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Controversial evidence points to a possible involvement of methylmercury (MeHg) in
the etiopathogenesis of autism spectrum disorders (ASD). In the present study, we
used human neuroepithelial stem cells from healthy donors and from an autistic patient
bearing a bi-allelic deletion in the gene encoding for NRXN1 to evaluate whether MeHg
would induce cellular changes comparable to those seen in cells derived from the ASD
patient. In healthy cells, a subcytotoxic concentration of MeHg enhanced astroglial
differentiation similarly to what observed in the diseased cells (N1), as shown by the
number of GFAP positive cells and immunofluorescence signal intensity. In both healthy
MeHg-treated and N1 untreated cells, aberrations in Notch pathway activity seemed to
play a critical role in promoting the differentiation toward glia. Accordingly, treatment with
the established Notch inhibitor DAPT reversed the altered differentiation. Although our
data are not conclusive since only one of the genes involved in ASD is considered, the
results provide novel evidence suggesting that developmental exposure to MeHg, even
at subcytotoxic concentrations, induces alterations in astroglial differentiation similar to
those observed in ASD.

Keywords: neurotoxicity, methylmercury (MeHg), NRXN1 bi-allelic deletion, autism spectrum disorders, astroglia,
notch signaling pathway

INTRODUCTION

Epidemiological and experimental evidence points to a direct link between adverse events during
early life and the pathogenesis of neurodevelopmental disorders (Grandjean et al., 1998; Rice and
Barone, 2000; Seckl, 2004; Mueller and Bale, 2008; Onishchenko et al., 2008; Cottrell and Seckl,
2009; Perera and Herbstman, 2011; Tran and Miyake, 2017). Due to its peculiar physiological
properties, the developing brain is particularly vulnerable to toxic insults (Saunders et al., 2000,
2012; Ek et al., 2012). As a result, in utero exposure to adverse prenatal environments induced
by maternal stress, pharmaceutical compounds, or chemical pollutants, can disrupt normal
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neurodevelopment and lead to long-term detrimental effects on
the nervous system structure and function (Lauwerys et al.,
1978; Koger et al., 2005; Perera and Herbstman, 2011; Ceccatelli
et al., 2013; Tran and Miyake, 2017; Raciti and Ceccatelli, 2018).
Moreover, both experimental and clinical studies indicate that
the developing brain is susceptible to toxicants even at exposure
levels exerting no effects in adults (Palmer et al., 2006; Perera
and Herbstman, 2011; Ceccatelli et al., 2013; Lanphear, 2015;
Edoff et al., 2017).

Several chemicals, such as metals, pesticides, and endocrine
disruptors, have been associated to neurodevelopmental
disabilities including autism spectrum disorders (ASD),
attention deficit hyperactivity disorder (ADHD) and cognitive
impairments (Grandjean and Landrigan, 2014).

Among the environmental contaminants suggested to
be possibly involved in the etiopathogenesis of ASD is
methylmercury (MeHg) (Morris et al., 2018). MeHg represents
a major concern because of its high neurotoxic potential on
developing organisms (Ceccatelli et al., 2013). The developmental
neurotoxicity of MeHg became evident after the Minamata
catastrophe, occurred in Japan between 1950 and 1960, when
symptom-free women gave birth to children with severe
neurological disorders (Harada, 1995). Since then, a number
of experimental studies reported that early developmental
exposure to low concentrations of MeHg is associated with long-
term behavioral deficits, cell death and impaired neurogenesis
(Johansson et al., 2007; Onishchenko et al., 2007, 2008; Bose
et al., 2012). In previous studies, we showed that prenatal
exposure to MeHg in mice induces long-lasting impairments
in learning capabilities, depression-like behavior and epigenetic
changes at BDNF gene promoter, indicating epigenetic events
as key mediators of MeHg effects (Onishchenko et al., 2007,
2008). Also epidemiological studies report a clear association
between prenatal/early postnatal exposure to MeHg in fish-
consuming populations and adverse neurodevelopmental
outcomes, including neurological, cognitive and behavioral
deficits (Harada, 1978; Grandjean et al., 1997, 1999; Murata et al.,
1999, 2004; Jedrychowski et al., 2007; Grandjean and Landrigan,
2014; Strain et al., 2015).

The relationship between ASD and MeHg is still controversial
and the available data is inconclusive (Morris et al., 2018).
Many studies conducted in the last 30 years have found that
mercury represents a risk factor for ASD (Palmer et al., 2006;
Woods et al., 2010; Blanchard et al., 2011; Yoshimasu et al.,
2014), and several of them showed a correlation between tissue
mercury levels and ASD symptom severity (Holmes et al., 2003;
Elsheshtawy et al., 2011; Lakshmi Priya and Geetha, 2011;
Geier et al., 2012; Kern et al., 2016). However, there are also
reports suggesting that MeHg should not be regarded as a risk
factor for ASD (van Wijngaarden et al., 2013; Yau et al., 2014;
McKean et al., 2015).

Both environmental and genetic factors are believed to play
a role in the etiology of ASD, which is among the most
complex neurodevelopmental disorders characterized by social
and communication deficits, stereotyped behaviors and language
impairments (Kim et al., 2008). Among the numerous genetic
and chromosomal abnormalities that have been associated

with autism pathogenesis, mutations in the gene encoding for
neurexin 1 (NRXN1) have been identified as an ASD risk factor
(Kim et al., 2008; Yan et al., 2008; Ching et al., 2010; Béna et al.,
2013). Neurexins are a family of highly polymorphic cell surface
proteins playing a crucial role in synapse formation, function
and connectivity (Ching et al., 2010). In mammals, neurexins are
encoded by three genes, NRXN1, NRXN2 and NRXN3, each being
transcribed from two independent promoters and generating two
main isoforms, α and β (Béna et al., 2013). In humans, the role
of NRXN1 in synaptic transmission during late neurogenesis
has been extensively investigated (Zeng et al., 2013; Pak et al.,
2015). Mutations in the NRXN1 gene have been implicated in
a variety of conditions including autism, schizophrenia, and
nicotine dependence (Ching et al., 2010). More recently, a
study by Béna et al. (2013) identified a bi-allelic deletion in
NRXN1 gene in a patient with ASD and provided evidence
supporting a pathogenic role for heterozygous exonic deletions
of NRXN1 in neurodevelopmental disorders. The two inherited
deletions found in the autistic donor are independent and partly
overlapping, with a size of 0.18 and 0.40 Mb (Béna et al.,
2013). Major clinical features found in the patient include ASD,
intellectual disability, moderate motor developmental delay,
language delay, seizures, hypotonia. Conversely, both parents
(heterozygous carriers of the deletion) are phenotypically healthy
(Béna et al., 2013).

By leveraging on the iPS cell technology (Takahashi et al.,
2007), the Falk’s lab at Karolinska Institutet established a new
cell model derived from the above mentioned autistic patient
carrying a bi-allelic deletion in NRXN1 gene (Béna et al., 2013),
offering the possibility to address our questions on MeHg and
ASD. We designed the present study to investigate whether
subcytotoxic concentrations of MeHg (nanomolar range) would
induce cellular/molecular alterations similar to those observed
in cells originating from ASD patients. Using cells derived from
healthy donors (H cells) and cells derived from the autistic patient
(N1), we could show that in healthy cells MeHg increases the
differentiation toward astroglia similarly to what occurs in the
N1 diseased cells. Both in healthy and N1 cells, such alterations
could be reversed by treatment with DAPT (N-[N-(3,5-
difluorophenacetyl) -l-alanyl] -S-phenylglycine t-butyl ester),
strongly suggesting that a misfunction of the Notch pathway may
be a key common player underlying the defective differentiation,
although via different transcriptional mechanisms.

MATERIALS AND METHODS

Ethics Statement
Ethical permission for reprogramming human cells
(Reprogrammering av mänskliga celler) dnr 2012/208-31/3 with
addendum 2012/856-32 and 2015/1097-31/1 has been approved
by the Ethical review board (Regionala etikprövningsnämnden
i Stockholm). All methods were carried out in accordance with
these approved guidelines and regulations. All samples were
given with written informed consent. Samples from the autistic
patient were given with written informed consent obtained
from the parents.
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Cell Culture Procedure
All experiments were carried out on neuroepithelial stem cell
lines generated from human iPSC cells in the iPS core facility
at Karolinska Institutet, as previously described (Falk et al.,
2012). Briefly, skin fibroblasts obtained from healthy individuals
(C3, C7) and one individual with ASD carrying bi-allelic
NRXN1 deletion were induced toward neuroepithelial stem
(NES) cells and further differentiated spontaneously for 28 days.
The experiments reported here were performed on C3 cells,
whereas C7 cells were kept as backup. Plates coated with poly-
L-Ornithine (0.1 mg/ml, Sigma) for 3 h at 37◦C, were washed
twice with PBS then coated with laminin (5 µg/ml, Sigma) at 4◦C
overnight. During the expansion step, healthy and autistic cells
were cultured at the density of 45,000 cell/cm2 in proliferation
media composed as follows: DMEM/F12 (1:1) + Glutamax,
supplemented with Pen/Strept 1:100 (Life technology), N2 1:100
(Life technology), B27 1:1000 (Life technology), EGF (10 ng/ml,
Invitrogen) and βFGF (10 ng/ml, R&D System). Half of the
medium was replaced daily with fresh medium containing
growth factors (GFs). Every 2–3 days, cells were passaged using
TrypLE TM Express (1X Phenol red) and Defined Trypsin
Inhibitor (1X) (Gibco). Cell suspension was collected in washing
medium (DMEM/F12+ Glutamax), supplemented with 0.2%
bovine serum albumin (BSA) and centrifuged 3 min at 1100 rpm.

To induce differentiation, dissociated cells were seeded at a
density of 40.000 cells/cm2 on poly-L-Ornithine and laminin-
coated 6 well-plates (VWR) or glass coverslips (placed in
Nunclon R© 1 MultidisHES, 24 wells) in GFs-free differentiation
medium, composed as follows: DMEM/F12 (1:1) supplemented
with N2 (1:100), B27 (1:100), Pen/Strept (1:100).

From differentiation day (DD) 0 until DD7, half of the
medium was replaced daily with fresh medium. From DD8
until DD20, medium was replaced every other day, and laminin
1:1000 was added to the medium from DD15. In the last
differentiation week (DD21-DD28), half of the medium was
replaced every 3 days.

Experimental Treatments
To investigate the effects of MeHg, proliferating cells (40.000
cell/cm2) were seeded in T75 flasks and, 24 h after seeding,
exposed to 10 nM MeHg (CH3HgOH, ALFA, Johnson Matthey,
Karlsruhe, Germany) for 48 h, in proliferation medium
(Supplementary Figure S1a). After exposure, parental cells (P,
directly exposed to MeHg) were passaged, and daughter cell
generation 1 (G1, proliferating cells never directly exposed), were
seeded in proliferation medium. After 24 h, cells were either
transferred in differentiation medium, or kept in proliferation
medium for 48 additional hours before being processed with
different approaches depending on the experimental purpose
(Supplementary Figure S1a). Preliminary experiments testing
doses from 2.5 to 12.5 nM MeHg established 10 nM as a
concentration not inducing apoptosis or ROS formation in
our model (Supplementary Figures S1b,c). Apoptotic nuclei
were detected by staining with Hoechst 33342, 1 µg/ml. For
intracellular ROS level measurement, 80,000 G1 cells/well were
plated in 96 multi-well plates, pre-coated as described above,
and kept in proliferation state for 72 h before performing the

assay. The intracellular ROS levels in MeHg-exposed and control
cultures were determined by image-iT Live Green Reactive
oxygen species detection kit (Invitrogen). Briefly, cells were
washed with warm HBSS (1X) containing Ca2+ and Mg2+

and incubated for 25 min at 37◦C with 25 µM carboxy-
H2DCFDA. This molecule is able to permeate live cells and
become fluorescent in presence of non-specific ROS. The non-
fluorescent molecule is converted to a green-fluorescent form
when the acetate groups are removed by intracellular esterases
and oxidation (by the activity of ROS) occurs within the cell.
Hoechst 1 µM was added to the carboxy-H2DCFDA staining
solution during the last 5 min of incubation. The fluorescence
intensity was determined using a Fluoroskan Ascent FL 2.6
fluoroscope (Thermo Scientific). The excitation and emission
wavelengths were 485 and 538 nm for carboxy- H2DCFDA, and
355 and 460 nm for Hoechst. All experiments were performed in
triplicates and repeated at least three times.

For DAPT treatment, differentiating cells were administered
with 1 µM DAPT from DD21 (when GFAP mRNA start to
be detectable by qRT-PCR) until DD28, when samples were
harvested for RNA extraction or fixed for immunofluorescence.
0.0001% DMSO was used as a vehicle and the same concentration
was also applied to control cultures and no signs of toxicity
were observed. All experiments were performed in triplicates and
repeated at least three times.

Immunocytochemistry
After exposure, 40.000 cell/cm2cells were plated on glass
coverslips placed in 24 well-plates (coated as already described).
Cells were fixed in 4% paraformaldehyde for 25 min at room
temperature and washed three times with PBS 1X for 5 min.
After 1 min of permeabilization in Triton X-100 0.3%, cells were
blocked with 10% goat serum (in PBS1X) at room temperature for
1 h and then incubated overnight at 4◦C with primary antibodies
diluted in 1.5% goat serum. The following day, samples were
washed three times with PBS 1 X for 10 min at room temperature
and subsequently incubated with the appropriate secondary
antibodies AlexaFluor-488 or -594, for 2 h at room temperature.
Primary and secondary antibodies and respective dilutions are
reported in Table 1. Either DAPI or Hoechst 33342 have been
used as nuclear counterstain; coverslips were mounted with
Fluorescent Mounting Medium (Agilent Technologies, S302380-
2). All fluorescence images were captured using a confocal
microscope LSM 800 (Zeiss) or a fluorescent microscope (Nikon
Eclipse Ti-S). For image analysis and quantification, images

TABLE 1 | Primary antibodies for immunofluorescence (IF) and Western blot (WB).

Primary
antibody

Species Dilution IF Dilution WB Company

NICD Rabbit 1:100 1:1000 Abcam, ab8925

NESTIN Mouse 1:200 1:1000 Millipore, MAB5326

HES5 Rabbit 1:50 – Nordic Biosite

TUJ1 Rabbit 1:1000 – Nordic Biosite, 802001/2

GFAP Mouse 1:500 – Sigma, G3893

α-tubulin Rabbit – 1:1000 Ab4074
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were collected from random fields (3–5 fields/well, n = 3
wells/condition in 2 biological replicates), and the programs ZEN
2.1 system, NIS Elements BR 3.2, or ImageJ/FiJi were used.
FiJi (Version 2.0.0-rc-69/1.52n) was used to calculate the mean
fluorescence. Briefly, for each image the total fluorescence of the
different channels was calculated and normalized by the number
of cells, detected by DAPI staining. The mean fluorescence value
was averaged across experiments and normalized to control
H cells. The number of cells expressing GFAP or TUJ1 was
quantified using FiJi as follows: nuclei were identified in the blue
channel (DAPI staining), using manually set threshold for each
image individually. Mean intensities of GFAP and TUJ1 signal
within the boundaries of nuclei were measured on the green
and red channels, respectively. The signal intensity was scaled to
range between 0 and 1, and the threshold for background noise
in either channel was set to the 95th percentile of signal intensity
in the other channel. The nuclei with signal intensity above the
threshold were counted as GFAP or TUJ1 positive.

EdU Uptake Assay
Proliferating (G1) cells were grown on coverslips in a 24-
well plate for 48h in presence of βFGF. Then cells were
incubated with 10 µM 5-ethynyl-2′ì-deoxyuridine (EdU) for
90 min and fixed in 4% paraformaldehyde (PFA) (Sigma Aldrich)
for 25 min at room temperature followed by washing with
PBS. EdU visualization was performed using Click-iT EdU
imaging kit (Invitrogen, Carlsbad, CA, United States) according
to the manufacturer’s protocol. Fixed cells were incubated for
30 min with azide-conjugated Alexa Fluor 488 dye in Tris buffer
supplemented with 4 mM CuSO4. Cells were then washed three
times with PBS. For subsequent DNA staining, cell nuclei were
counterstained with Hoechst 33342 for 5 min. After rinsing
with PBS, coverslips were mounted onto slides with Vectashield
mounting medium (Vector Laboratories, Inc., Burlingame, CA,
United States). Images were collected from random fields by
a Nikon inverted fluorescent microscope (Nikon Eclipse Ti-S)
equipped with a Nikon Digital Sight DS-Qi1MC camera. For
quantitative analysis, the images were batch processed (to avoid
bias) using ImageJ.

RNA Extraction, cDNA Synthesis and
Quantitative RT-PCR
For gene expression analysis, proliferating and differentiating
cells (40.000 cell/cm2) were seeded in 6 well-plate, coated as
described above. Total RNA was extracted from at least 1 × 106

cells using peqGOLD Total RNA kit (PEQLAB Biotechnologie
GmbH, VWR) and the column DNase digestion (RNase-free
DNase set; Qiagen VWR). Proliferating cells were harvested
for RNA extraction 72 h after seeding; differentiating cells were
harvested after 4 weeks of differentiation (Supplementary
Figure S1a). RNA concentration and purification were
determined by using a Nano Drop 1000 spectrophotometer
(Thermo Scientific). cDNA was prepared using at least 1.5 µg
of mRNA employing the Maxima first strand cDNA Synthesis
for qRT-PCR (Thermo Fishers Scientific). Primers were
designed for human target genes [see Table 2 for primer
sequences and annealing temperature (Ta)]. Amplification
reactions were performed in a final volume of 12.5 µl composed
by 1 µl cDNA template (or 1 µl of water in the negative
controls), SYBR Green PCR Master Mix and 0.2 µM of each
primer. q-RT-PCR reactions were performed in QuantStudio
5 Real-Time PCR System, and the results were analyzed by
Quant StudioTM Design & Analysis Software 1.3.1 (Thermo
Fisher Scientific).

The amplification conditions were 20 s at 50◦C, 10 min at
95◦C, 15 s at 95◦C and 1 min at the Ta for 40 cycles. To confirm
the specificity of the qRT-PCR reactions, melting curve analyses
were performed by adding a dissociation stage (conditions: 15 s
at 95◦C, 1 min at 60◦C, 30 s at 95◦C and 15 s at 60◦C).
The housekeeping gene hypoxanthine guanine phosphoribosyl
transferase (HPRT) was used to normalize the expression levels
of the target genes according to the following formulas:

1CT (difference threshold cycles) = CT of target gene – mean
CT of housekeeping gene. To calculate the relative expression
change we used the formula 2−11CT. All experiments were
performed in triplicates and repeated at least three times.

Western Blot
Protein extracts were prepared from at least 1× 106 proliferating
cells in cell lysis buffer (Thermo-Scientific) supplemented with
a protease inhibitor cocktail (Sigma-Aldrich). Proliferating cells
were harvested 72 h after seeding, while differentiating cells
were collected on DD28 (Supplementary Figure S1a). Protein
concentrations were determined by BCA assay (Pierce) with
BSA as standard. Equivalent amounts of total protein were
diluted in sample buffer (sodium dodecyl sulfate-polyacrylamide)
containing β-mercaptoethanol and boiled for 5 min. Twenty
µg of protein were electrophoretically resolved on a 8–
10% Tris-glycine gradient gels (Bio-Rad), then transferred to
an Immobilon-P membrane (Millipore Inc.) using BioRad

TABLE 2 | Primer sequences and the corresponding annealing temperatures (Ta).

Human target genes Sequence FW Sequence Rev Ta (◦C)

GFAP GATCAACTCACCGCCAACAGC CTCCTCCTCCAGCGACTCAATC 60

P16 GTGGACCTGGCTGAGGAG CTTTCAATCGGGGATGTCTG 60

HES5 ACATCCTGGAGATGGCTGTC AGCAGCTTCATCTGCGTGT 58

TUJ1 CTCAGGGGCCTTTGGACATC CAGGCAGTCGCAGTTTTCAC 60

MAP2 GATGGAGTTCCACGATCAACAG ACCAGGCTTACTTTGCTTCTCT 60

DCX GCGAAATTTTTCAGGACCAC CACAGAAGCCATCAAACTGG3 60

HPRT ACCCCACGAAGTGTTGGATA AAGCAGATGGCCACAGAACT 60
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transfer system. After blocking with 5% skimmed milk in
PBS for 1 h at room temperature, immunoblotting was
carried out overnight at 4◦C using appropriate primary
antibodies: anti-NICD (1:1000, Abcam, 8925), anti-NESTIN
(1:1000, Millipore, MAB5326) and anti-α-Tubulin (1:1000,
Abcam, 4074), diluted with 5% milk in PBS. The following
day, blots were incubated with the appropriate secondary
horseradish peroxidase (HRP) anti-rabbit IgG (1:5000, Bio-Rad)
for 2 h at room temperature followed by Chemiluminescence
detection using Clarity Western ECL substrate Kit (Bio-Rad,
170-5061). The relative amount of protein was estimated
using ImageStudioTM Lite and normalized to beta-Actin.
The experiments were repeated two times and performed in
technical duplicates.

Chromatin Immunoprecipitation
Chromatin immunoprecipitation (ChIP) was performed
in triplicates, using iDeal ChIP-qPCR kit (Diagenode,
Cat. No. C01010180) and according to the manufacturer’s
instructions. Briefly, 10 µg of anti-NCOR antibody
(Abcam 3482, Rabbit) and 10 µg of anti-H3K4me3 (Cell
Signaling, Rabbit) were used respectively in each IP.
Purified, sheared (Bioruptur, Diagenode) eluted DNA and
1% DNA Input were analyzed by room temperature-qPCR
using SYBR Green PCR Master Mix (Life Technologies,
K0222), following the instruction manual. Site-specific
primers for human GFAP promoter [Qiagen, Cat. No.,
GPH1019679(-)02A], human HES1 promoter [Qiagen, Cat. No.,
GPH1009779(-)02A], and human HES5 promoter [Qiagen, Cat.
No., GPH1014204(-)02A] were used to detect the enrichment.
All experiments were performed in triplicates and repeated at
least three times.

Statistical Analyses
All gene expression data are presented as mean of
2−11CT

± standard error of the mean. Non-parametrical
statistical tests were used for data analysis (Kruskall–Wallis test
for multiple comparisons followed by Mann–Whitney U-test
for between-group comparisons). The significance value was
set at p < 0.05.

RESULTS

MeHg Increases Differentiation Toward
Glia, as Occurring in N1 Cells
In the attempt to evaluate whether MeHg exposure could
induce alterations in healthy cells similar to those observed
in cells derived from ASD patient (N1), we started by
investigating cell proliferation and differentiation. We did
not observe any significant difference in the percentage
of EdU-positive cells between the untreated and MeHg-
exposed cells in either group (healthy and N1 cells)
(Figures 1A,B). In accordance, the immunoreactivity of
the stem cell marker NESTIN appeared not to be affected
by MeHg in both healthy and N1 cells (Figure 1C).

Interestingly, there was a significantly higher proliferation
rate in untreated N1 cells as compared to untreated healthy
cells (Figure 1B). Hence, qRT-PCR analysis revealed that
cyclin-dependent kinase inhibitor p16 is downregulated in N1
cells (Figure 1D).

Gene expression and protein analyses in 4 weeks differentiated
cells (DD28) showed that in healthy cells MeHg induced a
strong increase of GFAP and GFAP positive cells, similarly
to what was observed in N1 cells (not exposed to MeHg)
(Figures 2A–C). Conversely, in both healthy and N1 cells, MeHg
did not induce any significant change in the earliest phase
neuronal differentiation marker β-TubulinIII (as detected by
the antibody TUJ1 and qRT-PCR) (Figures 2A,C,D). Also,
the post mitotic neuron marker Microtubule-associated protein
2 (MAP2) and the marker for neuronal precursor cells and
immature neurons Doublecortin (DCX) mRNA levels were not
affected by MeHg (Figure 2D). Interestingly, N1 cells exhibited
a reduced expression of MAP2 mRNA and increased DCX,
suggesting that there might be a higher percentage of newborn
neurons and a lower number of post mitotic neurons in N1
cultures (Figure 2D).

MeHg Exposure Alters Notch1 Signaling
Activation in DD28 Cells
In an attempt to elucidate the molecular mechanisms mediating
the observed overproduction of astroglial cells, we first looked at
Notch intracellular domain (NICD) at DD28. Immunoblotting
data showed an increase in NICD after MeHg exposure,
which was confirmed by immunofluorescence (Figures 3A–
C). As shown in Figures 3A–C, the NICD level in MeHg-
exposed healthy cells was comparable to the level observed in
untreated N1 cells at DD28, suggesting that aberrant Notch
signaling may be a common denominator mediating the glia
overproduction observed in both MeHg-treated healthy cells
and N1 untreated cells. Markedly, the expression of the Notch1
effector enhancer of split 5 (HES5) appeared to be high in N1
and was not affected by MeHg in either healthy, or N1 DD28
cells (Figure 3D).

DAPT Counteracts MeHg Effect on Glial
Differentiation in DD28 Healthy and
N1 Cells
Our findings hitherto suggested a role for Notch signaling in
the alterations of differentiation observed in both MeHg-exposed
healthy cells and N1 cells. To test this hypothesis, we pursued
a combination treatment with Notch blockade in differentiating
healthy and N1 cells, in the presence/absence of MeHg treatment.
As GFAP gene starts to be expressed at high level after 3 weeks
of undirected differentiation (data not shown), DD21 cells were
administered with 1 µM DAPT and then immunostained for
GFAP at DD28. Notch inhibition in DD21 cells counteracted the
MeHg-induced astrocytes production in healthy cells as well as
N1 cells (Figures 4A,B) and resulted in a dramatic decrease of
GFAP immunoreactivity in both MeHg-exposed healthy and N1
cells (Figures 4A,B). Also TUJ1 immunoreactivity was affected
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FIGURE 1 | MeHg does not alter the proliferation rate. (A,B) EdU uptake assay performed in proliferating healthy (H) and N1 cells after exposure to 10 nM MeHg.
The proportion of EdU-positive cells are normalized on untreated H (n = 3 experiments). (C) Illustration of ubiquitous expression of the stem cell marker NESTIN in
proliferating H and N1 cells. (D) P16 gene expression analysis evaluated by qRT-PCR in proliferating cells after MeHg exposure (n = 4 experiments). ∗p < 0.05 and
∗∗p < 0.01, Mann–Whitney U test.

by DAPT, as shown by the increase in staining intensity in both
healthy and N1 cells (Figures 4A,B).

MeHg Decreases N-CoR Occupancy at
GFAP Promoter in Healthy, but Not in
N1 Cells
The nuclear receptor co-repressor (N-CoR) binds in vivo to
the Notch effector RBP-J; this complex, in turn, binds to
the GFAP promoter leading to its transcriptional repression

(Hermanson et al., 2002; Sardi et al., 2006; Andreu-Agulló
et al., 2009). We therefore investigated N-CoR occupancy at
GFAP and HESs genes promoters in healthy and N1 cells after
3 weeks of undirected differentiation (DD21). Interestingly, we
found the N-CoR occupancy at the promoters of GFAP and
the CSL/RBP-J target HES1 to be strongly decreased in healthy
cells treated with MeHg (Figures 5A,B) (GFAP, p = 0.030),
suggesting that MeHg exposure directly activates the expression
of GFAP/HES1 through the Notch signaling activation and the
following N-CoR-mediated transcriptional de-repression. On the
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FIGURE 2 | MeHg increases astroglial cell differentiation in DD28 cells. (A) DD28 cells immunostaining for DAPI (blue), the neuronal progenitor marker III β-tubulin
(TUJ1, red), and the astrocytic marker glial fibrillary acidic protein (GFAP, green). The expression of GFAP is higher in N1 as compared to healthy (H) cells and is
increased after MeHg exposure in DD28 cells, while the expression of TUJ1 is not affected (signal intensity quantification shown in the panels to the right)
(n = 2 experiments). (B) The mRNA expression for GFAP is also higher in N1 than in H cells and is increased after MeHg exposure. ∗p < 0.05, Mann–Whitney U test.
(C) The number of GFAP-positive cells is higher in control N1 than in control H cell and is increased by MeHg exposure only in H cells, while the number of
TUJ1-positive cells is constant across groups. ∗p < 0.05, Mann–Whitney U test. (D) Neuronal markers expression assessed by qRT-PCR. MeHg exposure has no
significant effects on the expression of TUJ1, MAP2 and DCX are observed in healthy cells or N1 cells. The expression of MAP2 is decreased, whereas DCX
expression is increased in untreated N1 cells as compared to untreated healthy cells (n = 4 experiments/group). ∗p < 0.05, Mann–Whitney U test.
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FIGURE 3 | NICD and HES5 levels in DD28 healthy and N1 cells. (A) The NICD immunofluorescence signal is higher in DD28 healthy (H) exposed to MeHg and N1
cells; MeHg further increases NICD in N1 cells. (B) The Western blot analysis for NICD supports the immunofluorescence data as shown by the stronger 80 kD
bands in H-MeHg cells, N1 cells, and N1-MeHg cells. All gels were run in the same experimental conditions (full-length blots of each tested protein are reported in
Supplementary Figure S2; n = 2 experiments). (C) Quantification of relative protein levels for NICD. (D) HES5 mRNA expression level in DD28 cells is higher in N1
cells as compared to H cells and is not is not affected by MeHg. ∗p < 0.05, Mann–Whitney U test.
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FIGURE 4 | Expression of GFAP and TUJ1 following DAPT treatment in DD28 cells. (A) DAPT treatment prevents the MeHg-induced increase in GFAP
immunoreactive H cells (n = 2). (B) In N1 cells, DAPT administration reduces the expression of GFAP in both untreated, and MeHg-exposed N1 cells (n = 2). Relative
signal immunofluorescence signal intensity quantification is show in the panels on the right. ∗p < 0.05, Mann–Whitney U test.
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other hand, we could not find any significant difference in
N-CoR occupancy at GFAP/HES1 promoters in N1 cells or N1
MeHg-exposed cells (Figures 5A,B), suggesting that there is a
different transcriptional mechanism underlying the astrocytes
overproduction observed in these cells.

HES5 Expression in Proliferating Cells
As mentioned above, we noted increased levels of HES5
expression in N1 cells compared to healthy cells, irrespective of
MeHg treatment (Figure 3D). We assessed the N-CoR occupancy
at HES5 promoter and found it to be decreased by MeHg
treatment in both healthy and N1 cells (Figure 5C). Thus the
N-CoR occupancy was dissociated from the increase in astroglial
differentiation induced by MeHg. We therefore speculated that
the increased HES5 expression in the N1 cells could be linked
to the increased gliogenesis, as a result of an imbalance in the
early commitment of neural progenitor cells, and investigated

HES5 gene expression and nuclear levels in untreated cells. Both
gene expression analysis and immunofluorescence of the nuclear
levels showed significantly higher HES5 expression in N1 cells as
compared to the healthy control cells (Figures 6A,B). Moreover,
immunostaining and Western blot experiments in untreated cells
demonstrated a higher basal level of NICD in untreated N1 as
compared to untreated healthy cells (Figure 6C).

DISCUSSION

Although the role of genetic defects in ASD is well established,
recent data point to a potential contribution by adverse prenatal
events, such as exposure to environmental contaminants (Leslie
and Koger, 2011; Karimi et al., 2017). A major concern in this
context is represented by MeHg, a widespread environmental
toxicant known to be highly toxic for the developing nervous

FIGURE 5 | NCOR occupancy of GFAP, HES1 and HES5 promoters of H and N1 cells assessed by ChIP-qPCR after 21 days in differentiation conditions (DD21).
(A,B) MeHg exposure significantly reduces the occupancy of N-CoR at GFAP and HES1 promoter in H, but not in N1 cells. ∗p < 0.05, Mann–Whitney U test.
(C) Significant decrease in N-CoR occupancy at HES5 promoter site was observed in both control (H) and N1 cells exposed to MeHg. ∗p < 0.05, Mann–Whitney
U test (n = 3 experiments).
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FIGURE 6 | HES5 and NICD basal levels in untreated proliferating healthy and N1 cells. (A) HES5 mRNA expression level is higher in N1 cells as compared to H
cells. ∗p < 0.05, Mann–Whitney U test. (B) Fluorescence measurement of HES5 immunostaining in nuclei show an increased signal in proliferating untreated N1
cells. ∗p < 0.05, Mann–Whitney U test. (C) NICD (green) immunostaining in healthy (H) and N1 cells show an increase in NICD production in N1 cells, also confirmed
by Western blot measurement (n = 2 experiments). p < 0.05, Mann–Whitney U test.

system even at low concentrations that do not affect the adult
brain (Harada, 1978, 1995; Kjellstroöm et al., 1989; Grandjean
et al., 1997; National Research Council (US) Committee on
the Toxicological Effects of Methylmercury, 2000; Myers et al.,
2003; Albores-Garcia et al., 2016). Despite major actions taken
to reduce its use and emission in the environment, MeHg
contamination is still a persistent problem: after entering the
aquatic food chain, MeHg accumulates mostly in large fish and
sea mammals, whose consumption represents the main route of
exposure in humans (Morel et al., 1998).

Even though MeHg is among the environmental chemicals
suggested to be a risk factor for ASD, the available data are
controversial (Kern et al., 2016; Ye et al., 2017; Morris et al.,
2018). In the present study, we used human neuroepithelial
stem cells derived from healthy donors and from an autistic
patient carrying a bi-allelic deletion in NRXN1 gene, to
evaluate whether low concentrations of MeHg relevant for
human exposure, induce alterations in neural differentiation

comparable to those observed in cells derived from ASD
patients (N1 cells).

Cells were exposed to 10 nM MeHg, a concentration derived
from preliminary tests of doses from 2.5 to 12.5 nM MeHg,
which does not induce apoptosis. The tested doses came from
our previous experiments performed in human progenitor cells
originating from fetuses of 8.5 and 16 postconceptional weeks
where concentrations ranging from 2.5 to 100 nM were tested.
Also in these two human cell models, 10 nM MeHg did not induce
cytotoxicity (Edoff et al., 2017). Considering that the MeHg mean
concentrations found in maternal blood in various countries
range from 0.46 to 4.05 microg/L (Björnberg et al., 2003; Schober
et al., 2003; Bjornberg et al., 2005; Donohue et al., 2018), the
concentration used in our study (2.15 microg/L MeHg) is relevant
for human exposure.

Exposure to 10 nM MeHg, induced alterations in undirected
differentiation of healthy neuroepithelial stem cells, leading to an
increased production of astrocytes, but no significant effects on
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the neuronal compartment. Other cell populations not included
in our study may be also affected by MeHg. These results are
in accordance with previous studies showing that both rodent
and human neural stem cells (NSCs) are highly susceptible to
MeHg and that even nanomolar concentrations can induce long-
lasting impairments (Tamm et al., 2006, 2008; Moors et al.,
2009; Theunissen et al., 2010; Bose et al., 2012). In this study
we could not find any change in the proliferation capability in
either healthy, or diseased N1 cells after MeHg exposure, as
shown by the EdU uptake assay. This is consistent with our
previous data showing that exposure to 10 nM MeHg does not
affect proliferation of post conception week (PCW) 8.5-derived
human neuronal progenitor cells (NPCs) (Edoff et al., 2017).
As mentioned above, 10 nM MeHg shifted the differentiation
toward an astroglial fate in healthy cells, and similar alterations
were found in cells derived from the ASD patient (N1 cells), as
shown by significantly higher levels of the astrocytic intermediate
filament gene/protein GFAP. This is particularly relevant as
according to previous studies brains from patients with ASD
display higher glial marker expression (Laurence and Fatemi,
2005; Edmonson et al., 2014; Gandal et al., 2018). Specifically,
GFAP levels have been shown to be increased in the cerebellum,
cortex and cerebrospinal fluid of ASD patients (Ahlsén et al.,
1993; Purcell et al., 2001; Laurence and Fatemi, 2005; Edmonson
et al., 2014). The role of glial cells in ASD pathophysiology
is further supported by transcriptomic analysis revealing an
enrichment in astrocytes modules in ASD brains (Voineagu et al.,
2011; Gandal et al., 2018).

In the developing mammalian neocortex, gliogenesis occurs
after neurogenesis and it is finely regulated by the activity of
several pro-gliogenic extracellular signals, including BMP, CNTF
and Notch signaling (Zhou et al., 2010). The Notch signaling
pathway is a major determinant of NSC cell fate, well-known
to be critically involved in the regulation of NSC neurogenic
to gliogenic “switch” (Morrison et al., 2000; Grandbarbe et al.,
2003). Notch activation results in the release of NICD, which,
after interacting with the DNA binding protein CSL, translocates
into the nucleus. Here, the so-formed complex triggers the
expression of HESs genes and GFAP (Zhou et al., 2010). HES1
and HES5, the main Notch effectors, can promote gliogenesis
by hampering the function of proneural genes (NGN1, NGN2,
MASH1) or by cross-talking with JAK-STAT pathway (Zhou
et al., 2010). Previous studies identified Notch as a potential target
for MeHg toxicity (Bland and Rand, 2006; Tamm et al., 2008;
Edoff et al., 2017). In rat and drosophila, MeHg can activate
the Notch signaling pathway through regulation of ADAM
metalloproteases (Bland and Rand, 2006; Tamm et al., 2008).
Both in rat NSCs and human PCW 8.5 NPCs, MeHg-induced
Notch activation stalls neuronal differentiation and forces neural
progenitors in an undifferentiated state (Tamm et al., 2008; Edoff
et al., 2017). We therefore investigated Notch activity in our
cultures and detected a clear Notch overactivation in DD28
healthy cells exposed to MeHg as well as in N1 cells. MeHg
further increased the NICD signal in N1 cells, strongly suggesting
that a Notch misfunction could underlie the observed astrocytes
overproduction in both healthy and diseased cells. Moreover,
it could explain the higher proliferation capability observed in

untreated N1 cells. In support of this hypothesis, both gene
expression analysis and immunofluorescence data showed much
higher HES5 levels in N1 as compared to healthy cells. In N1 cells
additional mechanisms are likely to contribute to the increased
proliferation rate, such as the dramatic downregulation of p16,
which is known to block the cell cycle progression from G1 phase
to S phase (Rayess et al., 2012).

Next, to investigate the link between Notch misactivation
and increased astrocytes output, we looked at GFAP expression
level and protein upon DAPT-mediated Notch inhibition.
DAPT efficiently blocks the presenilin–γ-secretase complex
(Dovey et al., 2001) and, consequently, prevents the Notch
response activation (Geling et al., 2002; Crawford and Roelink,
2007). DAPT treatment restored a normal GFAP level further
supporting the idea that misfunction of the Notch pathway
plays a critical role in the altered differentiation observed in
untreated N1 cells and in healthy cells exposed to MeHg cells.
As expected the Notch inhibition by DAPT promoted neuronal
differentiation as shown by the increased TUJ1 levels in both
healthy and N1 cells.

It is well-established that N-CoR binds in vivo to the
Notch effector CSL/RBP-J and the so-formed complex, in turn,
directly mediates the transcriptional repression of the GFAP
promoter (Hermanson et al., 2002; Sardi et al., 2006; Andreu-
Agulló et al., 2009). Such N-CoR-induced repression can be
relieved by NICD binding following Notch activation (Giaimo
et al., 2017). Accordingly, we found a strong decrease of
N-CoR occupancy at the promoters of GFAP and HES1 in
healthy cells exposed to MeHg, suggesting that the dramatic
increase in GFAP expression could be directly mediated by a
de-repression of the GFAP gene downstream to the MeHg-
induced Notch activation. In contrast, N1 cells did not show
any significant difference in N-CoR occupancy at GFAP or HES1
promoters as compared to healthy cells, suggesting that different
transcriptional mechanisms are involved in the abnormal
astroglial differentiation observed in diseased cells. We reasoned
that the higher HES5 expression previously noticed in the N1 cells
could imbalance the early commitment of neural progenitor cells,
resulting in increased gliogenesis. Consistently, gene expression
and immunofluorescence experiments conducted in untreated
proliferating cells clearly showed HES5 levels to be much higher
in N1 cells as compared to healthy cells, suggesting that the Notch
signaling could be overactivated. In support of this, we found
higher basal level of NICD in untreated N1 cells, further pointing
to an aberrant Notch activity in these cells.

CONCLUSION

Our data show that the alterations in astroglial differentiation
found in healthy cells after exposure to a subcytotoxic dose of
MeHg are similar to those observed in cells derived from an
autistic patient (N1). In both conditions, there is an increase
in GFAP-positive cells and aberrant increase in the activity of
the Notch signaling pathway. However, the similar phenotypes
observed in MeHg-treated healthy cells and N1 cells appear
to be associated with different transcriptional mechanisms.
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Although our conclusions should be strengthened by further
analyses in cells derived from other type of ASD patients, the
results provide novel evidence suggesting that developmental
exposure to MeHg, even at low concentrations, relevant for
human exposure, induces alterations in astroglial differentiation
similar to the ones observed in cells derived from ASD patients
carrying NRXN1 deletion.
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