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Probiotics are microbial strains that are beneficial to health, and their potential has recently led to a significant increase in research
interest in their use to modulate the gut microbiota. The animal gut is a complex ecosystem of host cells, microbiota, and available
nutrients, and the microbiota prevents several degenerative diseases in humans and animals via immunomodulation. The gut
microbiota and its influence on human nutrition, metabolism, physiology, and immunity are addressed, and several probiotic
species and strains are discussed to improve the understanding of modulation of gut microbiota. This paper provides a broad
review of several Lactobacillus spp., Bifidobacterium spp., and other coliform bacteria as the most promising probiotic species and
their role in the prevention of degenerative diseases, such as obesity, diabetes, cancer, cardiovascular diseases, malignancy, liver
disease, and inflammatory bowel disease. This review also discusses a recent study of Saccharomyces spp. in which inflammation
was prevented by promotion of proinflammatory immune function via the production of short-chain fatty acids. A summary of
gut microbiota alteration with future perspectives is also provided.

1. Introduction

Alteration of the gut microbiota with probiotic species is very
prominent in human and animal disease treatment. The
potential of probiotic species has recentlymotivated research-
ers to examine the production of probiotic foods and themod-
ulation of the gut microbiota. The importance of consump-
tion of probiotic foodswith a specificmix of bacteria has been
widely studied since the beginning of the 20th century, and
yogurt has drawn attention to maintaining good health via
development of the digestive system and the prevention of
various degenerative diseases [1–3].

The word “probiotic” comes from Greek and means “for
life.” In 1954, Ferdinand Vergin conceived the term “probi-
otic” in an article entitled “Anti-und Probiotika,” in which
several microorganisms were studied to make a list of useful
bacteria and to determine the detrimental effects of antibac-
terial agents and antibiotics on the intestinal microbiota [4].

A few years later, Lilly and Stillwell described probiotics
as beneficial microorganisms that exert growth-promoting
factors for other microorganisms [5]. The term “probiotics”
has been modified over time and with research into their
application and clinical trials in various human and animal
models. According to the Food andAgriculture Organization
(FAO) and the World Health Organization (WHO), probi-
otics are live strains of microorganisms that confer health
benefits upon the host when administrated in adequate
amounts [6], and this definition is followed by the Inter-
national Scientific Association for Probiotics and Prebiotics
(ISAPP) [7, 8]. However, researchers continue to develop new
probiotic species, even though probiotic species have long
been used for human health improvement. Most probiotic
products today are developed with Bifidobacteria, Lacto-
bacilli, and other lactic acid bacteria, such as Lactococci and
Streptococci. Other promising probiotic strains include the
bacterial genera Bacillus, Escherichia, and Propionibacterium
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and some other yeast genera, mainly Saccharomyces. Pro-
biotics are usually considered to be safe for human health
with limited adverse effects [9]. Several species and strains of
Lactobacilli, includingLactobacillus acidophilus,Lactobacillus
casei, Lactobacillus rhamnosus, and Lactobacillus helveticus,
have been extensively studied in the prevention of human and
animal diseases. These probiotic species are able to change
the population of microorganisms in the gut microbiota and
control the functioning of the ecosystem of gut microbiota.
In earlier studies, considerable evidence of clinical trials
of probiotics in animal and human models has reported
suitability for the treatment of a variety of diseases, and this
number continues to grow.

The human gut is a complex ecosystem in which nutri-
ents, the microbiota, and host cells interact extensively. The
relationships between these microorganisms and host cells
were long considered only from a pathogenic point of view
because toxins invade the gut mucosa and translocate, dis-
seminate, and cause systemic infections [10]. However, no
attention was paid to the majority of gut microorganisms
and their relationship with host health. Several studies have
reported beneficial interactions between the commensal
microbiota and the human body and have indicated that the
microbiota acts as a real partner. A deeper understanding of
the gut microbiota and its role is necessary for future health-
care strategies. In this regard, extensive study of the potential
use of selected probiotic bacteria species and their strains is
desperately needed for the prevention and treatment of nu-
merous human and animal diseases [11–14].

The relationship between health and the composition of
the gut microbiota has raised interest in the modulation of
the gut microbiota by administration of probiotic species for
the prevention of some diseases in humans and animals.This
review focuses on the gut microbiota and several probiotic
species that have been extensively studied in the modulation
of the gutmicrobiota and prevention of degenerative diseases.

2. Gut Microbiota

The term “gut microbiota” was first introduced to the scien-
tific community by Joshua Lederberg who called it “the eco-
logical community of commensal, symbiotic, and pathogenic
microorganism that literally share our body space and have
been all but ignored as determinants of health diseases” [31].
The human body consists of trillions of microbes, mostly
within the gastrointestinal tract (i.e., the small intestine and
colon). Using a 70 kg man as a reference, 3.8 × 1013 microbes
are reported to have a total weight of 0.2 kg [32]. The gut
microbiota can ferment nondigestible carbohydrates, which
are well known as prebiotics, including fructooligosaccha-
ride, oligofructose, inulin, galactose, and xylose, that con-
tain oligosaccharides to fulfill energy requirements. The
microbes in the host body have a significant influence on the
metabolism, physiology, and immune development and func-
tion, whereas symbiotic functions include the synthesis of
vitamins, protection from pathogenic colonization as a reg-
ulatory immune system via modulation of gastrointestinal
hormone release function, and regulation of brain behavior
in terms of neuronal signaling [33–38]. The improvement of

culture-independent and molecular high-throughput tech-
niques favor the identification of previously unknown bacte-
ria, which would provide novel insights into the functional
capacity and compositional diversity of some of the fecal
microbiota. In addition, several studies have suggested that
disorders such as colorectal cancer, inflammatory bowel
disease (IBD), alcoholic and nonalcoholic fatty liver diseases,
obesity, type 2 diabetes, oxidative stress–related disease, and
immune-mediated diseases are associated with disease-spe-
cific dibiotic of altered microbiota compositions [15, 39–43].
Modification of the gut microbiota has thus gained more
attention as a potential treatment for several diseases in hu-
mans and animals.

3. Modulation of Gut Microbiota and
Probiotic Species

The gut microbiota includes bacteria, fungi, archaea, proto-
zoa, and viruses that interact with the host and each other to
affect the host’s physiology and health [44]. The gut bacteria
play significant roles in human health, including vitamin
B synthesis, improvement in digestion, and promotion of
angiogenesis and nerve function [45]. In addition, modifi-
cation of the gut microbiota can be harmful when the gut
ecosystem undergoes severe abnormal changes.The bacterial
species found in the human gut microbiome include mostly
three phyla: Bacteroidetes (Porphyromonas, Prevotella), Fir-
micutes (Ruminococcus, Clostridium, and Eubacteria), and
Actinobacteria (Bifidobacterium). Lactobacilli, Streptococci,
and Escherichia coli are found in small numbers in the gut.
However, alteration of the gut microbiota composition can
lead to multiple diseases in humans and animals [21, 22, 28,
30].

Current evidence supports a link between the activity
and composition of the gut microbiota and human health
and disease. Furthermore, the gut microbiota composition
is likely to affect many organ systems, including the cardio-
vascular, neural, immune, and metabolic systems. The gut
microbiota composition is altered inmanydisease states, such
as cardiovascular disease, cancer, malignancy, type 2 dia-
betes mellitus, obesity, colitis, asthma, psychiatric disorders,
inflammatory disorders, disorders of the gut-brain axis, and
numerous immune disorders [15, 40, 41, 46–48]. Modulation
of the gut microbiota facilitates a number of health problems;
probiotic feeding with a high-fat diet showed alteration of
the gut microbiota composition with a decrease in the gram-
positive bacteria phyla Firmicutes and Actinobacteria in
mice [49]. In contrast, in a mouse model of hyperlipidemia,
the probiotic administration of Lactobacillus led to signif-
icant changes in the microbiota composition, including an
increased abundance of Bacteroidetes and Verrucomicrobia
and a reduced ratio of Firmicutes [50]. It is evident that pro-
biotic species play important roles in maintaining the gut
microbiota ecosystem in humans and animals.

4. Bacteria Species

Table 1 presents the most significant results of various studies
on the influence of probiotic bacteria species or strains on
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Table 1: Some bacterial strains used in gut microbiota modulation.

Bacteria strains Disease model Disease Outcomes References

L. acidophilus Eight-week-old male C57BL/mice IBD ↑ IL-10, Treg
↓ IL-6, IL-1𝛽, IL-17 [15]

L. acidophilus (NCK2025) Generation of TS4Cre ×APClox468 mice CRC ↑ IL-10, IL-12
↓ Treg [16]

L. acidophilus Female BALB/c mice Crohn’s disease ↑ IL-17
↓Th17 function, IL-23 [17]

L. acidophilus BALB/c mice Ulcerative colitis
↑ Lactobacilli,
Bifidobacteria
↓ S. aureus

[18]

L. casei BL23 Female C57BL/6 mice CRC
↑Th17, Th 22, IL-10, and

IL-22
↓ Treg

[19, 20]

L. fermentum FTDC 812 Eight week old BALB/c mice Hypercholesterolemia ↑ Lactobacillus [21]
L. johnsonii Male C57BL/6 mice Acute live injury ↑ IL-22, Lactobacillus [22]
L. plantarum CCFM10, RS15-3 58 week BALB/c mice Oxidative stress ↑ Bacteroidetes, Firmicutes [23]

L. acidophilus
B. cereus, B. infantis Eight week SPE male SD mice Nonalcoholic fatty

liver disease

↑ E. coli, Enterococcus,
↓ Bifidobacteria,
Bacteroides, and
Lactobacillus

[24]

L. acidophilus
L. rhamnosus, B. bifidum Eight week C57BL/6 mice Type 2 diabetes

↑ Firmicutes,
Actinobacteria
↓ Bacteroidetes

[25]

B. breve IPLA20004 Human colon Inflammatory ↑ IL-8, IL-10, IL-12 [26]

E. coli Nissle 1917 Male C57BL/6J mice Chronic
inflammation

↑ IL-10, tight-junction
↓ IL-17 [27]

S. boulardii Adult BALB/c mice Acute liver failure ↑ Bacteroidetes
↓ Firmicutes, Proteobacteria [28]

S. boulardii Six week C57BL/6 mice Type 2 diabetes
↑ Firmicutes,

Proteobacteria, and
Fibrobacteria

[29]

E. hirae C57BL/6J mice Cancer ↑Th 17 cell response [30]

modulation of the gut microbiota in various models and dis-
eases.

4.1. Lactobacillus. Most studies of probiotic species in bio-
medical research have examined the lactic acid bacteria
group. In gut microbiota studies, Lactobacillus has been
reported as the most prominent probiotic from the lactic
acid bacteria group. Changes in the composition, diversity,
and function of the gut microbiota by probiotic species have
been studied using tools and techniques including targeted,
culture-dependent methods and metagenomics sequencing.
However, a few studies have demonstrated the associations
of probiotic species with altered gut microbiota composition.
A recent metagenomic analysis of 8-week-old Swiss mice
fed a high-fat diet showed that treatment with a probiotic
mixture of Lactobacillus and Bifidobacterium (L. rhamnosus,
L. acidophilus, and Bifidobacterium bifidum) significantly
altered the composition of the gut microbiota and increased
insulin sensitivity. Several authors have reported that mice
with a high-fat diet with probiotic species had a lower pop-
ulation of Firmicutes, Actinobacteria, and Bacteroides than
untreatedmice [25]. Similarwork on obesemice revealed that
several Lactobacillus spp., Bifidobacterium spp., and other

coliform bacteria increased the gut microbiota composition
in mice with a high-fat diet treated with various Lactobacillus
probiotic strains (L. acidophilus IMV B-7279, L. casei IMV B-
7280, B. animalis VKL, and B. animalis VKB). In addition,
the gut microbiota composition of obese mice treated with L.
casei, L. delbrueckii subsp. bulgaricus, and B. animalis showed
a significant decrease in microscopic fungi [51]. Probiotic
species of Lactobacillus may improve gastrointestinal barrier
function by the proliferation of some harmful bacteria [24,
52]. Intestinal permeability can be achieved with an increase
in the intestinal tight-junction protein occludin. After a
change in the gut microbiota composition with a probiotic,
mice with a high-fat diet were reported to show an increase
in the expression of the tight-junction protein, proglucagon
mRNA, and reduced intestinal expression of the pattern
recognition receptors CD-14 and NOD1. It also leads to a
reduction in the circulating level of lipopolysaccharide and
an increase in glucagon-like peptide 1. In addition, pro-
biotic-treated mice have shown increases in lipoprotein-
lipase-dependent triglyceride storage in adipose tissue and
adipocyte triacylglycerol accumulation [25, 53]. Probiotic
Lactobacillus strains have been found to increase gastroin-
testinal barrier function by the proliferation of harmful
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bacteria in nonalcoholic fatty acid liver diseases and IBD
[15, 24].

An accumulating body of research on probiotics pro-
vides evidence that T regulatory (Treg) cells play a crucial
role in maintaining immune homeostasis in many diseases.
Treg cells secrete IL-10, IL-17, and IL-22 (anti-inflammatory
cytokine) which are important for maintenance of home-
ostasis [54–56]. Commensal Lactobacillus species can restore
homeostasis in intestinal disorders and thus play a protective
role against inflammatory diseases. A recent study showed
that a probiotic species of Lactobacillus acidophilus (L. aci-
dophilus) administered for modulation of dextran sulfate
sodium-induced colitis restored the balance of inflammatory
cytokines andTh17/Treg cells [15]. The authors also reported
that L. acidophilus suppressed proinflammatory cytokines
such as IL-6, tumor necrosis factor-a, and IL-1b in colon
tissues. In addition, in vitro treatment by L. acidophilus
directly induced the production of IL-10 and Treg cells and
suppressed the production of IL-17. Similarly, a probiotic
strain of L. acidophilus isolated from a normal human intesti-
nal tract and orally administrated in mice with dextran sul-
fate sodium-induced colitis suppressed the colitis-associated
response of the IL-23/Th17 axis and reduced the secretion
of proinflammatory cytokines [17]. Furthermore, based on
Treg cell modulation and Th17-biased immune response in
regulatory cytokines, the probiotic strain of Lactobacillus
spp. showed beneficial effects in preventing cancer and
intestinal inflammation [16, 19, 57, 58]. Similarly, a probiotic
strain of L. plantarum TN8 reduced the proinflammatory
cytokine expression and also regulated the intestinal immune
system of Wistar rats with trinitrobenzene sulfuric acid-
induced colitis [59].The same probiotic strains (L. plantarum
TN8) also showed anti-inflammatory properties by inducing
production of IL-10 and a small amount of IL-12 cytokines
[60].

4.2. Bifidobacterium. Bifidobacterium is important in gutmi-
crobiota studies and has long been used as a probiotic to
alleviate various diseases by changing the gut microbiota
composition. Like other Lactobacillus, Bifidobacterium can
also inhibit harmful bacteria, improve gastrointestinal bar-
rier function, and suppress proinflammatory cytokines [24].
Recent studies have demonstrated that Bifidobacterium alters
the function of dendritic cells to regulate the intestinal
immune homeostasis to harmless antigens and bacteria or
initiate protective measures against pathogens. It also has
the potential to control various intestinal diseases, like IBD,
cancer, and allergies [61–63]. The probiotic Bifidobacterium
has shown metabolic capacity in gut bacteria and can
increase the proportion of beneficial bacteria in the gut
microbiota by cross-feeding. According to Turroni et al. [64],
Bifidobacterium bifidum significantly increased metabolic
activity when cocultured with Bifidobacterium breve. This
coculture of probiotic bacteria affected the metabolic shift
in the gut microbiota by increasing the production of short-
chain fatty acids rather than by changing the gut microbiota
composition. Colonicmucus is a physical barrier that consists
of gut microbiota and is maintained by an extensively glyco-
sylated mucin-2 network. In vivo, the ability of bacteria-sized

beads to penetrate the mucus layer was greater in mice fed
a Western-style diet than in chow-fed mice, which indicated
slower mucus growth in the mice fed a Western-style diet
due to host metabolic factors. It is worth noting that the
abundance of Firmicutes increased and that of Bacteroidetes
andActinobacteriawere reduced in the colonic lumen ofmice
fed a Western-style diet. A study with probiotic treatment
showed that Bifidobacterium longum NCC 2705 (B. longum)
preventedmucus production [65].Moreover,Bifidobacterium
exerts a positive effect via hormonal signaling in the gut-brain
microbiome axis to improve memory function, including
brain-derived neurotropic factor and N-methyl-D-aspartate
receptor expression. It has been reported that a combination
of Lactobacilli and Bifidobacterium decreased acute stress
and depression [66, 67]. However, the understanding of the
molecular mechanism is beyond the scope of this study.

4.3. Other Bacteria Species. Like other probiotic species,
Escherichia coli, a gram-negative bacterium in the Enterobac-
teriaceae family, is a well-known probiotic strain with some
beneficial effects on gut microbiota homeostasis. The non-
pathogenic strain Escherichia coli Nissle (EcN) is one of the
most used probiotic strains in gut microbiota homeostasis.
It has been shown that EcN can stimulate the production of
human 𝛽-defensin 2, which can protect the mucosal barrier
against adhesion and invasion by pathogenic commensals
[68, 69]. In addition, several in vivo and in vitro studies have
shown that EcN has a protective function against Salmonella,
Shigella, Candida, and some other invasive commensals and
may restore damaged epithelium by modulation of tight-
junction and zonula occludens proteins [70]. However, outer
membrane vesicles (OMVs) released by gram-negative bacte-
ria play a vital role in the signaling process of the intestinal gut
mucosa. The release of OMVs begins a mechanism to deliver
some active compounds and microbial proteins to the host
body without intercellular contact. It was recently demon-
strated that OMVs trigger the host immune and defense
responses of the probiotic strain EcN, which entered intesti-
nal cells via clathrin-mediated endocytosis. In fact, in vitro
and ex vivo studies have demonstrated expression of antimi-
crobial peptides and modulation of the cytokine/chemokine
response of gut epithelial and gut immune cells when the
probiotic strain EcN induced OMVs. Moreover, these OMVs
promote the upregulation of the tight-junction proteins of
zonula occludens and claudin-14, but down-regulation of
claudin-2 reduces gut permeability and supports intestinal
barrier functions in intestinal epithelial cell lines [71, 72].
Finally, the probiotic strain EcN is also involved in the intesti-
nal microbiota immune response, including macrophages,
epithelial cells, dendritic cells, and upregulation of proinflam-
matory cytokines (IL-6, IL-8, and IL-1𝛽) [71].

Enterococcus are gram-positive bacteria in the lactic acid
bacteria family. Some strains of Enterococcus exert antibiotic-
induced dysbiosis and act as antitumor or anticancer agents
and modulate the immune system. It has been found that
culture of E. faecium strain from human intestinal epithelium
increased the bactericidal effects against enteroaggregative E.
coli, membrane damage, and cell lysis [73, 74]. Fusco et al.
[74] characterized intestinal cytokine expression in epithelial
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cells and reported that intestinal cytokines play a key role in
the host inflammatory response to damage by Salmonella
typhimurium. It has been revealed that E. faecium increases
the expression of proinflammatory and anti-inflammatory
cytokines without appearing as a pathogen. Furthermore, E.
hirae exerts the gut epithelial barrier function by inducing
Th17 [30].

Saccharomyces is well-known nonpathogenic selective
probiotic yeast that has been used commercially in the pro-
duction of probiotic foods. Over the past few decades,
S. cerevisiae and S. boulardii have demonstrated extensive
promise as a probiotic treatment [28]. Several studies have de-
monstrated that S. cerevisiae and S. boulardii were associated
with an increased proportion of Bacteroidetes in the gut
microbiota composition and decreased the relative abun-
dance of Firmicutes and Proteobacteria. In addition, this yeast
has ability to prevent inflammation by promoting proinflam-
matory immune function and increasing the production of
short-chain fatty acids [28, 29, 75, 76].

5. Conclusions

Probiotic bacteria species form a reproducible gutmicrobiota
population in various host bodies and diseases. Various pro-
biotic species have been reported to prevent many degenera-
tive diseases, including obesity, diabetes, cancer, cardiovascu-
lar disease, malignancy, liver diseases, and IBD. An imbal-
ance of the gut microbiota composition can lead to several
diseases. Probiotics have been proved tomodulate gut micro-
biota composition imbalance by increasing bacteria popula-
tion, gut epithelium barrier function, and cytokine produc-
tion. Meanwhile, diets and different nutrients have been
reported to productively and markedly shape gut microbiota
communities [77–83], further studies should be performed to
elucidate the metagenomics relationship between alteration
of the gut microbiota composition and probiotic species un-
der different diets or nutrients. A well-designed and appro-
priate experimental model (in vivo, in vitro, or ex vivo) is
suggested to provide insights into the gut microbiota com-
position and potential commensals for host health. Further-
more, the identification of new probiotics and isolation from
microbiome and mixture of probiotic species would be a key
pathway for future studies to promote host health.
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[67] J. Arseneault-Bréard, I. Rondeau, K. Gilbert et al., “Combi-
nation of Lactobacillus helveticus R0052 and Bifidobacterium
longum R0175 reduces post-myocardial infarction depression
symptoms and restores intestinal permeability in a rat model,”
British Journal of Nutrition, vol. 107, no. 12, pp. 1793–1799, 2012.

[68] M. Schlee, J. Wehkamp, A. Altenhoefer, T. A. Oelschlaeger, E. F.
Stange, and K. Fellermann, “Induction of human 𝛽-defensin 2
by the probiotic Escherichia coliNissle 1917 is mediated through
flagellin,” Infection and Immunity, vol. 75, no. 5, pp. 2399–2407,
2007.

[69] G. Liu,W. Ren, J. Fang, and C. A. Hu, “L-Glutamine and L-argi-
nine protect against enterotoxigenic Escherichia coli infection
via intestinal innate immunity in mice,” Amino Acids, pp. 1–10,
2017.

[70] A. A. Zyrek, C. Cichon, S. Helms, C. Enders, U. Sonnenborn,
and M. A. Schmidt, “Molecular mechanisms underlying the
probiotic effects of Escherichia coliNissle 1917 involve ZO-2 and
PKCzeta redistribution resulting in tight junction and epithelial
barrier repair,” Cellular Microbiology, vol. 9, no. 3, pp. 804–816,
2007.
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