ye virulence trait seems crucial to evading phagocytic killing in vivo [28].
Together, both the T3SS and YadA, presumably, contribute to the efficient colonization of
the intestinal tract, while Ye, at the same time, induces an inflammatory response that might
account for a reduction in the density and complexity of the commensal microbiome [8,9].

In recent years, several models were developed to mirror bacterial gastrointestinal
infections [32–37], viral infections at epithelial sites [38], and inflammatory disorders, such
as IBD [39,40]. This study aims to utilize quantitative data to understand the mechanisms
driving such gastrointestinal diseases. To this end, we derived a mechanistic model of
gastrointestinal infection based on ordinary differential equations (ODEs) as a method
to identify parameters that are decisive for the infection course. In contrast to previous
models, our model allows us to simultaneously modulate the virulence and growth rate of
the causative pathogen, as well as modulating of underlying host conditions, such as the
immune competence and the presence of a microbiome. Therefore, it may contribute to
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extending our knowledge about their role in the course of infection. We used experimental
data from a basic mouse model of infection setting to parametrize our model, experimen-
tally determine several accessible parameter values, and justify our model design by fitting
experimental data with distinct changed parameters. In sum, we want our computational
model to provide hints about which parameters are decisive for the infection course, as
well as serving as a hypothesis generator of how Ye–host–microbiota interactions take place
in vivo, and, therefore, use this as a starting point for the development of more elaborate
models of gastrointestinal infection.

2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions

The Ye wt and mutant strains used in this study are listed in Supplementary Table S2.
All strains were cultured overnight at 27 ◦C in a Luria Bertani broth (LB). All selective
antibiotics, such as nalidixic acid (10 µg/mL), kanamycin (50 µg/mL), spectinomycin
(100 µg/mL), and chloramphenicol (25 µg/mL) (all Sigma-Aldrich) were supplemented
in combinations according to the indicated resistances (Table S2). For the preparation of
bacterial suspensions for oral infection, overnight cultures were diluted and subcultured
for 3 h at 27 ◦C. Bacteria were then washed once with Dulbecco’s phosphate-buffered
saline (DPBS, Gibco, Thermo Fisher Scientific, Waltham, MA, USA), and the OD600 was
determined to prepare the desired inoculum.

2.2. Generation of Ye Strains Containing Different Antibiotic Selection Markers

A chloramphenicol resistance cassette, derived from pASK IBA4C (IBA Lifesciences,
Göttingen, Germany), was chromosomally introduced into the YenI locus of the Ye WAC
strain to discriminate between the Ye wt and the Ye YadA0 or the T3SS-deficient strain
(T3S0). The YenI gene encodes for a Ye-specific restriction-modification system, the interrup-
tion of which allows for a higher efficiency of genetic manipulations [41,42]. The resistance
cassette was inserted by homologous recombination using the suicide plasmid pSB890Y,
as described previously [23], and the insertion was verified by PCR, antibiotic resistance
testing, and sequencing. Finally, the respective virulence plasmids were re-transformed
into Ye WAC CmR. All plasmids and primers used for the insertion of selection markers
are listed in the Supplementary Tables S2 and S3.

2.3. Animal Handling

Ethics statement: All animal infection experiments were approved by the regional
authority of the state of Baden-Württemberg in Tübingen (permission number H2/15).
Female C57BL/6J OlaHsd mice were purchased from Envigo (Horst, Netherlands). MyD88-
deficient mice (MyD88−/−) with a C57BL/6J genetic background were obtained from
a local breeding colony (breeding pairs were purchased from Jackson Laboratories, Bar
Harbor, ME, USA). Animals were housed in the animal facility of the University Hospital
Tübingen under specific pathogen-free (SPF) conditions. Germ-free (GF) animals were bred
in the germ-free core facility of the University Hospital Tübingen or were provided by the
Institute for Laboratory Animal Science (Hannover Medical School, Hannover, Germany).
All animals were housed in individually ventilated cages in groups of five animals and
were supplied with autoclaved food and drinking water ad libitum. Infection experiments
were performed with female mice at 6–10 weeks of age.

2.4. Oral Mouse Infection

Prior to the intragastric administration of bacteria, mice were deprived of food and
water for 3–4 h. For oral coinfection experiments, animals were infected with a 1:1 mixture
of 2.5× 108 CFU of Ye wt and Ye YadA0, or Ye T3S0, respectively. Upon the oral coinfection,
SPF wild-type and GF mice were sacrificed at time points indicated within the figures
describing the results of individual experiments. The MyD88−/− mice were infected for two
days only because of the expected rapid systemic spread in these immunocompromised
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animals. Oral infections for subsequent RNA analyses from small intestinal mucosal
scrapings were performed for two days.

2.5. Determination of Bacterial Load from Feces

Fresh fecal pellets were collected after the manual stimulation of individual mice,
were weighed using a high-precision laboratory scale, and were resuspended in 500 µL of
sterile DPBS. Pellets were homogenized, serially diluted with DPBS, plated on selective
agar plates, and incubated at 27 ◦C for 48 h. Afterward, colonies were counted, and the
CFUs per gram of feces were calculated.

2.6. Calculation of Competitive Indices in Mixed Infections

Competitive indices (CI) from fecal and tissue samples were calculated as the CFU
output of the Ye mutant/Ye wild-type strains, divided by the input (initial oral inoculum)
of these strains (CFU Ye mutant strain input/CFU Ye wild-type strain input). The output
was determined in the individual experiments, as described above. The initial oral inocula
(=the input) were verified by serial dilution and their subsequent plating on LB with
appropriate antibiotics. A CI, with a logarithmic value of zero, indicates the identical fitness
of the wild-type and the mutant strains, while a negative CI indicates that the mutant strain
is impaired in colonization [43].

2.7. 16S rRNA Sequencing from SI Luminal Samples

For the analysis of the microbiota composition within the SI of mice, and to assess
changes in microbiota composition upon infection with Ye, mice were initially co-housed
for ten days. After the oral infection with Ye, as described before, or after the gavage
of the same volume of DPBS, mice were sacrificed at the indicated points in time. The
entire GIT was dissected, and the SI was removed. The intestinal contents were isolated
by gently squeezing them into tubes using sterile forceps. After that, the samples were
immediately snap-frozen and stored at −80 ◦C until DNA isolation. DNA was extracted,
as described in the International Human Microbiome Project Standard (IHMS) Protocol
H (http://www.human-microbiome.org/index.php?id=Sop&num=007, accessed date: 8
February 2022) [44]. The library preparation and 16S rRNA amplicon sequencing were
performed by the CeMet Company (Tübingen) using variable regions v3-v4. Paired-end
sequencing was performed on the Illumina MiSeq platform (MiSeq Reagent Kit v3) with
600 cycles. Raw read quality control was done using the FastQC tool (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/, accessed date: 8 February 2022 [45]). To
this end, reads were merged, and quality filtering was performed using USEARCH [46].
The taxonomy data annotation of sequences was done by comparison against the National
Center for Biotechnology Information (NCBI) bacterial 16S rRNA database using MALT [47].
Abundance tables at the taxonomic rank of interest were generated using MEGAN6 [48]
and were further analyzed using the software R (https://www.r-project.org, accessed date:
8 February 2022 [49]). Before applying statistical analyses, all samples were normalized
to 14,947 reads (the lowest number of reads across all samples) using the tool rrarefy,
which is part of the VEGAN package [50]. The VEGAN package diversity function was
used to calculate the Shannon diversity. An unpaired Wilcoxon sum-rank test determined
the significant differences between groups. Vegsdist and prcomp (part of the VEGAN
package) were used to perform a principal component analysis (PCA) on the Bray–Curtis
dissimilarities. For the generation of graphical output, ggplot2 [51] was employed. The
16S rRNA sequencing data will be published at the European Nucleotide Archive database
(accession number: PRJEB50711). See Supplementary Figure S1 for details.

2.8. Isolation of RNA from Gut Mucosal Scrapings

For the isolation of the total RNA from gut mucosal scrapings, five mice per group,
harboring either an SPF microbiome or GF, and the genetic backgrounds indicated earlier,
were infected with a 1:1 mixture of 2.5 × 108 CFU of Ye wt, and Ye T3S0. As controls, five

http://www.human-microbiome.org/index.php?id=Sop&num=007
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.r-project.org
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mice of each colonization state and genetic background were orally administered with
100 µL DPBS instead of bacterial suspensions. Two days after infection, the mice were
sacrificed, and the distal 10 cm of the small intestine was dissected and shortly incubated
in RNAlater (Qiagen, Hilden, Germany). Then, the tissue was flushed with ice-cold DPBS
to remove the fecal content and was opened longitudinally on ice using scissors. After the
removal of the residual feces by flushing again with ice cold DPBS, the mucosa was scraped
off with the blunt side of a scalpel and was incubated overnight in RNA at 4 ◦C. The RNA
was then removed, and scrapings were homogenized in a TRI-Reagent (Zymo Research,
Freiburg, Germany) by rinsing them successively through syringe needles with decreasing
diameters. The remaining cell debris was removed by centrifugation, and the supernatants
were finally used for the RNA purification using the DirectZol RNA Miniprep Plus Kit
(Zymo Research) according to the manufacturer’s protocol. This protocol included a step
for the removal of genomic DNA. The resulting RNA was quantified using a Nanodrop
photometer (Thermo Fisher Scientific, Waltham, MA, USA) and the integrity was confirmed
by agarose gel electrophoresis.

2.9. Quantification of Immune Parameters by Quantitative Real-Time-PCR (qRT-PCR)

The relative mRNA levels of target genes were determined using qRT-PCR. After an
additional treatment for the removal of genomic DNA included in the QuantiTect reverse
transcription kit (Qiagen), mRNA was reverse transcribed according to the manufacturer’s
protocol using 1 µg of RNA as the input for a 20 µL reaction. For the subsequent qRT-
PCR, the TaqMan gene expression master mix (Applied Biosystems; all assays are listed
in Table S3) was used with thermal cycling conditions, according to the manufacturer’s
protocol. Absolute quantifications were performed on a LightCycler 480 instrument (Roche)
using the LightCycler 480 Software 1.5. The relative gene expression levels of target genes
to the reference gene beta-glucuronidase (accession number, AI747421) [52] were determined
to apply a kinetic PCR efficiency correction, according to the method of Pfaffl [53], and
were normalized to the expression levels of the uninfected SPF-colonized mice.

2.10. Determination of the Distribution of Ye along the Mouse GIT

To determine the ratio of Ye and the cultivable commensal bacteria in the different
compartments of the GIT, three mice were orally infected with 5 × 108 CFU of the Ye wt
strain. Seven days after infection, mice were sacrificed, and the gut was dissected. A piece
of tissue, 1 cm in length, that was directly adjacent to the stomach was removed, and the
residual small intestine was split into three pieces of equal length: a proximal part (SI 1),
a middle part (SI 2), and a distal part (SI 3). Additionally, the cecum and the colon were
dissected. The contents of the three small intestinal pieces, the cecum, and the colon were
isolated by gently squeezing them into tubes using sterile forceps. For each compartment,
the CFU per gram of intestinal content was determined, as described above for feces, using
selective agar to determine the Ye CFUs, as well as the brain-heart infusion agar (BHI;
incubated in anaerobic pots) for the determination of the approximate number of cultivable
commensal bacteria.

2.11. Systemic Administration of Gentamicin for the Cleansing of a Potential Niche Colonized
by Ye

To investigate the existence of extra-luminal Ye that drained into the lumen of the SI,
we tested if the systemic administration of an antibiotic that can kill Ye, but that is not able
to enter the lumen of the GIT, might reduce the Ye burden in feces. To this end, 14 mice
were coinfected with Ye wt and Ye YadA0 for two days. At this point in time, we assumed
the successful colonization of a niche and a high bacterial burden in the feces. Mice were
then split into two groups, of which one was administered intraperitoneally with 40 mg/kg
gentamicin (Ratiopharm, Ulm, Germany) in 200 µL of 0.9% sterile NaCl (Braun, Kronberg,
Germany). The other group was administered sterile saline only. Ye CFUs were determined
from the feces of mice before the gentamicin/saline administration (i.e., on 2 dpi) and one
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day after treatment (i.e., on 3 dpi), as described above. The 3 dpi mice were sacrificed, and
Ye CFUs were additionally determined from Peyer’s patches.

2.12. Determination of GIT Passage of Time

SPF C57BL/6 wild-type or MyD88−/−mice, as well as GF wild-type mice (2 mice/group),
were orally challenged with 100 µL DPBS containing 1 × 109 fluorescent polystyrene beads
(1 µm) (Thermo Fisher), plus 5 × 108 CFU Ye wt, in order to simulate infection conditions.
After the gavage, fecal pellets were collected hourly over 24 h, weighed, snap-frozen, and
stored at −20 ◦C, until analyses. Next, samples were homogenized in 1 mL of PBS, and
debris was removed by a centrifugation step of 20 min with 50× g [54]. To determine
the number of fluorescent events per gram of feces, the resulting supernatant was spiked
with a defined number of compensation beads (BD biosciences, Heidelberg, Germany) to
determine the number of fluorescent beads in a defined volume by flow cytometry. The
cumulated bead-hours were then calculated by multiplying the number of beads detected
by the time spent in the gut until excretion. The mean residence time per bead was finally
calculated by dividing the number of summarized events/g feces by the total bead-hours.

2.13. Determination of the Water Content of the SI Content and Fecal Pellets

Three mice each, with either SPF or GF microbiota, were used for this experiment.
Two to five fecal pellets were collected before the dissection of the GI tract to determine the
water content. Then mice were sacrificed, and the entire GI tract was removed. Afterward,
the stomach was discarded, and the small intestine was cut into two pieces of comparable
length. The cecum and colon were dissected. All the pieces and the fecal pellets were placed
into individual, weighed Petri dishes. The wet weight of all samples was determined. The
SI pieces, the cecum, and the colon were then cut open, and the content was scratched off
and transferred into a Petri dish. The remaining emptied tissue was removed and weighed
again, and the wet weight of the contents was determined. The Petri dishes were placed
into an incubator without lids, and the material was dried overnight at 65 ◦C. Then, all
samples were weighed again to determine the dry weight. Finally, the total water content
was calculated by subtracting the dry weight from the wet weight.

2.14. Calculation of the Thickening Factor for SPF and GF Mice

Our model predicted the dynamics of the number of Yersinia (i.e., CFU) within the
SI, whereas our experimental observations were based on colony counts derived from
the plating of fecal pellets (log10 CFU per g of feces). To align model output to our
experimental data, we determined the mean percentage of water in different sections of the
gastrointestinal tracts of SPF or GF mice. We considered that the small intestinal content
is massively concentrated to be excreted as a solid fecal pellet. Based on these data, we
calculated a “thickening factor.” The content of the SI of SPF mice had a reasonably different
percentage of water (77%) compared to that of the fecal pellets (29%; Table S1). Therefore,
the model predictions were multiplied with a correction factor to relate the model output
to the laboratory observations. This factor is obtained by dividing the product of 1 g of
fecal pellets and its content of solid matter (100–29%) by the product of the mass of the SI
content of SPF mice (which is about 2.3 g) and its content of solid matter (100–77%); i.e., the
factor is (1 g × 71%)/(2.3 g × 23%) ≈ 1.3. Thus, our model output needed to be multiplied
by 1.3 before it can be compared with experimentally determined CFU levels for SPF mice.
GF mice differ in several aspects, compared to SPF mice. They have a massively enlarged
intestine (we measured the mass of intestinal contents to be about 10 g). The average water
content of the fecal pellets is 49% in these mice. Using the same calculation as above, we
obtain a multiplication factor of (1 g × 51%)/(10 g × 23%) ≈ 0.2 for GF mice.

2.15. Alignment of Model Simulation and Lab Observation Time

We determined the passage of time of the GIT to take, on average, 4 h in SPF wild-type
mice, 5.5 h in MyD88−/− mice, and 12 h in GF mice (Figure S5). Assuming a 1 h passage



Biology 2022, 11, 297 7 of 35

time in the stomach and 1 h in the colon, this leaves a sojourn time of 2 h (3.5 h in MyD88−/−

mice and 10 h in GF mice) in the SI, in which Ye are assumed to multiply. Our model
only describes what is happening in the SI, starting when Ye leaves the stomach. This
corresponds to one hour post-infection (hpi). An additional hour is needed for the colon
passage until the CFUs can be counted. Thus, the observation in the laboratory at, e.g.,
24 h after oral infection must be compared with the model results after 22 h of model
simulation. This time shift of 2 h is taken into consideration whenever modeling results
and experimental data are compared.

2.16. Parameter Optimization

We derived a seven-dimensional ordinary differential-equation system, describing
Ye population dynamics, with seven unknown parameter values in SPF mice and eight
unknown parameters in GF and MyD88−/− mice. For the estimation of the unknown
model parameters in this study, the performances of different optimization algorithms were
compared systematically. We applied the steepest descent method, whose convergence
depends on gradient-like Lipschitz conditions for a finite number of dimensions [55,56]
or an infinite number of dimensions [57–61]. However, the results were not robust with
this approach, and the method has a slow prediction convergence. We subsequently
used the particle swarm optimization (PSO) method [62], which is particularly suited to
solve problems where the optimal solution is a point in the multi-dimensional space of
the parameter (real-valued optimization) [63]. This method, however, easily falls into
premature solutions, leading to low accuracy.

The method that turned out to be most appropriate for the model system, and was
finally applied, was the maximum log-likelihood method. This method was modified to an
integrated likelihood approach to account for experimental data points which had values
below the limit of detection (LOD). Experimental values below the LOD of the bacterial
load per g feces, in a given volume of fecal suspension, were set to log10 CFU/g feces
of 2.05 (corresponds to the LOD in the experimental setting in C57BL/6J wild-type SPF).
These values were estimated by applying a fitness function and solving the optimization
problem using the maximum log-likelihood method. The objective function was defined to
minimize the Euclidean distance between the measurements and model output.

To collect repeated measurements from each mouse and to avoid using each point in
time as an independent measurement, we calculated the median of repeated measurements
for each point in time. To ensure that the algorithm converged to the global minimum
of our objective function, we ran the algorithm 100 times with multiple starting points
and selected the resulting parameter values that corresponded to the minimum value
obtained for the objective function. We solved the optimization problems using multi-
start local optimization. This approach has been shown to perform well in systems and
computational biology [64]. We assumed the standard deviation as an estimated parameter
in the maximum likelihood method. Therefore, the standard deviation was estimated with
each run with other unknown model parameters. We applied this method to determine
whether the estimated parameters were the best fit for our model. This maximum likelihood
approach, combined with the iteration count, increased the chance of convergence [65].
Eventually, the optimization was implemented using the bound-constrained optimization
package FMINSEARCHBND in MATLAB 2019 (MathWorks Inc., Natick, MA, USA).

3. Results

We first conducted laboratory experiments to generate experimental datasets and we
summarized the current knowledge of infection scenarios with Ye in (i) immunocompe-
tent hosts with complex microbiomes, (ii) immunocompetent hosts with no microbiome,
and (iii) immunodeficient hosts with the complex microbiome. The initially generated
experimental dataset described the Ye infection scenario (i). We further elaborated on the
presumptions for the mathematical description and introduced the ordinary differential
expressions describing the mathematical model. This dynamic population model was
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then validated using parameter estimation, parameter fitting, and parameter sensitivity
analyses based on the generated experimental dataset. Additional experimental datasets
were generated in laboratory experiments to cover the infection scenarios (ii) and (iii).
These datasets were eventually used to refine the dynamic population model.

3.1. Generation of Experimental Datasets to Generate a Dynamic Population Model
3.1.1. Ye Population Dynamics Are Investigated in the Presence of a Complex Microbiome
and an Intact Host Immune Response

The starting point of our study was to generate an experimental dataset to develop
our model of bacterial population dynamics in gastrointestinal Ye infection. We used
an immunocompetent host harboring a complex microbiome. The C57BL/6J wild-type
(wt) and specific pathogen-free (SPF) mice were infected with a 1:1 mixture of the Ye wt
and either a Ye YadA0 mutant strain that lacked the adhesin YadA, or a mutant strain
impaired in type-three secretions (T3S0). Although this is seemingly counterintuitive, we
consciously decided to use this coinfection setting to create a situation where the mutant
and the wild-type strains faced comparable immune responses. Single infections with Ye
YadA0 or Ye T3S0 would have raised an immune response that was different compared
to each other, and to that of the wild-type strain, making the reasonable comparison of
infection scenarios questionable. As a high pathogen burden within the GIT increases the
likeliness of systemic dissemination, the CFUs (colony-forming units) in feces may serve as
an indicator to identify individuals that have an increased risk of developing a systemic
infection. Thus, we determined the bacterial counts of Ye wt and the coinfected mutant
strains in feces by plating them on selective media (Figure 1A,C). We found that the Ye
wt strain was able to stably colonize the GIT of all animals over the entire observation
period of 14 days. In contrast, the bacterial counts of both the YadA0 and the T3S0 mutant
strains never reached the Ye wt level and dropped below our limit of detection at ten
days post-infection (dpi). The competitive indices (Figure 1B,D) clearly show the reduced
virulence of Ye YadA0 and Ye T3S0 compared to the wt.

The most striking difference between the YadA0 and T3S0 coinfection was that the bac-
terial counts of the Ye T3S0 strain peaked later and at considerably lower levels compared
to Ye wt and compared to that of the YadA0 mutant strain.

In summary, these data indicate that the pleiotropic functions of YadA and, even more
compelling, the effector functions mediated by the T3SS seem to be crucial for the effective
immune evasion and colonization of the GIT in the presence of a complex microbiome and
an immunocompetent host. This effect has been shown in coinfections for the first time,
but has been demonstrated previously in oral single infections using the YadA deficient
strain, and in coinfections with a strain lacking the single effector protein, Yop H [14,66].
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Figure 1. Ye population dynamics during coinfection of SPF-colonized mice. (A) Colony-forming
units (CFU) in feces of individual animals (n = 14) at different points in time (days post-infection;
dpi) and the median after oral 1:1 co-infection of C57BL/6J SPF mice with a Ye wild-type (wt) strain
and an attenuated mutant strain lacking the Yersinia adhesin A (Ye YadA0). The limit of detection is
indicated by a dashed line. (B) The competitive index (CI) of the Ye wt:Ye YadA0 coinfection was
calculated as indicated. A negative CI is indicative of an attenuation of the mutant strain. (C) CFU in
feces of individual mice after co-infection with Ye wt, and a mutant impaired in type-three secretion
(Ye T3S0). (D) CI of the Ye at Ye wt:Ye T3S0 c-infection.

3.1.2. The Integration of Experimental Mouse Infection Data, Specific Parameters
Determined in Wet-Lab Experiments, and Published Knowledge Are Used to Generate a
Conclusive View of Ye Mouse Infection

We summarized our current conception of the gastrointestinal Ye infection of a healthy,
immunocompetent host, colonized with a complex microbiome by a tangible visualiza-
tion (Figure 2A). The figure includes the presumed development of CFU in feces and the
strength of CR and the immune response of the host over time (Figure 2B). We also tried to
devise scenarios for a host lacking a microbiome (Figure 2C,D) and an immunocompro-
mised host (Figure 2E,F). We depicted all entities that should be considered in our model,
and the events taking place during homeostasis (before infection), upon the initiation of
coinfection, and at a later time point after coinfection. During homeostasis in SPF wild-type
animals (Figure 2A, left side “Homeostasis”), basal levels of AMPs, produced by specialized
epithelial cells that are present in high concentrations in the dense mucus layer, restrict the
access of microbiota components to the epithelium, thereby contributing to the maintenance
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of the steady-state [67–69]. Upon coinfection with the Ye wt and a mutant strain (Figure 2A
middle panel, “Ye co-infection”), some Ye will enter locations near the epithelium. In
the following paragraphs, we refer to these locations as the mucosal compartment, com-
prising the mucosa, the epithelium, and the gut-associated lymphatic tissues, such as the
Peyer’s Patches (PP) and the overlying microfold cells (M-cells). Therefore, they elicit an
innate immune response, with an increased AMP and increased cytokine production and
infiltration of the professional phagocytes to the mucosal compartment [19,70]. For the
sake of clarity, our model considers these factors not individually, but summarizes them
into one abstract immune response. We assumed that this immune response affects, more
strikingly, the endogenous microbiome and especially those commensals located at the
mucosal compartment compared to Ye. In line with this, we observed a reduction in the
diversity of the SI microbiome upon infection with Ye (Figure S1). The reduced complexity
and density of the mucosa, near the microbiome, would then allow Ye to colonize and
replicate there, if it is able to resist the host’s immune defense. Assuming a limited capacity
of this mucosal compartment, all Ye exceeding the maximum capacity will drain into the
lumen and finally end up in measurable CFUs in feces. Since only the Ye wt strain can cope
adequately with the attack of phagocytes, both a YadA- and a T3SS-deficient strain will
be quickly eliminated, despite the initial colonization, as experimentally observed by us
(Figure 1) and others [19,28,29] (Figure 2A right panel; “after infection”).

The situation is very different in germ-free (GF) animals (Figure 2C,D). Here, no
microbiota is present with which Ye would have to compete. Consequently, we assume
that both the Ye wt and the mutant strain can expand within the gut lumen (Figure 2D).
Additionally, the number of immune cells, M-cells, and the amount of AMP present in
the mucus lining are presumably reduced, compared to SPF animals [71–73]. Thus, upon
coinfection, the innate immune response to Ye is less intense compared to SPF-colonized
animals (Figures 2D and S2). Nonetheless, we expect that the Ye mutant strains may
still be eliminated more efficiently compared to Ye wt at the mucosal compartment. This
elimination might lead to a slow reduction of the mutant strain at late points in time after
infection. Due to the lack of a microbiome in GF mice, we assume that both the Ye wt and
the mutant strains will colonize the GIT at high numbers.

In the SPF-colonized MyD88−/− mice that have a constricted immune response
(Figure 2E,F), we also assume a weaker immune response. MyD88−/− mice were reported
to be highly susceptible to enteric infection [74–77]. Thus, we expect a faster progression
of the infection. Moreover, we anticipate an amelioration of the difference between Ye wt
and mutant strain CFUs during the infection course, because the better survival of Ye wt is
primarily a result of its ability to cope with, and survive, the host’s immune reaction. As the
immune system is only weakly active here, having the full capacity of the immune evasion
mechanisms is no longer a clear advantage for the Ye wt strain. Thus, different outcomes
of infection are conceivable (undecided, mutant wins, or wild-type wins); however, this
depends on the total population size. As long as the total population size is reasonably
large, one would expect equal levels of mutant and wild-type bacteria.
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1 
 

 
  Figure 2. Schematic overview of the presumed infection progression after coinfection of different

mouse models with Ye wt and mutant strains. (A) Scheme of the small intestine of SPF-colonized
C57BL/6J wild-type mice during homeostasis (left), after initial disturbance (mid), and expected
outcome after co-infection with a 1:1 mixture of Ye wt and an attenuated mutant strain. Initially, the
gut lumen in SPF mice is densely colonized with a complex microbiota. Ye infection, associated with
an infiltration of microfold cells (M-cells) mainly conducted by the wt strain, leads to an unspecific
antimicrobial immune response accompanied by the release of phagocytic cells into the gut lumen
and augmented expression of antimicrobial proteins (AMPs, Reg3γ, defensins) by epithelial cells.
Both the antimicrobial response and inflammation affect at least parts of the microbiota and reduce
its complexity and density. Whereas Ye wt can counteract phagocytosis by injection of effectors into
immune cells, thereby killing them, the Ye mutant strain is more susceptible to phagocytosis and
killing by immune cells and, thus, is finally outcompeted 14 days after infection onset. (B) Schematic
overview of expected Ye wt and mutant CFU in feces during the infection course (upper diagram) and
the presumed strength of host immune response and colonization resistance (CR; bottom diagram).
(C) In germ-free (GF) mice that lack a microbiota that confers CR and harbor an immature immune
system, Ye wt and mutant strains are both able to colonize the gut lumen and do not necessarily
need to enter a site near the mucosa to colonize the gut effectively. This leads to weak antimicrobial
responses that Ye can cope with, without the necessity to possess specific virulence traits (such as YadA
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or a functional T3SS). This results in comparable numbers of wt and mutant strains at the end of
the observation period. (D) Presumed CFUs of Ye wt and mutant strain in feces of GF mice (upper
diagram). The immune responses in GF animals are less potent as compared to C57BL/6J wild-type
mice, while microbial CR is absent (bottom diagram). (E) In SPF-colonized MyD88−/− mice, we
assume that the strongly limited immune reaction does not significantly affect the CR that is mediated
by the endogenous microbiota. This will, presumably, result in a lower overall Ye cell count in the gut
compared to the SPF wild-type and GF mice. The immune deficiency entails an almost contingent
infection outcome (right panel), resulting in either comparable numbers of the Ye wt and the mutant
strains, or one of the strains becoming more abundant at two days after infection. Please note that the
infection course in the MyD88−/− mice can only be monitored for a shorter period due to adherence
to animal welfare regulations. (F) The presumed coincidental CFU development in feces is illustrated
by overlapping, shaded areas (upper diagram). Limited immune responses reduce CR to a low level
(bottom diagram); dpi = days post-infection.

Additionally, we devised diagrams that depict our assumptions for the development
of Ye CFU in feces for the strength of the host’s immune response (as assumed according
to literature and some of our own qRT-PCR data; Figure S2). We performed a relative
quantification of the mRNA levels of Reg3γ, Lipocalin-2, and S100A8 from mucosal scrap-
ings as indicators of intestinal inflammation in SPF, GF, and MyD88−/− mice that were
coinfected with Ye wt and T3S0. Essentially, we found that in the SPF mice, all markers
had higher basal levels compared to GF and MyD88−/− mice, and that upon coinfection,
all three markers of inflammation increased. An induction of S100A8 was also observed
in the coinfected GF mice, but otherwise, the investigated markers were not significantly
induced in the GF and MyD88−/− mice. We are aware that this is a relatively shallow
characterization of the host’s immune response at only a single point in time, but we think
that, in the light of published data, it is justified to presume the immune response is most
robust in SPF mice, less pronounced in GF mice, and weakest in the MyD88−/− mice.

3.2. Mathematical Description of the Dynamic Population Model
3.2.1. Presumptions Are Made for the Dynamic Population Model

We devised the most critical interactions among Ye, the host immune system, and
the microbiota upon host entry and their impact on Ye population dynamics. We wanted
these interactions to be included in the model and described them mathematically. The
following presumptions for the computational modeling of Yersinia population dynamics
were considered:

(1) The arrival in the SI and the colonization of a mucosal site: After an oral coinfection
with a Ye wt and a mutant strain, both enter the lumen of the SI. A portion of these luminal
Ye is then able to enter an extraluminal location, the mucosal compartment. If it is not
attached to surfaces within the SI, bacteria will inevitably be transported towards the colon
due to peristalsis. Within the colon, water will be reabsorbed from the intestinal content,
and all bacteria finally end up in feces. Both the retention time and the replication rate
of the bacteria determine how many bacteria will be detected in the feces at a distinct
point in time. As Ye cells, presumably, have a lower replication rate than the endogenous
microbiota, their CFU in feces would decline rapidly, compared to that of the commensals,
if they do not establish a replicating population within the SI. However, experimental
data show that the Ye CFU per g of content in the SI, at a later time of infection (7 dpi), is
relatively high, especially in the distal part of the SI (Figure S3), and we have hints that
there actually exists a niche within the GIT that can be colonized by Ye (Figure S4), see also
the explanation under the following consideration, (2)). We hypothesize that Ye located in
this mucosal compartment can resist its removal by peristalsis and can even replicate. Since
this compartment would have a restricted capacity only, one basis of our model design is
that all Ye cells exceeding this capacity will re-enter and feed the luminal populations and
contribute to the CFU in feces.

(2) Bacterial interactions in the mucosal compartment: In our model, the mucosal
compartment is considered a complex site which includes the mucosa, the epithelial lining,
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the lamina propria, and lymphatic tissues, such as the PP. Ye are known to adhere to
mucus, degrade it, and invade the epithelium and PP [30,78,79]. Moreover, Ye expresses
several virulence factors that facilitate an efficient immune evasion. This capability is
especially important in the mucosal compartment, where the number of immune cells
and the concentration of AMPs are high. Therefore, we assume that Ye can proliferate
in the mucosal compartment, which is also colonized by a small number of commensal
bacteria. The growth dynamics of both Ye and the commensal bacteria are determined
by their initial numbers and their specific growth rates. Our model assumes that the
whole endogenous microbiome has a higher growth rate compared to Ye (e.g., because
the microbiome members are rather diverse and do not necessarily compete for nutrients
or suitable niches). Notably, the combined number of all mucosal bacterial populations
are restricted by a fixed capacity. Hence, Ye and members of the microbiota compete
for the colonization of this compartment, and the further expansion of the population is
only possible if the capacity limit has not been reached yet. Our own experimental data
support our model hypothesis that an extra-luminal site is potentially feeding luminal Ye
populations. We addressed this experimentally by orally coinfecting mice with Ye wt and
Ye YadA0. Two days after infection, we assumed a successful colonization of the postulated
niche (as seen before in comparable experimental settings). A systemic treatment with
gentamicin (which does not permeate across the epithelial barrier) on 2 dpi considerably
reduced Ye populations in the PP (Figure S4A). At the same time, Ye populations in feces
were reduced (Figure S4B). As we could not observe a drop in total bacterial numbers
at 3 dpi after the gentamicin treatment, we assumed that gentamicin did not enter the
lumen (Figure S4C). Thus, we decided to integrate the abstract “mucosal compartment” as
a Ye-specific niche into our model. However, the biological role of this niche remains to
be elucidated.

(3) The influence of the immune system: Host immunity involves humoral and cellular
factors. For the sake of simplicity, we summarized all host defense activities in one abstract
immune action that only affects the mucosal compartment but is negligible in the luminal
compartment. We hypothesize that the presence of Ye in the mucosal compartment activates
the immune system. This activation increases proportionally to the number of Ye cells. The
concentration of immune system effectors is highest close to the epithelium; therefore, we
assume the immune system to influence the bacterial populations primarily at the mucosal
site, compared to the bacteria within the lumen. As only the Ye wt strain has a full arsenal
of virulence factors that allow for an efficient immune evasion, we assume that the Ye
mutant strains and the commensal bacteria are killed more efficiently compared to the
wild-type.

(4) Population dynamics and competition in the lumen: Most of the Ye applied orally
during the initiation of the infection enter the luminal compartment that is already pop-
ulated with microbiota. We assume the same bacterial growth rates in the luminal and
mucosal compartments and set a limit to the total bacterial capacity of the lumen. It is
known that within the SI, the bulk mass of bacteria resides in the lumen, whereas the host
has evolved mechanisms to keep the majority of the microbiota distant from the epithe-
lial surface lining. This bacterial distribution indicates that the capacity of the luminal
compartment is conceivably larger than that of the mucosal compartment, which is also
reflected by our model. The CFU of Ye in the luminal compartment over time is—as in the
mucosal compartment—determined by the initial quantity of Ye and its distinct growth
rate. Additionally, bacteria that exceed the capacity of the mucosal compartment spill over
into the luminal compartment and, thereby, contribute to the CFU in the lumen. The most
crucial difference between the two compartments in our model is that the immune reaction
only affects the mucosal populations, and the luminal bacterial populations are reduced by
the discharge of the intestine only. This choice neglects the role of, e.g., granulocytes in the
intestinal lumen for the killing of Ye. However, we consciously decided to design the im-
mune action this way because we wanted to keep the model manageable. We summarized
and depicted all our considerations in Figure 3.
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Figure 3. Schematic graphical depiction of the model composition and interaction networks. The
model calculates population dynamics of the Ye wt (YL

(wt); YM
(wt)) and mutant strains (YL

(mut),
YM

(mut)), as well as of commensal bacteria (BL; BM) at two different sites of the small intestine (SI),
the luminal site and the extra-luminal mucosal site (“mucosa”; “lumen”). Additionally, it includes
an abstract immune response with a distinct immune cell population (I). Bacterial and immune
cell populations are illustrated as reservoirs. Individual growth rates determine the growth of
bacterial populations. The decrease in populations is caused by intestinal peristaltic movement in the
lumen and by immune killing in the mucosa. In addition, movement of bacteria from the mucosal
compartment to the luminal compartment takes place. Upon entry of Ye wt or mutant strains to the
mucosal compartment, they stimulate an immune response, which reciprocally affects all Ye and
commensal populations within this compartment. The Ye wt strain, equipped with immune evasion
factors, is less affected by the immune response than the Ye mutant strain, whereas both are more
resistant than the commensal bacterial population (BM). Replicating populations that exceed the
limited capacity of the mucosa drain into the lumen and, thereby, feed luminal populations. As a
result of these bacterial population dynamics in the lumen, the model output is the calculated CFU
of the bacteria ending up in feces. These curves are equivalent to experimental CFU data generated
from the feces of orally infected mice.
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(5) The alignment of model output with experimental data: For technical reasons,
the outputs of our wet-lab infection experiments are not the Ye CFU/g of content in the
luminal compartment, but the CFU determined from feces after the colon passage, which
has been concentrated by the reabsorption of water. Our model aims to simulate the
population dynamics within the intestine. To be able to align our model output to our
experimental data, we determined the mean percentage of the water content of different
sections of the mouse gastrointestinal tract (Supplementary Table S1), carrying either SPF
or GF microbiota, considering that the small intestinal content is massively thickened to
be excreted as a solid fecal pellet. Based on these data, we have calculated a “thickening
factor” that allows us to align our model output and the experimentally determined CFU
values derived from fecal pellets (for a detailed description of the calculation, please refer
to the Material and Methods section).

3.2.2. Ordinary Differential Equations Describe the Dynamic Population Model

Based on the experimental data and theoretical considerations, we came up with the
following mathematical model. As pointed out above, we assume that, following oral
infection, a 1:1 mixture of the Ye wt and the mutant strains enter the SI. Most of the Ye
remains in the lumen, but a small number enters the mucosal compartment. We assume that
commensal bacteria already populate this location. The growth dynamics of the commensal
bacteria BM, the wild type Y(wt)

M , and the mutant strain Y(mut)
M in the mucosal compartment

are determined by their quantities and by their growth rates, as described by a logistic
growth with a maximum possible size. The growth rate α(B) of the endogenous commensal
bacteria is, presumably, higher than the Ye growth rates α(wt) and α(mut), respectively.

Moreover, the growth rates α(wt) and α(mut) are assumed to be equal. The capacity
CM limits the expansion of the bacterial population in the mucosal compartment. When
bacterial counts exceed this capacity, bacteria spill over to the lumen at the following rates σ:

σ
(wt)
M→L = α(wt) BM + Y(wt)

M + Y(mut)
M

CM
, σ

(mut)
M→L = α(mut) BM + Y(wt)

M + Y(mut)
M

CM
, and σ

(B)
M→L = α(B) BM + Y(wt)

M + Y(mut)
M

CM
.

A variable that determines the infection course is the host’s immune system I. In the
presence of Ye in the mucosa YM, I is stimulated at rate κ but its strength is limited to a
capacity CI, resulting in a logistic growth

(
Y(wt)

M + Y(mut)
M

)
·κ·CI−I

CI
.

I directly acts on the bacteria present in the mucosa but indirectly influences the
luminal populations by affecting the spillover from the mucosal compartment into the
lumen. The immune system kills Y(mut)

M more efficiently than Y(wt)
M , which has a full arsenal

of virulence factors that allow for an efficient immune evasion. However, members of the
commensal microbiome BM are the most susceptible to killing by I. This killing is modeled
by using the term (γ·I·BM), where γ is the immunity action rate. We use the adjustment
factors f (wt)

γ and f (mut)
γ to account for the different susceptibilities of Y(wt)

M and Y(mut)
M

towards killing by I and the even higher susceptibility of BM. The following differential
equations describe the resulting dynamics of bacterial populations and immunity strength
at the mucosal site:

dY(wt)
M
dt

=
(

α(wt) − σ
(wt)
M→L − γ· f (wt)

γ ·I
)
·Y(wt)

M (1)

dY(mut)
M
dt

=
(

α(mut) − σ
(mut)
M→L − γ· f (mut)

γ ·I
)
·Y(mut)

M (2)

dBM
dt

=
(

α(B) − σ
(B)
M→L − γ·I

)
·BM (3)

dI
dt

=
(

Y(wt)
M + Y(mut)

M

)
·κ·CI − I

CI
(4)



Biology 2022, 11, 297 16 of 35

Most of the Ye from the oral infection enter the lumen of the SI. Additionally, luminal
populations are fed by bacterial spillover from the mucosal compartment. The lumen is
already populated with commensal bacteria. For the sake of simplicity, we use the same
bacterial growth rates α(B), α(wt), and α(mut) in the lumen, as at the mucosal site. When
we limit the total bacterial capacity of the lumen to a large number of CL, we obtain the
following logistic growth for the luminal compartment:

α
(wt)
L = α(wt)

CL −
(

BL + Y(wt)
L + Y(mut)

L

)
CL

, α
(mut)
L = α(mut)

CL −
(

BL + Y(wt)
L + Y(mut)

L

)
CL

, and α
(B)
L = α(B)

CL −
(

BL + Y(wt)
L + Y(mut)

L

)
CL

.

Bacteria in the lumen move along the intestinal tract and are finally excreted at a
removal rate β. Combining this, the following set of equations gives the dynamics of the
bacterial populations in the lumen:

dY(wt)
L
dt

=
(

α
(wt)
L − β

)
·Y(wt)

L + σ
(wt)
M→L ·Y

(wt)
M (5)

dY(mut)
L
dt

=
(

α
(mut)
L − β

)
·Y(mut)

L + σ
(mut)
M→L ·Y

(mut)
M (6)

dBL
dt

=
(

α
(B)
L − β

)
· BL + σ

(B)
M→L · BM (7)

The resulting ordinary differential equation system, described in Equations (1)–(7),
includes the dynamics of bacterial populations at the mucosal and luminal sites, as well as
the immunity strength.

3.3. Validation of the Dynamic Population Model
3.3.1. The Dynamic Population Model’s Parameters Were Estimated

To test the validity of the model and to see how well our computational model
(Equations (1)–(7)) was defined, we estimated unknown parameter values in the ordinary
differential equation system (Equations (1)–(7)) based on experimental data. We first aimed
to reduce the number of parameters. This was achieved through experimental approaches,
if possible, involving estimating biologically meaningful ranges for unknown parameters
(based on the literature and our own data), or, at least, by defining the relations between
distinct parameters (higher/lower/same). To this end, we experimentally determined
the gut passage of time of C57BL/6J wild-type SPF (termed SPF from now on), C57BL/6J
wild-type GF (termed GF from now on), and MyD88−/− SPF (termed MyD88−/− from now
on) animals and found that in the GF animals, the gut passage of time was much longer
than in SPF and MyD88−/− animals (Figure S5). We also determined the immunological
parameters of SPF, GF, and MyD88−/− animals, thus supporting our assumptions regarding
the relative strength of the immune response in the three particular systems (Figure S2).

To find reasonable values for parameters that either cannot be determined experi-
mentally or can only be determined with a non-justifiable cost and effort, we started a
computational parameter optimization to yield fits in the best agreement with the experi-
mental data. Therefore, we used built-in optimization methods in MATLAB (see Materials
and Methods). Detailed information for all parameters (such as definitions, the source of
parameter values, functions, and relations to other parameters) is given in Table 1.
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Table 1. Overview of all parameters and variables within the model. This table lists all sources of values, functions, relations to other parameters, and preset
boundaries, as well as the exact values used for parameter calculation and the assumptions that we made to justify the choice of relations/preset boundaries.

Parameter Definition Source of
Parameter Value Function Relation to

Other/Comment
Preset Boundary/

Exact Value
Assumptions Made to Justify

the Choice of Preset Boundaries

Growth

α(B) Growth rate of
commensal bacteria Estimated Adjustable growth rate

of commensal bacteria
Higher compared to

growth rate of Ye 0.4–2.0

High diversity and different
requirements for growth enable
overall faster growth compared

to Ye.

α(wt) Growth rate of the Ye wt Estimated Adjustable growth rate
of the Ye wt strain

Same as growth
rate α(mut) 0.4–2.0

Growth optimum of Ye is at 30 ◦C;
all Ye have the same requirements

and compete for nutrients.
Therefore, they grow slower
compared to the microbiota.

α(mut) Growth rate of the Ye
mutant strains Estimated

By adjustment of the Ye
mutant growth rate, the
model can account for
growth deficiencies.

Same as growth rate α(wt) 0.4–2.0

Mutant Ye do not have a growth
defect, they just lack a virulence

factor dispensable for normal
growth; in vitro growth did not
reveal a difference in the growth

rate of wt and mutant Ye.

Discharge

β(SPF) Discharge rate of
intestines

Experimental data
(0.22/h)

Adjustable rate
accounting for varying
GIT passage times in
different host models.

Higher as in MyD88−/−

and GF
0.22 Justified by experimental data.

β(GF) Discharge rate of
intestines

Experimental data
(0.08/h)

Adjustable rate
accounting for varying
GIT passage times in
different host models

Lower than in SPF and
MyD88−/− 0.08 Justified by experimental data.

β(MyD88−/−) Discharge rate of
intestines

Experimental data
(0.18/h)

Adjustable rate
accounting for varying
GIT passage times in
different host models

Lower than in SPF, but
higher compared to

GF animals
0.18 Justified by experimental data.
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Table 1. Cont.

Parameter Definition Source of
Parameter Value Function Relation to

Other/Comment
Preset Boundary/

Exact Value
Assumptions Made to Justify

the Choice of Preset Boundaries

Immunity action related

γ Immunity action rate
Adjustment factor for
the immune action; 1
means 100% activity

Allows adjustment of the
global immune action to

account for immune
deficiencies in a

specific host.

Lower in GF and
MyD88−/− 0.1–1.0

It is known that GF animals have
a less developed immune system.
MyD88−/− animals suffer from
reduced activity of the immune

system (see Introduction
for references).

κ Rate of immune growth Estimated
Allows adjusting the rate

at which the immune
response is activated.

Unknown 0.004–0.1 No justification.

fγ(wt) Immunity adjustment
factor of the Ye wt Estimated

Allows adjustment of
resistance of the Ye wt

strain to immune killing
and thereby accounts for

immune evasion
mechanisms of

a pathogen.

Lowest compared to
fγ(YadA0) and fγ(T3S0) 0.001–0.11

The Ye wt strain is most resistant
to killing by the immune system

due to its ability to evade the host
immune system, e.g., by engaging
its T3SS, or by recruiting negative

regulators of complement by
YadA (see Introduction

for references).

fγ(YadA0)
Immunity adjustment

factor of the Ye
YadA0 strain

Estimated

Adjustment allows
accounting for an

increased (or reduced)
susceptibility to immune
killing due to mutations

affecting Ye immune
evasion mechanisms.

Higher compared to
fγ(wt) but lower or equal
in comparison to fγ(T3S0)

0.11–0.2
Ye YadA0 is less resistant to

killing by the immune system
compared to Ye wt.

fγ(T3S0)
Immunity adjustment

factor of the Ye
T3S0 strain

Estimated

Adjustment allows
accounting for an

increased (or reduced)
susceptibility to immune
killing due to mutations

affecting Ye immune
evasion mechanisms.

Higher compared
to fγ(wt) and higher or

equal compared
to fγ(YadA0)

0.11–0.2

Ye T3S0 is less resistant to killing
by the immune system compared

to Ye wt and less resistant
compared to Ye YadA0.
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Table 1. Cont.

Parameter Definition Source of
Parameter Value Function Relation to

Other/Comment
Preset Boundary/

Exact Value
Assumptions Made to Justify

the Choice of Preset Boundaries

Compartment capacities

CI
Capacity of the

immune response Predefined
Caps the maximum

activity of the
immune system.

CI = 1 means that the
immune system is

fully operative
≤1 Not applicable.

CM
Capacity of the

mucosal site Estimated

Caps the replication of
the populations within

the mucosa to an
adjustable

maximum capacity.

Lower than CL 103–107

Assumed range of commensal
bacteria in proximity to the

epithelium based on
literature [73].

CL
Capacity of the

luminal site Estimated

Caps the replication of
populations within the
intestinal lumen to an

adjustable
maximum capacity.

Higher than CM 106–1010
The total number of commensal

bacteria in the distal small
intestine is ~107–1010 per mL.

Alignment of experimental data with model output

Thickening
factor

Reflects water extraction
from fecal material

during the colon passage
Experimental data

Allows adjusting
experimentally

measured CFU in fecal
pellets and

model-calculated CFU
(within intestines).

- SPF (1.3);
MyD88−/−(1.3); GF (0.2) Justified by experimental data
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Of note, the model implementation and the optimization process were, at first, based
on the dataset generated from the coinfection of SPF wild-type mice with the Ye wt and the
YadA0 mutants.

3.3.2. Parameters Were Fitted Based on the Coinfection Experiments in SPF Mice

We fitted our model to the Ye CFU data that were determined experimentally in coin-
fections of SPF mice with Ye wt and Ye YadA0 (Figure 4A). The independent estimation of
parameters based on the second experimental dataset that was obtained by the coinfection
of SPF mice with Ye wt and Ye T3S0 delivered slightly different, but comparable, absolute
parameter values compared to Ye wt:Ye YadA0 coinfection. Hence, we observed a concor-
dance of the model output with the experimental data (Figure 4B). Strikingly, the model
even reflects a difference between the dynamics of CFU development of the Ye YadA0 and
the Ye T3S0 strains; however, for the Ye wt:Ye T3S0 coinfection, the fit is relatively poor.
This result has been predicted, since coinfection is one of the different mechanisms which
occurs in multi-strain models. This mechanism is mathematically called the coexistence
scenario, which refers to the simultaneous persistence of multiple infection populations
with different life-history strains. In a further analysis of the differential equation model
(Equations (1)–(7)), it was shown that a coexistence scenario could take place if the growth
rates of the wt and mutant strains differed, even if this difference was subtle [80].

Moreover, our experimental finding, that Ye T3S0 is more susceptible to killing com-
pared to Ye YadA0, is also corroborated by the model. Looking at the relative values of
Ye wt ( f (mut)

γ / f (wt)
γ ), the Ye YadA0 strain is approximately 5 times more susceptible to

killing by the immune system, whereas Ye T3S0 is approximately 40 times more susceptible,
compared to Ye wt. The calculated parameter values obtained for these experimental
datasets are depicted as insets in Figure 4.

Taken together, we were able to fit our experimental data and the model calculations
for both coinfection settings in SPF mice. Therefore, we show that the model can reflect
the processes taking place in the in vivo experiments. Despite the high number of free
parameters, we obtained a proper fit.

3.3.3. A Sensitivity Analysis of the Estimated Parameters Was Conducted

To better comprehend how sensitive the model is to changes in parameters, we an-
alyzed the dynamic range of the model output by adopting different relations of the
parameters f (wt)

γ and f (mut)
γ and checking the impact of these modulations on CFU devel-

opment (Figure S6). This analysis revealed that the model is sensitive to changes within a
range of relations of the parameters f (wt)

γ and f (mut)
γ of up to approximately 10, depending

on the overall susceptibility of the individual mutant strains.
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Figure 4. Overlay of model output and experimentally determined CFU values during Ye coinfection
of SPF wild-type mice. When fitting the model to our experimental data, we obtained the parameter
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values listed in the inset tables. (A) Model output for CFU of Ye wt and Ye YadA0 shown as an overlay
with experimental data. CFU values of individual animals at indicated points of time are shown
for Ye wt and Ye YadA0. The dotted line indicates the limit of detection of our experimental system.
(B) Model output for CFU of Ye wt and Ye T3S0 as an overlay with experimentally determined CFU
values from the Ye wt:Ye T3S0 coinfection of SPF wild-type mice. The tables indicate fixed and
calculated parameter values with green or red backgrounds, respectively; dpi = days post-infection.

Essentially, models with estimated parameters can be validated in two ways: either
the parameters are estimated for one dataset and are used to achieve the results from a
second dataset, or the parameter values are estimated for two datasets and are, subse-
quently, compared. Therefore, we checked whether we could fit our experimental data for
the Ye wt/YadA0 coinfection while using the parameter set obtained for the Ye wt/T3S0
coinfection, and vice versa (Figure S7; see Figure 4A,B for original values obtained for
f (wt)
γ , f (mut)

γ , κ). Missing parameters were estimated by running an optimization with
the parameter values for γ, β, and CI fixed, and using the experimental dataset of the Ye
wt/YadA0 coinfection (Figure S7A). The same was done in reverse, using the wt/YadA0
parameter set and the wt/T3S0 experimental dataset (Figure S7B). We found that the pa-
rameter κ (rate of immune growth), which adopted similar values in the independent
estimations (7.83 × 10−1 for the Ye wt/YadA0, compared to 4.28 × 10−1 for the Ye wt/T3S0
setting; see Figure 4), was now widely diverged (8.61 × 10−4 for the Ye wt/YadA0 com-
pared to 9.72 × 10−1 for the Ye wt/T3S0). In principle, the only differences between the
wt/YadA0 and the wt/T3S0 coinfections were the different susceptibilities to killing by
the immune system, compared to the wt. On the one hand, these validations corroborated
our previous findings, with Ye T3S0 being most susceptible to killing by the immune
system (approximately factor 25 compared to Ye wt) and Ye YadA0 being more susceptible
compared to the wild-type (approximately factor 6), but much less susceptible compared to
T3S0. However, our findings also mean that we can obtain a proper fit only when allow-
ing all unknown parameters to run free. When using parameters derived from the other
respective experimental settings, the model can calculate a CFU development roughly in
line with the experimental data; however, it is with poor precision, as shown in Figure S7B.
This underlines the strong relationship between the accuracy of parameter values and
the quality of the model output and shows that the current model has clear limitations.
It also demonstrates how the model can serve as a hypothesis generator that could be
validated experimentally to refine the model. Further analyses on parameter sensitivity
were conducted in [80].

3.4. Refinement of the Dynamic Population Model
3.4.1. The First Model Refinement Was Based on Coinfection Experiments in GF Mice

To decipher how the model should be refined in different scenarios, we first generated
a dataset using GF mice to mimic the lack of microbiota. Different basic parameter settings
for microbiota-derived CR and host immune competence were adapted, and the resulting
model calculations were analyzed by fitting them to experimental coinfection data. To
decipher the effect of the absence of the microbiota on CFU development, we defined the
number of BM and BL (i.e., number of bacteria in mucosal (M) and luminal compartment
(L)) to be 0. Moreover, we considered that the fecal pellets have a higher water content in GF
mice, as experimentally determined (Table S1). The higher water content was reflected by
using a different thickening factor (0.2 instead of 1.3; for the calculation of the factor, please
refer to the Materials and Methods section) to align the model output with the experimental
data. Furthermore, we considered the lower discharge rate of intestines in GF mice (12 h
mean residence time instead of 4.5 h in SPF animals), which we had also determined
experimentally (Figure S5). The experimental coinfection of GF mice with Ye wt + Ye YadA0
or Ye wt + Ye T3S0, respectively, revealed that both the Ye wt and the mutant strains reached
remarkably higher cell counts in feces compared to CFU levels in SPF-colonized mice. The
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T3S0 strain exhibited a slight attenuation, resulting in apparently lower CFUs, particularly
from 7 dpi onwards, whereas Ye wt and Ye YadA0 counts remained constant at a high level
over the entire observation period of 14 days (Figure 5). Our data, thus, indicates that in
the absence of a commensal microbiome, both YadA and the T3SS seem to be dispensable
for the effective colonization of the GIT.

Figure 5. Infection course in the absence of microbiota. (A) Overlay of model output for CFU of Ye wt
and Ye YadA0 or (B) Ye wt and Ye T3S0, and experimentally determined CFU levels from coinfections
of GF mice. All parameters were estimated based on respective experimental data (parameter values
are listed in the inset table); dpi = days post-infection.

We ran the model for the Ye wt/YadA0 coinfection setting only having defined bound-
aries for some parameters that were justified from a biological point of view (Table 1),
as well as values we had determined experimentally. We obtained a proper fit of the
model output and the experimentally determined course of CFU development (Figure 5A).
The same was true for the Ye wt/T3S0 coinfection setting (Figure 5B). The most striking
differences in parameter values, compared to the values we had obtained previously for
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the SPF wild-type model, were the higher capacities CM and CL for the mucosa and the
lumen, respectively. This makes sense from a biological point of view, as GF animals
have massively enlarged intestines. Interestingly, f (wt)

γ and f (mut)
γ were estimated to be

very similar (0.110 for Ye wt and 0.119 for Ye YadA0). This finding might support our
interpretation of the infection course in GF mice. Here, the Ye YadA0 strain does not have
any disadvantage compared to the Ye wt strain and can expand within the gut to the same
extent. Similarly, also in the model, YadA seems to be dispensable for colonization in the
absence of a microbiota. By estimating the immunity action rate γ using this setting, we
obtained an optimized value of approximately 0.997 (Figure 5A), which is very similar,
compared to SPF. This finding was rather surprising as we had expected a lower activity
of the immune system in the GF setting, according to the literature and our own data.
However, our model calculates that the overall influence of γ on the expansion of Ye is only
subtle (see Figure S8, where the CFU development of Ye wt and Ye YadA0 was calculated
in the GF system while adopting values for γ between 1 (where the immune system is
fully active) and 0 (no immune activity)). This can be explained by the absence of the
endogenous microbiota that competes with Ye to fill the capacity of the small intestine in
the SPF animals. We also modeled the GF Ye wt/T3S0 coinfection and obtained very similar
results, compared to the Ye wt/YadA0 coinfection. The most apparent difference was that
the fit for the T3S0 mutant strain CFU dropped slightly towards the end of our observation
period, which is in line with our experimental data. Again, this difference in the behavior
of Ye YadA0 and Ye T3S0 can be explained by their different susceptibilities to killing by
the host’s immune system. In the absence of a microbiome, both strains can expand very
quickly, and the effect of the enhanced killing of Ye T3S0 by the immune system is not as
notable as in the SPF model system (Figure 5B). Taken together, we can obtain a fit where
the model output is in alignment with our experimental data under GF conditions.

3.4.2. An Immunocompromised Host Is Mimicked

The host’s immune system fundamentally influences the outcome and course of
infection. Severe infections often occur when the function of the immune system is impaired.
Thus, we wanted to test if we could get a proper fit for our experimental data and model
output when simulating a host with impaired immune function. MyD88 is one of the key
adaptor molecules involved in the activation of a sophisticated antimicrobial program that
is initiated upon the binding of pathogen-associated molecular patterns to, e.g., toll-like
receptors [81]. We made use of MyD88−/− C57BL/6J mice that were colonized with a
complex SPF microbiome as a model to decipher the role of a restricted immune response
for Ye population dynamics. We assumed a more rapid and frequent invasion due to
the reduction of the immune response, as depicted in Figure 2E,F (middle panel; “Ye
coinfection”). As in the SPF wild-type model, Ye encounters the mucosal compartment
occupied by commensals in the MyD88−/− animals. Because of the MyD88 deficiency, a
much weaker immune response is induced. This, primarily, has two consequences: (i) The
microbiota is less disturbed and is reduced. Therefore, Ye is less successful in establishing a
population in the mucosal compartment, and the Ye counts will be lower. As the mucosal
compartment feeds the luminal Ye population by its spillover, we will observe a lower Ye
CFU in the GIT, compared to C57BL/6J wild-type animals. (ii) Due to the weak immune
response of the MyD88−/− animals, we assume that the disadvantage of the mutant strains,
in competition with Ye wt, is much less pronounced.

Finally, we coinfected SPF-colonized MyD88−/− mice, as described before. To compare
the experimental results and modeling data, we created an overlay of the model output
and the experimental data (Figure 6).
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Figure 6. Infection course with an impaired immune response (MyD88−/−). (A) Overlay of model
output and experimentally determined CFU levels from coinfections of SPF MyD88−/− mice with Ye
wt and Ye YadA0 and (B) Ye wt and Ye T3S0. All parameters were estimated based on the respective
experimental data (parameter values are listed in the inset table); dpi = days post-infection.

Due to the high frequency of systemic dissemination that has been observed with
Salmonella typhimurium and Citrobacter rodentium [74,76,82], infections with Ye were con-
ducted for two days only. To get a better temporal resolution within this shorter observation
period, the Ye counts in feces were determined at two additional points of time (i.e., after
16 and 40 h). Within 48 h post-infection, the CFU of the Ye wt showed a slight increase
compared to earlier points in time, but it never reached the high counts we observed in SPF
wild-type mice. The mean CFU of the Ye YadA0 was marginally lower compared to that of
Ye wt (Figure 6A), whereas the difference in CFU of Ye wt, compared to Ye T3S0, was more
pronounced, but also subtle (Figure 6B). In some of the MyD88−/− mice, the YadA0 and, to
a lesser extent, the T3S0 strains reached a comparable, or higher, CFU, compared to the Ye
wt strain, at 48 hpi. The stochastic detection of the mutants or wild-types are, presumably,
the result of a very small total population size. As the CFU data are more scattered com-
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pared to the previous infection experiments, the fit is obviously less satisfying. This might
be caused by the infection becoming systemic in some animals at these early points in time.
However, we cannot control for this appropriately in this infection model. In summary, our
experimental data show that, in the MyD88−/− SPF animals, a proper immune response
outreaches the importance of the presence of the microbiome in preventing colonization
and infection with Ye, and both YadA and the T3SS seem to play only a minor role in the
colonization of the GIT. Again, we were able to fit our experimental data and the model
calculations for both coinfection settings in MyD88−/− SPF mice. However, as the CFU
data are relatively scattered due to the intrinsic properties of the mouse model, our fit is
less reliable.

4. Discussion

The complex interplay of a specific pathogen with host factors, as well as the integrity
and composition of the endogenous microbiome, determines the outcome of a gastrointesti-
nal infection. Herein, we developed a mechanistic model and tried to fit original mouse
infection data to it to identify differences between distinct experimental settings. By our
attempts to rebuild the in vivo situation, we aimed to generate hypotheses that can explain
our findings and can be validated experimentally in the future, to further improve the
model design. Compared to other computational models of infection, the strengths of our
model is the comprehensive experimental dataset underlying our study and its flexibility
that can account for different host and pathogen properties. Based on experimental data
obtained by oral mouse infections with Ye, we devised the specific entities and param-
eters that should be included in the model. Three distinct entities, with their particular
population dynamics, were defined: a luminal compartment, a mucosal compartment,
and the host’s immune response. Within these entities, the model considers the following
aspects: (I) bacterial growth and release by fecal shedding, (II) the presence/absence of CR,
mediated by the microbiome, (III) the role of specific virulence traits of the pathogen coun-
teracting host immune factors, and (IV) the action of the immune system. The replication of
all bacterial populations is the main contributor to population growth in both the luminal
and the mucosal compartments. Populations exceeding the capacity of the mucosal com-
partment (whose capacity is assumed to be smaller than that of the luminal compartment)
additionally feed the luminal populations. The distinct growth rates of the pathogen and
the microbiota, as well as the capacities of the locations, were estimated. We assumed an
overall higher growth rate of the complex microbiota, with its higher density and various
requirements with regards to, e.g., the preferred nutrients and the oxygen availability. Its
high diversity may reduce competition among the different phyla, as compared to the Ye
populations that, presumably, have comparable requirements for optimal growth. Several
approaches have been used in the past to unravel the growth dynamics of specific bacterial
species within the gut microbiota [32,83–85]. Myhrvold et al. [83] determined that an E. coli
strain, engineered for distributed cell division counting, had a doubling time of approx-
imately three hours in orally-infected mice harboring a complex microbiota. The values
we have estimated by our parameter optimization (α(wt) = 0.44–1.89) were determined by
in vitro cultures for the growth rates of Ye, which were in a comparable range to that of
the mentioned E. coli strain. The growth rates we have estimated for the microbiota, as an
entity, were surprisingly similar (α(B) = 0.48–2.00); however, in almost all settings, they were
slightly higher compared to that of the Ye strains. The absolute values we obtained for the
growth rates of the Ye strains were moderately different between the Ye wt/YadA0 and Ye
wt/T3S0 coinfection scenarios, e.g., in SPF animals, which aggravated an easy comparison
of values. Therefore, we calculated the ratio of α(wt)/α(B). This ratio turned out to be quite
stable at approximately 0.9, which means that the endogenous microbiota only has a subtle
growth advantage, compared to Ye, according to our model.

One weakness of our model is that it does not discriminate between the growth rates
of the Ye wt and the mutant strains. Of course, we have determined their growth rates
in in vitro liquid culture and have found them to be comparable, but we cannot rule out
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that they might behave differently within the host. Thus, one potent measure to enhance
our model further would be to experimentally determine both the growth dynamics of
Ye wt, YadA0, and T3S0 (in the different mouse models we used) and that of several
representatives of the mouse gut microbiota. Alternatively, we could strive to implement
already existing mathematical models that consider, not only the growth rate and the
removal by fecal shedding, but also the death of the bacteria. Such an implemented model
could also consider adaptation mechanisms that lead to a decrease in death, which are
crucial for creating a steady state at later points in time after infection [83]. Another level
of complexity could be reached by additionally considering interspecies competition and
external perturbations [85], but this is beyond the scope of this study that was meant to be
a starting point to establish more complex models in the future.

One crucial component of our model is the rather abstract “mucosal compartment”.
We designed it in a way that the bacterial replication rate (per bacteria present) is constant
within this compartment, and that the loss rate towards the lumen increases with the
bacterial concentration in this compartment. There is some preliminary experimental
evidence that Ye resides in such an extra-luminal site (cleaning niche experiment, Figure S4).
However, it remains to be elucidated as to what this compartment looks like, how it can be
occupied by Ye, which replication rate is adopted there, whether this rate remains stable
over the entire observation period, and when Ye shed from this compartment into the
lumen. This demands highly sophisticated experimentation and would be a project in itself,
and is, therefore, beyond the focus of this work. Another possibility for the design of the
mucosal compartment would have been, similar to the lumen, to assume a replication rate
that decreases with an increasing bacterial concentration, and a fixed loss rate from this
compartment to the lumen. However, for this design, experimental evidence would have
to be generated.

The distinct entities of the mucosal and the luminal compartments exhibit different
total capacities in nature and in our model. Rather than the exact values for these capacities,
their relationship is of primary importance for our model. Natural barriers, such as the
mucus layer and a high concentration of AMPs, limit the access of bacteria to the mucosal
compartment [67,69]. Therefore, we implemented a considerably lower capacity of the
mucosal site, compared to the lumen. The estimated overall capacity of the lumen is in
good agreement with the Ye numbers that we determined in the feces of Ye co-colonized
GF mice (where Ye can occupy the entire capacity, Figure 5), as well as with the num-
bers of cultivable commensal bacteria determined from different intestinal compartments
(Figure S3). Myhrvold et al. [83] estimated, in their model, a similar carrying capacity of
109 CFU/mL feces. Vaishnava et al. [86] assessed bacterial numbers in the murine mucosa
and lumen of wt and MyD88−/− mice by quantitative PCR and the determination of the
total 16S rRNA gene copy numbers. In wt mice, they detected considerably lower gene
copy numbers in the mucosa compared to the lumen. Furthermore, FISH analyses of SI
sections could show that secreted AMPs maintain a zone that efficiently eliminates bacteria
close to the epithelium, and bacteria penetrate this barrier seldomly. In summary, these
data support our model’s assumption of a capacity that is lower compared to that of the
luminal compartment that is low in absolute numbers.

Intestinal peristalsis greatly influences the mean residence time of bacterial populations
in the GIT and is causative for the dynamics with which bacteria end up in measurable
counts in feces [10,83,87]. Our model takes this movement into account exclusively for the
luminal compartment. We determined the mean residence time of particles in the GIT as
a model parameter. To this end, we orally administered mice with fluorescent beads and
monitored the excretion of beads over a time course of 24 h (Figure S5). In SPF-colonized
wild-type mice, we defined a mean residence time of 4 h (3–5 h, n = 2), which was slightly
different in MyD88−/− mice (mean 5.5 h, n = 2). These values are in fair agreement with
data generated by other groups, who determined a transit time of approximately 6 h [83,87].
The mean residence time in GF mice was considerably higher than in SPF mice (12 h, n = 2).
This can be explained by the enlarged cecum that lacks bacterial mucus degradation and
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has reduced peristalsis. Both are causative for a reduced defecation frequency and are
well-known characteristics of GF animals [88]. Similar effects have been described for
mice receiving long-term antibiotic treatment [89]. We are aware that the usage of GF mice
has both its benefits and limitations. On the one hand, GF animals allow us to simulate a
situation where the endogenous microbiome has been extinguished; however, it is without
the side effects that may have been caused by antibiotic treatment (such as barrier defects).
This allows a clear-cut interpretation of experimental data with regards to the role of the
endogenous microbiome for the course of the infection. On the other hand, GF mice suffer
from immunological defects, which limits the relevance of findings with regards to the role
of the immune system [90]. Further optimization of the model could, thus, be achieved by
performing infection experiments with animals that received broad-spectrum antibiotic
treatment, or with mice harboring a defined microbiota [91–93].

The dynamics of the intestinal microbiota composition have previously been ad-
dressed in modeling approaches, especially in the context of a Clostridium difficile infection.
Time-dependent metagenomics data were used to analyze the influence of antibiotic per-
turbations on microbiota and pathogen overgrowth in silico [85,94]. An adaption of this
specific model, which combines a Lotka–Volterra model of population dynamics and regres-
sion, could lead to more elaborate model calculations, in terms of microbiota perturbations
due to antibiotics, in the future.

In the current state of our model, the host’s immune response is implemented as one
abstract parameter without a distinction between the actions of different cell populations
of the innate and adaptive immune responses. We are aware that real life is much more
complex. However, this integration of all immune system actions has the advantage of
an easy adjustability of its activity that allows it to model, e.g., different peculiarities
of immune deficiencies. In recent years, several mathematical models were developed
to mirror bacterial gastrointestinal infection [32,34,35,95–98], viral infection at epithelial
sites [38], and inflammatory disorders such as IBD [38,40]. Many of these studies had a clear
focus on the host’s immune response, addressing the complex network that is activated by
a given pathogen [38,40,96,99]. This was not the aim of this study, but future adaptations of
the model could include a more sophisticated immune system and, thereby, could amplify
the flexibility of the model.

In our model setup, the immune response is stimulated by the entry of Ye into the
mucosal compartment. The strength of the immune action correlates with the numbers
of Ye present at this site. All bacterial populations at the mucosal site are affected by the
stimulated immune response, but the model can account for the different immune evasion
potentials of the infecting pathogen. The capacities to evade the immune system can be
adjusted individually by varying the immunity adjustment factors fγ. In contrast to the
approaches mentioned earlier, our model allows the simultaneous and independent modu-
lation of virulence, the growth rate of the pathogen, and the underlying host conditions
with respect to immune competence and CR. By modulating relevant host conditions (the
presence of microbiota and the functionality of the immune system), we finally tested
whether our model could reflect these profound changes. We obtained a good fit of our
data from the infections of SPF mice. The fit even reflected the difference between the two
mutant strains of Ye towards its killing by the immune system. However, one crucial issue
that needed to be resolved to carry out correct parameter optimization was to figure out
how to handle CFU values that were at, or below, our detection limit. This problem could
be resolved mathematically (please refer to the Materials and Methods section for details).

In our study, we adopted an experimental scenario where the endogenous microbiota
was utterly lacking. To our surprise, both the Ye wt and the mutant strains were able to
reach very high CFU levels, filling up the entire available capacity of the intestines. For
initial model calculations, we used parameters derived from the Ye wt/YadA0 coinfection,
but we considered a longer passage time, a higher water content of the feces of germ-free
mice, and of course, the absence of microbiota, while assuming the immune system was
as active as in the SPF model. We know that the immune system of GF animals is not as
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developed as in SPF wild-type animals (see Figure S2; [90]), but further attempts to obtain
a good fit of our data revealed that the activity of the immune system had only a minor
impact on the CFU development in the absence of a microbiome (Figure S8). In sum, the
model also reflected the course of infection in the GF system.

Next, we adopted a scenario with a limited immune response, experimentally mim-
icked by the usage of MyD88-deficient mice. Again, we obtained a fit of our experimental
data; however, this was only within a short timeframe (48 h of infection, in line with the
shortened experimental infection setting). As we could only model compartments within
the GIT, we could not employ it when the infection becomes systemic, where the pathogen
enters new compartments that are not included. The systemic dissemination of Ye presum-
ably happens very quickly in MyD88−/− mice due to the compromised epithelial barrier
functions [83,86]. We conclude that colonization of the PP is not necessarily a prerequisite
for systemic spread. In fact, we even observed a lower abundance of Ye wt CFU in the feces
of MyD88−/− mice, compared to an infection in immunocompetent SPF wild-type mice. We
assume that the largely restricted immune response in the MyD88−/− mice is not sufficient
to considerably decimate the commensal population during Ye infection. Therefore, the Ye
population cannot expand as much as in the SPF animals, resulting in lower CFU amounts
in the feces of the MyD88−/− mice, compared to the SPF mice. However, this needs ex-
perimental proof. To further elucidate the colonization of the mucosal compartment and
dissemination events, as well as cellular immune responses, a histological approach is
needed. We aimed to quantify how many Ye enter the Peyer’s Patches by sampling the
PPs of infected mice at a point in time where the CFU was at its maximum value. We then
generated serial sections and performed immunohistology; however, even with the very
high CFUs obtained in feces during the infection course, this approach was not sensitive
enough to detect Ye in the tissue sections. The extent to which the immune response affects
commensal species in MyD88−/− animals, in their number and composition, could be ad-
dressed by a sequencing approach, as conducted for the SPF wild-type animals. However,
this question was beyond the scope of this study.

Another feature that would greatly enhance the power of our model was developed
by Miller et al. [100]. They implemented a multi-compartment model of symptomatic
bacteremia. This could possibly be connected to our model of the GIT if the translocation
rates of bacteria from the gut, into the bloodstream and other organs, could be determined.
These authors also included the possibility to model the impact of antibiotic treatment on
CFU development.

Our main findings are that the model can reflect the infection course in different
host settings (an immune-competent host with a diverse microbiota, no microbiota, or
one that is immunocompromised), with the caveat that we allowed for many parameters
to adopt any value within a predefined range. Still, we found that similar parameters
were obtained. However, each setting involves its own distinct parameter set to obtain
the best fit. To calculate the CFUs during the infection course reliably, it was not enough
to alter individual parameters to adopt a change implied by a specific condition (e.g., no
microbiota present). This could only occur if parameter values were optimized based on
the respective experimental dataset where the curve fits were in good agreement with
our experimental observations. The model can now be improved with further model
analyses and enhancements, based on our findings. The differences in structural and
functional details (e.g., GIT morphology, physiology, and gut passage of time), even in
our basic experimental setting (comparing SPF and GF animals), presumably show that
the parameter values are not merely exchangeable between systems. Within a consistent
host condition and pathogen phenotype, however, the infection course should, in principle,
be determined mathematically. A crucial step towards more reliable calculations would
therefore be the reduction of unknown parameters.
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5. Conclusions

We conclude, from our study, that to create a reasonable data-driven mechanistic
model, an excellent understanding of the causative agent of GIT infection is needed: How
does the pathogen interact with the host? Does it produce specific virulence factors? How
do these factors contribute to population dynamics (e.g., by mediating an immune evasion)?
Does the pathogen have specific requirements for growth (e.g., oxygen and nutrients)?
These, and many more, questions need to be answered, or the corresponding parameters
need to be clarified experimentally for as many parameters as possible. Consequently,
our current model needs further refinement. More parameters need to be determined
experimentally. To adapt the model to other pathogens, it would be necessary to implement
changes that more precisely reflect the pathogen’s specific peculiarities with regards to the
above-mentioned characteristics. Such adaptations might be implemented more quickly
with pathogens that have a lifestyle comparable to that of Ye, but this will require profound
changes of the model setup for other pathogens.

A good understanding of the infected host is also needed to create a model that delivers
reasonable calculations: Is its microbiota able to mediate full colonization resistance? Was
the microbiota already disturbed by medication? Is the immune system fully operable? Is
the GIT physiology disturbed (leading to, e.g., prolonged or impeded gut passage)? The
more detailed our understanding of the pathogen and the host, the better the model can
reflect biology.

In sum, we think that computational modeling of infection has great potential, but
also many caveats, such as the vast complexity of biological systems even under laboratory
conditions and the plasticity of the causative pathogens. Importantly, computational
modeling requires the close cooperation of disciplines that receive profoundly different
training. For us, this was not trivial, and, therefore, we strongly support the suggestions by
Vlazaki et al. [101] to implement interdisciplinary training of young academics who can
exploit the potential of data-driven computational models.
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