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Abstract: Microsporidia are a big group of single-celled obligate intracellular organisms infect-
ing most animals and some protozoans. These minimalist eukaryotes lack numerous genes in
metabolism and vesicle trafficking. Here, we demonstrated that the spore wall protein NbSWP12
of microsporidium Nosema bombycis belongs to Bin/Amphiphysin/Rvs (BAR) protein family and
can specifically bind with phosphatidylinositol 3-phosphate [Ptdlns(3)P]. Since Ptdlns(3)P is in-
volved in endosomal vesicle biogenesis and trafficking, we heterologous expressed NbSWP12 in
yeast Saccharomyces cerevisiae and proved that NbSWP12 can target the cell membrane and endocytic
vesicles. Nbswp12 transformed into Gvp36 (a BAR protein of S. cerevisiae) deletion mutant rescued the
defect phenotype of vesicular traffic. This study identified a BAR protein function in vesicle genesis
and sorting and provided clues for further understanding of how microsporidia internalize nutrients
and metabolites during proliferation.

Keywords: microsporidia; Nosema bombycis; PIP3-binding protein; vesicle genesis; spore wall protein

1. Introduction

Microsporidia constitute a phylum (Microspora) of obligate intracellular parasites
related to fungi. In recent years, the harmness of Microsporidiosis in humans, livestock, and
aquaculture, as well as laboratory animal infection, has become increasingly prominent [1,2].
Blocking the proliferation of microsporidia within host cells may be an important strategy
for prevention and control. As single-celled microorganisms parasitic inside the host cells,
genomes of microsporidia have been extremely reduced. Metabolic pathways such as
tricarboxylic acid cycle, fatty acid β-oxidation, and de novo synthesis of amino acids that
most of the eukaryotes relied on have been lost in microsporidia [3]. To achieve their
proliferation and development, transporters or endocytosis are used by microsporidia to
steal energy and metabolites from host cells [1,4]. Nosema bombycis, the earliest named
microsporidium, is the pathogen of the silkworm Bombyx mori and has been isolated
from several lepidoptera [5,6]. Several key genes of the vesicle transport pathway have
been identified in the genome of N. bombycis [7]. However, how endocytosis occurs in the
microsporidie and how the plasma membrane recycles during endocytosis is still unknown.

The interactions between lipids and proteins e for cells regulate membrane curvature,
and it is also the premise to ensure the process of cell molding, vesicle formation, and
autophagy [8]. It is known that the Bin/Amphiphysin/Rvs (BAR) domain protein acts as a
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sensor and inducer of cell membrane curvature, and its binding to lipids plays an impor-
tant role in cell membrane shaping and vesicle genesis [9–12]. The formation of endocytic
vesicles is dependent on the production of phosphoinositide (PI) and its interaction with
various endocytosis-related proteins [13]. Phosphatidylinositols such as phosphatidyli-
nositol 3-phosphate [Ptdlns(3)P], phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2],
phosphatidylinositol-3,4-bisphosphate [PtdIns(3,4)P2], and phosphatidylinositol (3,4,5)-
trisphosphate [PtdIns(3,4,5)P3] are all involved in the formation or transport of vesicles.
Ptdlns(3)P or PI3P can accumulate in the membrane where endosomes are generated [13].
Ptdlns(3)P and PtdIns(4,5)P2 modulate membrane curvature by selectively recruiting BAR
domain protein, such as Snx9, to alter actin polymerization [14].

Currently, the only proteins predicted to have a BAR domain reported in microsporidia
are NbSWP12 from N. bombycis and its homologous proteins [15,16]. NbSWP12 was orig-
inally reported in the proteomic study of the spore wall of N. bombycis [17]. Subsequent
studies found that NbSWP12 was not only localized to the spore wall but also abundantly
expressed in the sporoplasm and meront stages during N. bombycis infection and accu-
mulated at the poles of the elongated meronts during division [18,19]. RNA interference
and transgenic cells stably expressing single-chain antibodies against NbSWP12 could
effectively inhibit the proliferation of N. bombycis [18]. Therefore, we are very interested to
know how NbSWP12 functions as a BAR protein and if it has the potential to participate in
the endocytosis process.

To overcome the known technical difficulties of performing genetic modifications on
microsporidia, we utilized the yeast Saccharomyces cerevisiae in this study for genetic modifi-
cation and protein function analysis. We demonstrated that NbSWP12 had two features of
the BAR family, dimerization and lipid-binding ability. Lipid overlay assays demonstrated
that NbSWP12 specifically binds to Ptdlns(3)P. Particularly, NbSWP12 expressed in the yeast
can affect vesicle genesis and rescue the vacuole biogenesis defect of Saccharomyces cerevisiae
BAR protein gvp36 deletion mutant. Our findings open a door for further study of how
microsporidia internalize nutrients and metabolites during proliferation.

2. Materials and Methods
2.1. Parasite, Cells, and Cell Culture

Microsporidia Nosema bombycis CQI was isolated from infected silkworm Bombyx mori
in Chongqing, China, and conserved in the China Veterinary Culture Collection Center
(CVCC no. 102059). The mature spores of N. bombycis were purified by discontinuous
Percoll gradient centrifugation (30%, 45%, 60%, 75%, and 90% (v/v)) and centrifuged
at 40,000× g for 30 min. The washed spores were stored in ddH2O supplemented with
antibiotics (Penicillin-Streptomycin solution, 100×, Beyotime, Haimen, China) at 4 ◦C. The
purified parasites were grown in Sf9 cells that were cultured in Sf-900 III SFM medium
(Gibco, New York, NY, USA) at 28 ◦C.

The Saccharomyces cerevisiae strain CEN.PK2 (MAT a/α, ura3-52, leu2-3,112, trp1-289,
and his3-1) and plasmid pUG35 were kindly provided by Dr. Johannes H. Hegemann
(Heinrich-Heine-Universität, Düsseldorf, Germany), which were used for targeting protein
in yeast [20]. The BY4742 (MATα, his3∆1, leu2∆0, lys2∆0, and ura3∆0) wild-type and
gvp36∆ knockout strain of S. cerevisiae were purchased from Open Biosystems (Thermo
Fisher Scientific, Huntsville, AL, USA).

2.2. Multiple Sequence Alignment

Sequences of swp12 homologous genes from 16 microsporidia and gvp36 from Saccha-
romyces cerevisiae were downloaded from the public database NCBI (https://www.ncbi.
nlm.nih.gov/ (accessed on 16 January 2022)). The sequences were aligned with Clustal
Omega (https://www.ebi.ac.uk/Tools/msa/ (accessed on 16 January 2022)) and rendered
by ESPript 3.0 [2].

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.ebi.ac.uk/Tools/msa/
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2.3. Protein Expression and Purification

The previously constructed Escherichia coli Rosetta cells, which carry p-Cold I-Nbswp12
plasmids [3], were cultured in a Luria-Broth (LB) medium containing 100 µg/mL ampicillin
at 37 ◦C with shaking to an optical density (OD 600 nm) of 0.6. Then recombinant protein
was induced with 0.2 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG) for 20 h at 16 ◦C.
Bacterial cells were harvested by centrifugation at 8000× g for 5 min and suspended in
Binding buffer (20 mM sodium phosphate, 500 mM NaCl, 20 mM imidazole, pH7.4),
followed by sonication. The recombinant protein was purified with HisTrap HP and Hi
Load 16/60 Superdex 75 (GE Health), following the manufacturer’s instructions. Purified
protein was eluted with 10 mM Tris–HCl (pH 8.0), quantified with Bradford Protein Assay
Kit (Beyotime), and stored at −20 ◦C.

2.4. Non-Reducing SDS-PAGE

Briefly, 12% SDS-PAGE gel was prepared for this study. Purified recombinant Nb-
SWP12 (rNbSWP12) protein was equally divided into two samples. One sample mixed
with non-reducing loading buffer (30 mL 0.3 mol/L Tris-HC1(pH 6.8), 0.075 g Bromophenol
blue, 12 mL Glycerol, dissolved in ddH2O up to 50 mL). The other mixed with SDS-PAGE
sample loading buffer (30 mL 0.3 mol/L Tris-HC1(pH 6.8), 0.075 g Bromophenol blue,
12 mL Glycerol, 3 g SDS and 6 mL β-mercaptoethanol, dissolved in ddH2O up to 50 mL)
and incubated at 98 ◦C for denaturation. Separated proteins were transferred to the PVDF
membrane, and immunoblotting against NbSWP12 with antiserum (dilution in 1:5000) was
performed to analyze the monomer or dimer of NbSWP12.

2.5. Yeast Two-Hybrid Analysis

Nbswp12 gene sequence is 684 bp in length and encodes 228 amino acids. For this
study, DNA fragment encoding NbSWP12 was cloned from p-Cold I-Nbswp12 plasmid
generated previously [15] and subcloned into pGADT7 and pGBKT7 plasmids (Clontech)
using restriction endonucleases (TAKARA) to create the GAL4 DNA-activation and DNA-
binding domain fusions, respectively. The list of primers is available in Table 1. The
recombinant plasmids were transformed into the Saccharomyces cerevisiae AH109 or Y187
strain (Clontech), respectively, by Yeast Transformation Kit (Clontech). Yeast transformants
were selected on synthetic dropout medium (SD) plates lacking leucine or tryptophan
(Clontech). To validate protein-protein interactions, a selective medium SD/-Leu-Trp-
His-Ade supplemented with X-α-Gal was used. The fusion strain of pGBKT7-53 with
pGADT7-T was used as the positive control, while the fusion strain of pGBKT7-lam with
pGADT7-T, the fusion strain of pGBKT7-53 with pGADT7-Nbswp12 and the fusion strain
of pGBKT7-Nbswp12 with pGADT7-T were used as negative controls.

Table 1. Primers used in this study.

Plasmid Primer Sequence

pCold I-Nbswp12 swp12-F CGGGATCCATGAAAGATTTTAAAAAGAA
pUG35-Nbswp12 swp12-R GCGTCGACCTTAGTCCTCTCTAATGCTT

pGADT7-Nbswp12 12AD-F GGAATTCCATATGATGAAAGATTTTAAAAAGAAAATT
12AD-R CGCGGATCCTTACTTAGTCCTCTCTAATGCTTT

pGBKT7-Nbswp12 12BD-F CGCGGATCC ATGAAAGATTTTAAAAAGAAAATT
12BD-R AAAACTGCAGTTACTTAGTCCTCTCTAATGCTTT

2.6. Liposome Co-Sedimentation

Folch fractions from bovine brain purchased from Sigma were dissolved in methanol–
chloroform mixture (v/v = 3:1) to reach the concentration of 10 mg/mL and dried by
a rotavapor. Then, 20 mmol/L Hepes buffer (20 mmol/L Hepes, pH 7.4, 150 mmol/L
NaCl, 1 mmol/L DTT) was applied to resuspend dried lipids, incubated for 15 min at
room temperature, followed by 10 passages through Millipore 0.22 or 0.45 mm diameter
polycarbonate filter. Then, 0.05 µg/µL rNbSWP12 was incubated in the presence or absence
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of 1 µg/µL 0.22 or 0.45 µm Syringe-driven Filter extruded liposomes for 15 min at room
temperature. Samples were then centrifuged at conditions of 4 ◦C, 30,000× g for 10 min
and analyzed by SDS–PAGE as supernatant and three washed pellet fractions.

2.7. Lipid Strip Assay

PIP Strips™ membranes (Molecular Probes) spotted with 100 pmol samples of 15 different
phospholipids, and a blank sample were purchased, and a protein-lipid overlay assay
was performed following the instruction of the manufacturer. Briefly, the membrane
was blocked with TBST (10 mM Tris–HCl, pH 8.0, 150 mM NaCl, containing 0.1% (v/v)
Tween 20) containing 3% fatty acid-free bovine serum albumin (BSA) for an hour at room
temperature and incubated with 0.5 µg/mL recombinant NbSWP12 protein in TBST-3%
BSA for 1 h at room temperature. The membrane was washed three times and then analyzed
by immunoblotting with NbSWP12 antiserum.

2.8. Targeting of NbSWP12 in Saccharomyces cerevisiae

For GFP tagging of NbSWP12, DNA fragment of Nbswp12 was amplified by PCR from
p-Cold I-Nbswp12 plasmid with primers containing BamH I or Sal I restriction site (Table 1)
and inserted into pUG35 plasmid. The pUG35 and pUG35-Nbswp12 plasmids were trans-
formed into yeast S. cerevisiae CEN.PK2 using Yeastmaker™ Yeast Transformation System 2
(Clontech, Mountain View, CA, USA). Transformants were selected in Minimal synthetic
defined (SD) bases with Uracil Dropout Supplement (SD/-Ura). Isolated clone was grown
in SD/-Ura liquid overnight and inoculated into SD/-Ura-Met inducing medium for over-
expression under control of MET25 inducible promoter. Yeasts were collected at 24 or
48 h post inoculating, and location signals were observed under Olympus FV1200 Laser
Scanning Microscope.

2.9. Vacuole Staining

The yeast cells were cultured to the mid-logarithmic growth phase in SD/-Met liquid
medium. The cultures were centrifuged at 5000 rpm for 2 min and resuspended in a
fresh medium containing 80 µM FM4-64 (Invitrogen) for vacuoles staining. Yeasts were
centrifuged after 1 h of incubation, resuspended in the fresh medium again, and cultured
for extra 3 h. Yeast cells were then sampled on glass slides and observed under Olympus
FV1200 Laser Scanning Microscope.

2.10. Complementation of Yeast gvp36∆ by NbSWP12

Plasmid pUG35 or pUG35-Nbswp12 was transformed into wild-type BY4742 or gvp36∆,
and the transformed yeast cells were selected on SD/-Ura plates. A single colony of recom-
bined yeast and wild-type BY4742 or gvp36∆ was inoculated in YPDA or SD/-Met (Clon-
tech) liquid medium. The overnight cultures were centrifuged, and yeasts were stained
with 80 µM FM4-64 as descript above for vacuoles staining. Complementation of defection
in vacuole biogenesis was observed under Olympus FV1200 Laser Scanning Microscope.

3. Results
3.1. SWP12 and S. cerevisiae BAR Protein Gvp36 Possess Two Representative Conserved Motifs

SWP12 homologues contained predicted Bin-amphiphysin-Rvs-2 (BAR-2) domain [16].
The previous analysis showed two motifs YEH/NGG (N refers to neutral amino acids)
and RYDLE were conserved in SWP12 of microsporidia [15]. Gvp36 is a BAR protein
involved in vesicular traffic and nutritional adaptation in S. cerevisiae [21]. From the
sequence alignment among SWP12 homologs in microsporidia and the BAR-2 domain of
Gvp36 displayed, the two motifs were also relatively conserved in the sequences (Figure 1),
indicating similar functions.
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Figure 1. Multiple sequence alignment of microsporidian SWP12 homologs and the BAR-2 domain
of Saccharomyces cerevisiae Gvp36. The sequences were aligned with Clustal Omega and rendered by
ESPript 3.0. The colored amino acids with blue frames represented the consensus level is greater than
0.7. White characters on a red background highlight the strictly conserved residues. A consensus
sequence is generated using criteria from MultAlin. Uppercase is identity, lowercase is consensus
level > 0.7, $ is anyone of LM, % is anyone of FY, and # is anyone of NDQEBZ [22].

3.2. NbSWP12 Forms Homodimer

BAR family proteins frequently have a dimerization and lipid-binding domain [10]. To
determine whether NbSWP12 (BAR domain e-value: 1.35 e-03) can dimerize, prokaryotic
and eukaryotic expressed NbSWP12 were analyzed. Purified His6-NbSWP12, which was
expressed in E. coli Rosetta, were separated by Non-reduced SDS-PAGE. The sample was
treated with β-mercaptoethanol (β-ME), and a high temperature was used to reduce the
protein to a monomer. As shown in Figure 2A, the NbSWP12 antibody can detect two
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bands near ~30 kDa and ~60 kDa, which were consistent with the size of the predicted
monomer and dimer of His6-NbSWP12. After β-ME and 98 ◦C treatment, only monomers
can be detected. In addition, a yeast two-hybrid assay was performed using pGADT7-
Nbswp12 and pGBKT7-Nbswp12 to further determine the in vivo dimerization of NbSWP12.
The results showed NbSWP12 can interact with itself, then activate the expression of
downstream reporter genes. In general, NbSWP12 can form dimers, which is one of the
key features of BAR proteins.
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Figure 2. Heterologous expressed NbSWP12 can form homodimer. (A) Non-reduced SDS-PAGE com-
bined with Western blotting analysis of His6-NbSWP12 recombinant protein expressed in Escherichia
coli Rosetta. The NbSWP12 specific antibody can recognize monomer and dimer of NbSWP12. β-ME:
β-mercaptoethanol. (B) A yeast two-hybrid assay was used to further determine the in vivo dimeriza-
tion of NbSWP12. P, the fusion strain of pGBKT7-53 with pGADT7-T was used as the positive control.
T, the fusion strain of pGBKT7-Nbswp12 with pGADT7- Nbswp12 was used as test group. The fusion
strain of pGBKT7-lam with pGADT7-T (N1), the fusion strain of pGBKT7-Nbswp12 with pGADT7-T
(N2), and the fusion strain of pGBKT7-53 with pGADT7-Nbswp12 (N3) were used as negative controls.
The fusion strain in test group can grow on SD-Leu-Trp-His-Ade/ X-α-Gal medium and generate
blue metabolites, indicating NbSWP12 can interact with each other and form homodimer.

3.3. NbSWP12 Binds to Ptdlns(3)P

Since NbSWP12 contains a predicted BAR domain, which is a well-known dimeriza-
tion, membrane-binding, and curvature-sensing module [10], an in vitro liposome binding
assay was performed to test the lipid-binding property. As shown in Figure 3A, NbSWP12
recombinant proteins (rNbSWP12) can bind with 0.22 µm or 0.45 µm Folch fraction-derived
liposomes in the co-sedimentation assay. To further identify the properties of the inter-
acting lipids, we performed a protein-lipid overlay assay. rNbSWP12 (0.5 µg/mL) were
incubated with PIP Strips™ membrane spotted with 15 different phospholipids. Binding
between rNbSWP12 and phospholipids was confirmed by immunoblotting with antibodies
against NbSWP12. The rNbSWP12 can notably bind to Ptdlns(3)P and weakly interact
with phosphatidic acid and other phosphatidylinositol phosphates Ptdlns(4)P, Ptdlns(5)P,
Ptdlns(3,5)P2, Ptdlns(4,5)P2, and Ptdlns(3,4,5)P3.
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Figure 3. NbSWP12 interacts with phosphoinositide. (A) SDS-PAGE analysis of NbSWP12 and
liposomes interaction; 0.05 µg/µL bacterial purified rNbSWP12 incubated with 1 µg/µL 0.22 µm or
0.45 µm Folch fraction derived liposomes in a cosedimentation assay. Supernatant (S) and precipitate
(P) were loaded and separated on 12% SDS-PAGE. The results indicated that rNbSWP12 binds with
lipids. (B) The affinity of rNbSWP12 for phospholipids was assessed using a protein-lipid overlay
assay; 0.5 µg/mL purified rNbSWP12 were incubated with PIP Strips™ membranes (Molecular
Probes), immunoblotted with antibody against NbSWP12 and utilize ECL substrate (Bio-rad) for
visualization. The rNbSWP12 protein can notably bind to Ptdlns(3)P.

3.4. NbSWP12 Targets to Yeast Cell Membrane and Endocytic Vesicle

As genetic modification techniques have not been successful in microsporidia, we used
yeast as a substitute species for further study of the protein. The pUG35-Nbswp12 plasmids
were transformed into yeast S. cerevisiae CEN.PK2, then NbSWP12-GFP, was expressed.
Methionine-deficient medium promoted overexpression of NbSWP12-GFP. As shown in
Figure 4A, we observed NbSWP12-GFP fusion protein located in yeast cell membrane.
It was consistent with the localization in N. bombycis [18]. After 24 h overexpression,
NbSWP12-GFP starts to show spots signal looks such as endocytic vesicles in the cells. As
with FM4-64 co-staining, cells with low expression of NbSWP12-GFP showed a large single
vacuole in the mother and daughter cells. While cells contained much more over-expressed
NbSWP12-GFP exhibited numerous vesicles, indicating that vesicles were forming with
the aid of NbSWP12, and leading the vacuoles were not well formed. e. GFP was over-
expressed throughout the cytoplasm of the yeast, and large vacuoles were formed in
the cells.
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Figure 4. Localization of NbSWP12-GFP fusion protein expressed in yeast S. cerevisiae CEN.PK2.
(A) Fluorescence microscopy images showed overexpressed NbSWP12-GFP targeted to cell mem-
brane in the first 24 h of inducible expression and partial of NbSWP12-GFP located to endocytic
vesicle after longer cultivation. (B) Different amounts of NbSWP12-GFP affected vesicle genesis. The
yeast cells were stained with FM 4-64 for 1 h and observed after extra 3 h cultivation. Cells with low
expression of NbSWP12-GFP showed large single vacuole, while numerous vesicles appeared in
cells with plentiful expression of NbSWP12-GFP. (C) The S. cerevisiae CEN.PK2 (pUG35) was used as
control. A large single vacuole was formed in the yeast that GFP was over-expression.

3.5. NbSWP12 Rescues the Vesicle Genesis Defect of Yeast gvp36∆

To evaluate whether NbSWP12 can affect vesicle genesis, NbSWP12 was expressed in
the S. cerevisiae gvp36∆ mutant strain to assess whether NbSWP12 can rescue the defective
phenotype of vacuole biogenesis. Considering overexpression of NbSWP12 in yeast can
cause the formation of numerous vesicles, strains were grown in a YPD medium to ensure
regular expressions. Lipophylic dye FM4-64 was used to stain vacuoles by 1 h of staining
and 3 h of cultivation with cells. As shown in Figure 5, the vesicles in wild-type yeast cells
can transport from the cell membrane and finally form a large vacuole. gvp36∆ exhibited
several small vacuoles as the mutant defected in membrane trafficking and in the initial
steps of endocytosis [21]. Expression of NbSWP12 in gvp36∆ showed a single large vacuole
in the cells, indicating that NbSWP12 rescued the vesicle genesis defect in yeast gvp36∆.
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Figure 5. NbSWP12 rescued gvp36∆ mutant phenotype associated with vacuole biogenesis.
WT—wild type (BY4742 strain); gvp36∆—gvp36 deletion mutant; gvp36∆ + pUG35—gvp36∆ strain
containing pUG35 without an insert as control; gvp36∆ + pUG35- Nbswp12—gvp36∆ strain containing
pUG35-Nbswp12; (A1–D1): Differential Interference Contrast; (A2–D2): FM 4-64—red fluorescent
dye for vesicle staining; (A3–D3): Merged imagines.

4. Discussion

Microsporidia rely on the host cells’ metabolism and organelles to facilitate obligate
intracellular parasitic life cycles [23–26]. As a minimalist eukaryote, microsporidia lost
numerous genes and several organelles during the adaption of parasitism [27–29]. The
smart organism used a variety of strategies such as directly interacting with the cyto-
plasm of the host cell, transporting energy and metabolites from the host, and secreting
molecules to regulate the host cell [1,4,26,30–32]. Endocytosis and vesicle transport may
be significant for microsporidia to acquire and utilize macromolecular materials from
the host. Sections of microsporidia during infection and intracellular stages showed a
large number of membrane structures [1]. Comparative genomic analyses identify clathrin
vesicle transport machinery is conserved in primitive microsporidia of the Metchnikovelli-
dae family [33]. Genome research indicated that highly derived microsporidia contained
an extremely reduced endosomal system [34–36]. Nevertheless, several genes such as
adaptin AP1, clathrin do exist in genome of some microsporidia such as Amphiamblys sp.
(accession: XP_013237374.1), Encephalitozoon cuniculi (accession: CAD25437.1), and Nosema
bombycis (accession: EOB15421.1), suggesting a prominent reduction endocytic pathway in
microsporidia [7,33,34,37]. The biological processes of microsporidium regulating the for-
mation, anchorage, and fusion of vesicles may be different from those of other eukaryotes.

In this study, we demonstrated a new BAR protein, NbSWP12, which can bind with
Ptdlns(3)P and affect vesicle genesis in yeast. NbSWP12 was firstly identified as a spore
wall protein in microsporidia Nosema bombycis [15,17]. Subsequent studies indicated it
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is expressed throughout the life cycle of N. bombycis and located at the membrane of
meronts, concentrated at both ends of the elongated meronts during division [18,19]. BAR
proteins can be a sensor and regulator of membrane curvature. During the division of
microsporidian meronts, BAR proteins may interact with lipids on the membrane and
recruit other proteins, which jointly act on the polarization and division of the meronts. The
aggregation location of NbSWP12 at the two poles of the meronts suggested that NbSWP12
may participate in the processes as a BAR protein. Since PtdIns(3)P mostly participated in
the endosome formation and distribution, endosomal fusion, membrane trafficking and
sorting, autophagy, as well as signaling, the interaction between NbSWP12 and PtdIns(3)P
further confirmed the function of NbSWP12 as BAR protein [38–42]. The membrane and
vesicle localization of NbSWP12 in yeast cells and the vacuole biogenesis defect rescue
experiment indicated that NbSWP12 participates in the endosomal pathway.

PtdIns(3)P and its cooperated proteins play a critical regulatory role in cargo sorting.
As we can see from the yeast location signal, NbSWP12 is located in particular vesicles,
suggesting these vesicles may be involved in cargo sorting. The intracellular proliferation
of microsporidia requires a large number of metabolites derived from sugars, lipids, amino
acids, and other growth-related factors from the host cytoplasm [25,43,44]. What substances
are internalized by the endosomes that NbSWP12 participates in forming, and where is
the destination? What is the molecular mechanism behind the formation of this specific
endocytosis? These questions are of great importance and worthy of further studies in
the future.
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