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ABSTRACT: Batch reactors are large vessels in which chemical
reactions take place. They are mostly found to be used in process
control industries for processes such as reactant mixing, waste
treatment of leather byproducts, and liquid extraction. Modeling
and controlling of these systems are complex due to their highly
nonlinear nature. The Wiener neural network (WNN) is employed
in this work to predict and track the temperature profile of a batch
reactor successfully. WNN is different from artificial neural
networks in various aspects, mainly its structure. The brief
methodology that was deployed to complete this work consisted
of two parts. The first part is modeling the WNN-based batch
reactor using the provided input−output data set. The input is feed
given to the reactor, and the reactor temperature needs to be maintained in line with the optimal profile. The objective in this part is
to train the neural network to efficiently track the nonlinear temperature profile that is provided from the data set. The second part is
designing a generalized predictive controller (GPC) using the data obtained from modeling the reactor to successfully track any
arbitrary temperature profile. Therefore, this work presents the experimental modeling of a batch reactor and validation of a WNN-
based GPC for temperature profile tracking.

1. INTRODUCTION

Batch reactors are found to be used extensively in process
control industries. They are used for various processes such as
chemical reactions, product mixing, and liquid extraction. It
consists of a storage tank to store the chemical reactants, an
agitator to enhance the stirring and mixing of the chemical
reactants, and a heating/cooling system to achieve the optimum
temperature required to carry out the control mechanism to
achieve the desired results with the respective chemical
reactants. A common industry where batch reactors are used is
the leather and tanning industry. The waste produced during the
processing of leather is discharged into water bodies, causing
great damage to marine life due to its highly hazardous nature.
This waste can be first treated in the batch reactors to render it
harmless to the marine environment and then later disposed off
accordingly. This is one of the many applications and uses of the
batch reactor.
Jeong et al.1 had proposed a model predictive controller

(MPC) for a nonlinear MIMO process using a Wiener model.
The process considered was the polymerization reaction of
MMA using benzoyl peroxide (BPO) as the initiator and ethyl
acetate as the solvent. Wiener and Hammerstein models for the
identification of the nonlinear chaotic systems have been
designed by Rayouf et al.2 The linear dynamic plant is
considered to have the same order as that of the chaotic system.
The static nonlinear system consists of a three-layer feedforward

neural network. The inputs to this neural network are delayed
outputs from the plant model, and the outputs of the neural
network are trained accordingly to track the chaotic systems.
Peng et al.3 presented a Wiener-neural-network-based model
predictive control (WNN-MPC) for a highly nonlinear plug
flow tubular reactor. Li and Li4 designed a model predictive
control (MPC) of an intensified continuously stirred tank
reactor using aWiener neural network model. The methodology
of the process is that the Wiener neural network is trained to
track the outlet conversion, and this model is incorporated in the
model predictive controller (MPC) to carry out controller
action. The neural network is trained using the Levenberg−
Marquardt algorithm. Abu-Ayyad andDubay5 had presented the
various controllers that are currently used for industrial
applications. The most commonly used controller is the PID
controller that involves finding the gains of the respective
proportional, integral, and derivative parts of the controller. Due
to the issues faced by time delays and process lag time, the Smith
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predictor found its application in the industries. The most
commonly used controllers in the current scenario are themodel
predictive controller (MPC), generalized predictive controller
(GPC), and dynamic matrix controller (DMC) that are based
on the working of the generalized minimum variance (GMV)
controller.6−9 The idea of the GMV controller is to minimize the

weighted squared errors. DMC is widely used in industries, but it
faces issues due to its complexity as it has a high number of
tuning parameters. Wei Jiang et al.10 had proposed an artificial-
neural-network-based approach for a temperature control
system. The error between the real-time system output and
the designed reference model is used for the training of the

Figure 1. Flowchart of the methodology.
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artificial neural network (ANN) controller. Peng et al.11

presented the identification and adaptive neural network control
of a DC motor system with dead zone characteristics (DZCs).
The paper proposes a design of two different neural networks:
one for the identification of the system and the other to perform
the adaptive control. The training of neural networks is done
using the backpropagation algorithm. Since the system under
consideration is discrete in nature, stability analysis is carried out
using the Lyapunov theorem Cancelier. Liu et al.12 designed a
multilayer feedforward neural-network-based predictive con-
troller to efficiently perform pilot unit temperature control
action. Modeling of the jacketed chemical reactor is carried out
using the neural networks, and the controller action is carried
out based on theminimization of quadratic performance criteria.
Adamu et al.13 had predicted the estimation of turbidity in water
treatment plants using Hammerstein−Wiener and neural
network techniques. The measurement of the scattering of
light when light is incident on a liquid sample is known as
turbidity. The lesser the scattering of light is, the lesser is the
turbidity of water. Janczak et al.14 proposed a Wiener model
predictive control (WMPC) in a pH neutralization experiment.
pH experiments are one of the most nonlinear processes to
control; hence,Wienermodeling of the pH experiment is carried
out followed by the incorporation of the model in the nonlinear
Wiener model predictive controller (WMPC). A similar study
has been carried out by Yu et al. where a neural-network-model-
based predictive control scheme has been implemented to a
laboratory-scaled multivariable chemical reactor.15 Dynamic
optimization and neural network (NN) have been applied to
improve the quality of the product of citric acid.16 The
applications of hybrid models and corresponding simulation
have been studied in the chemical domain.17 Methyl
methacrylate production using a hybrid NN approach has
been presented by Kittisupakorn et al.18 A GA-RBP neural
network and improved gradient descent method has been
presented as MPC for nonlinear application.19 Correspond-
ingly,20 the control of polystyrene batch reactors using NN-
based model predictive control in an experimental approach has
been shown. Another similar application of unloading gradient
pressure in continuous gas-lift systems during petroleum
production operations has been presented by Kamari et al.21

The NN-based MPC approach in pharmaceutical manufactur-
ing has been presented by Wong et al.22

The batch reactor has a highly nonlinear temperature profile
(as evident from eq 1), and hence, tracking that profile is
difficult. It is evident from the equation of the rate of reaction
that is given below. Moreover, due to the dynamic nature of the
set point (set point changes with time), an artificial-intelligence-
based Wiener neural network algorithm is implemented for the
dynamic nonlinear modeling of a pilot plant batch reactor.

= * −k A e E RT/a (1)

+ →X Y ZReaction 1:
K1

+ ⎯→⎯X Z WReaction 2: (byproduct)
K 2

where X and Y are reactants, Z is the product, K1 and K2 are
reaction constants, Ea is the activation energy, A is the Arrhenius
constant for a particular reaction, R is the gas constant, T is the
temperature, and W is the unwanted byproduct whose
production should be avoided, which is the main objective
that can be achieved by optimal temperature control.
The methodology of the work is presented as a flowchart in

Figure 1.
The working objective is that input−output data (input feed

rate and reactor temperature respectively) are provided for the
batch reactor for a particular reaction. Using a neural network
model, weights need to be tuned for the respective neural
network that would estimate an output equivalent to the output
provided in the data set, which would result in minimal error and
hence would ensure better modeling of the system and predict
the output as closely and accurately as possible to the actual
output.
A semi-batch reactor operates in a similar manner to a batch

reactor. The only exception is that in a batch reactor, all the
chemical reactants enter the storage tank at a single instant of
time and the reactants cannot be altered in between the process
mechanism, whereas in the case of a semi-batch reactor, partial
filling of the reactants can be carried out along with the flexibility
of adding or altering more chemical reactants at any time instant
of the process mechanism. The apparatus is present in the
Process Control Laboratory of MIT Manipal.
A schematic representation of a batch reactor shown in Figure

2 where the input reactants are ″A″ and ″B″ and the output
reactant is ″C″. The desired control algorithm is carried out in

Figure 2. A schematic representation of the batch reactor.
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the reactor according to the results desired and also according to
the compatibility and constraints of the reactants used. As a
contribution, the temperature profile has been identified for the
acrylamide polymerization using the WNN approach and the
optimal control is achieved via GPC using WNN.
The batch reactor exhibits a dynamic and nonlinear response;

hence, it is difficult to implement a control algorithm to control
and predict the behavior of a batch reactor system. The artificial-
intelligence-based Wiener neural network control algorithm
ensures the prediction and efficient tracking of the output even
for a nonlinear and dynamic system of the batch reactor.
Another issue that is associated is that the batch reactor has a
variable and dynamic set point (i.e., the set point is not constant
throughout the process as in normal cases, and the set point
keeps varying with time); hence, the tracking profile is more
complicated. The ability of neural networks to solve such
complex problems and find relationships between hidden layers
is the reason why they are in high demand and are being studied
currently, hence resulting in a large focus in research as well that
aims at solving the most complex problems using them (Figure
3).

2. METHODOLOGY
The algorithm is commonly known as the ″backpropagation
algorithm″. It can be used for linear as well as nonlinear
classification. In the backpropagation algorithm, the error
difference between the desired output and the calculated/
estimated output is backpropagated. The procedure is repeated
during the learning of the neural network to minimize the error
by adjusting the weights throughout the backpropagation of the
error. The only difference in the algorithm implemented is that it
also remembers the change in the direction of weight at the next
time instant, which is not done in the conventional back-
propagation algorithm. Hence, the algorithm can be considered
to be an extension of the backpropagation algorithm wherein
even the change in the direction of weights is taken into account
using the momentum factor (γ). The algorithm used allows the
dynamic modeling of the system; i.e., with the change in set
point, the weights are tuned dynamically to track the
temperature profile successfully. Upon the incorporation of
the weights in the controller design to find the dynamic matrix,
the GPC can be tuned to track the dynamic set point
successfully.

The algorithm employed to train the neural network consists
of the steps mentioned below:

1. Identify the number of inputs, outputs, nonlinear static
block parameters, and linear dynamic block parameters.

2. Based on step 1, draw the relevant Wiener neural network
with all the inputs and their nodes at one side followed by
the outputs and their respective nodes at the opposite side
and the hidden layers and their respective nodes lying in
between the input and output layers. The intermediate
unmeasurable signal is the sum of previous weighted
inputs along with the negative sum of the previous
weighted intermediate unmeasurable signal. This unmea-
surable signal acts as the input to the nonlinear static
block, which finally gives the desired output.

3. Normalize the input−output data available from the batch
reactor data set provided. Assign initial randomweights to
each and every interconnection of the nodes between the
respective layers.

4. Find the output of the neural network with initially
assigned weights (w’s). Find the error by comparing it
with the desired normalized output.

5. Find the error produced due to each weight by finding (
∂ ̂
∂
e t

w
( )) using the chain rule of differentiation. Choose the

learning rate (η) in the range (0,1]. The learning rate
ensures how fast the neural network learns and trains itself
with respect to the data. The higher the value of (η) is, the
faster the neural network will be trained. Also, choose the
momentum factor (γ) in the range (0,1]. Use these three
factors to adjust the weights accordingly until the error
reaches a permissible level.

6. When the weights are tuned in such a manner that the
error is as small as possible, the output with this set of
weights is calculated. This output acts as the estimated
output (ŷ(t)), whereas the desired output (y(t)) is
available from the PRBS data set that is provided. Hence,
the error is calculated accordingly as well. w is the
respective weight, whereas is the error which is calculated
as

7. Repeat steps 1−6 for the remaining samples of learning
samples as well.

8. Incorporate the weights in the generalized predictive
controller (GPC) to design the controller. The weights
are used to formulate the dynamic matrix D(t).

9. Based on the dynamic matrix calculated in step 8, the
control law of GPC is implemented along with the
appropriate tuning to ensure the satisfactory tracking of
the set point profile.

2.1. Neural Network. 2.1.1. Artificial Neural Network
(ANN).

• Inputs to the neural networks are arbitrarily chosen by the
user according to the problem statement.

• The input layer is independent of the hidden layer values.
• Activation functions are mostly used to normalize values

between a certain desirable range.
• Each input node is connected to every hidden layer node,

and every hidden layer node is connected to the output
layer node.

2.1.2. Wiener Neural Network (WNN).

• Delayed inputs and delayed intermediate values of the
neural network are used as input to the WNN.

• Activation functions are not used in this case.

Figure 3. Lab-scale batch reactor in the Process Control Lab, MIT-
Manipal.
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• Interconnection of every node is not required.

• Summation of the weighted delayed inputs and negative
weighted delayed intermediate values acts as the
intermediate unmeasurable signal. This acts as the input
to the static nonlinear block. Based on the number of

nodes in the nonlinear layer, the appropriate output is
produced by the neural network (Figure 4).

= =−
−

−x t G q u t
B q
A q

u t( ) ( ( )
( )
( )

( )1
1

1
(2)

where

= + +

= + +

=

− − −

− − − −

A q a q a q

B q b q b q b q

y t f x t

( ) 1 ...

( ) ...

( ) ( ( ))

n
n

n
n

1
1

1

1
1

1
2

2

a
a

b
b

where f(.) is a nonlinear function.

From Figure 5, u(t) is the input feed rate and ŷ(t) is the
reactor temperature. x̂(t) is the intermediate unmeasurable
signal.

∑ ∑̂ = − ̂ ̂ − + ̂ ̂ −
= =

x t a x t i b u t j( ) ( ) ( )
i

n

i
j

n

j
1 1

a b

(3)

∑̂ = ̂ = ̂ ̂
=

y t f x t c x t( ) ( ( ) ( )
k

p

k
k

1 (4)

Following are the parameters assumed for modeling:

na = 3 (linear dynamic block parameter)
nb = 3 (linear dynamic block parameter)

p = 2 (nonlinear static block parameter)

Based on the assumptions made above, eqs 3 and 4 can be
respectively modified as follows:

̂ = − ̂ ̂ − − ̂ ̂ − + ̂ ̂ −

+ ̂ ̂ − + ̂ ̂ −

x t a x t a x t b u t

b u t b u t

( ) ( 1) ( 2) ( 1)

( 2) ( 3)
1 2 1

2 3 (5)

̂ = ̂ ̂ + ̂ ̂y t c x t c x( ) ( ) (t)1 2
2

(6)

The main objective is to find the weights (a1, a2, a3, b1, b2, b3,
c1, c2) such that the output of the WNN (ŷ(t)) is as close as
possible to the desired output (y).
In some cases, the abbreviation w is used to denote weights as

a whole rather than mentioning all the weights separately every
time.
Note: The input−output data provided for batch reactor

modeling are first normalized, and then the training of the neural
network is carried out accordingly; at the end of the training of
WNN, the values are denormalized again to their original values.
This is done to ensure that the values obtained while training do
not tend to ±∞, causing problems during simulation.
The WNN error (e) is as follows:

̂ = − ̂e t y t y t( ) ( ) ( ) (7)

where y(t) is the desired output and ŷ(t) is the WNN output.
The general weight updation formula to train the WNN is as

follows:

η
δ
δ

γΔ = ̂
̂

+ Δ −w t e t
y t
w t

w t( ) ( )
( )
( )

( 1)
(8)

where

• η is the learning rate ranging from (0,1]
• e(̂t) is the WNN error as stated earlier
• ŷ(t) is the WNN output as stated earlier
• γΔw(t − 1) is the momentum factor that tracks the

change in the direction of the weight in the earlier step.

= − + Δw t w t w t( ) ( 1) ( ) (9)

On substituting eq 8 into eq 9,

γ η
δ
δ

= − + Δ − + ̂
̂

w t w t w t e t
y t
w t

( ) ( 1) ( 1) ( )
( )
( ) (10)

The partial derivative of the WNN output with the respective
weights is calculated using eqs 3, 5, 4 and 6. If the partial
derivative cannot be found directly using these equations, then
the chain rule of differentiation is applied, and the partial
derivative is then found by using the intermediate signal (x̂(t))
accordingly.Using eq 4, the following two partial derivatives are
obtained:

∂ ̂
∂ ̂

= ̂
y t

c
x t

( )
( )

k

k

(11)

where
k = 1, 2, 3, ... p

∑∂ ̂
∂ ̂

= ̂ ̂
=

−y t
x t

kc x t
( )
( )

( )
k

p

k
k

1

1

(12)

The partial derivative of the WNN output with the weights of
linear dynamics cannot be found directly. Hence, the chain rule
of partial differentiation is applied wherein the partial differ-
entiation of the WNN output with the intermediate signal is

Figure 4. Structure of WNN. Reproduced from ref 3. Copyright 2011.
American Chemical Society.

Figure 5. Simplified structure of WNN. Reproduced from 3. Copyright
2011. American Chemical Society.
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found (eq 12) followed by the partial differentiation of the
intermediate signal with the linear dynamics. The mathematical
form of the partial differentiation of the intermediate signal with
the linear dynamic weights is given below:

∑∂ ̂
∂ ̂

= − ̂ − − ̂ ∂ ̂ −
∂ ̂=

x t
a

x t i a
x t s

a
( )

( )
( )

i s

n

s
i1

a

(13)

where
i = 1, 2, 3 ... na

∑∂ ̂
∂ ̂ = ̂ − − ̂ ∂ ̂ −

∂ ̂
=

x t
b

u t j b
x t s

b
( )

( )
( )

j s

n

s
j1

b

(14)

where
j = 1, 2, 3, ... nb.
From eqs 12, 13, and 14, the partial derivatives are derived as

follows:
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where
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(16)

Based on the partial derivatives derived in eqs 11, 15, and 16,
the weight updation law (eq 10) can be modified as follows:

η
δ
δ

γ̂ = ̂ − + ̂
̂
̂

+ Δ ̂ −c t c t e t
y t

c
c t( ) ( 1) ( )

( )
( 1)k k c

k
k

(17)

where
k = 1, 2, 3, ... p

η
δ
δ

γ̂ = ̂ − + ̂
̂

̂ + Δ ̂ −b t b t e t
y t

b
b t( ) ( 1) ( )

( )
( 1)j j b

j
j

(18)

where
j = 1, 2, 3, ... nb

η
δ
δ

γ̂ = ̂ − + ̂
̂
̂

+ Δ ̂ −a t a t e t
y t

a
a t( ) ( 1) ( )

( )
( 1)i i a

i
i

(19)

where
i = 1, 2, 3, ... na Equations 17, 18, and 19 are used to find the

Wiener neural network (WNN) weights. The objective is to
keep tuning the weights until the error from the WNN is as low
as possible. This constitutes the modeling of the batch reactor
using the Wiener neural network (Figure 6).

3. WNN-BASED GENERALIZED PREDICTIVE CONTROL
(WGPC)

The GPC is one of the most successful and commonly used
controllers in the industry. The main objective of the GPC in
this case is to effectively track any arbitrary set point profile. It is
based on the controlled auto regressive integrated moving
average (CARIMA) model. Given below is a schematic diagram
of the closed loop system for WNN-based GPC (WGPC)
(Figure 7).

The CARIMA model has a structure similar to the linear
dynamic block of the WNN. Hence, the GPC is designed to
predict values of the linear dynamic block. This can be done
using the inverse of the nonlinear function ( f−1(. )) from eq 2.
The order and contents of the dynamic matrix D(t) that is

used to design the GPC are given below:
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
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− − +

D t

d t

d t d t

d t d t d t

( )

( ) 0 . . . 0

( ) ( ) . . . 0
. . . . . .
. . . . . .
. . . . . .

( ) ( ) . . . ( )N N N N

1

2 1

1 1u (20)

where

=N prediction horizon

=N control horizonu

Figure 6. System identification using WNN. Reproduced from 3.
Copyright 2011. American Chemical Society.

Figure 7. Structure of WNN-based GPC for the nonlinear system.
Reproduced from 3. Copyright 2011. American Chemical Society.
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where

=j N1, 2, ...

The cost function is expressed as:
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By minimizing the cost function J(t), the control law of GPC
is obtained as given below:

λΔ = + −−u t D t D t I D t x t x t( ) ( ( ) ( ) ) ( )( ( ) ( ))T T1
sp 0 (23)

where
D(t) is obtained using eq 21
λ is a tuning parameter that can be adjusted accordingly
I is the identity matrix
x0(t) is the free response dependent only on past moves with

an initial input = zero

= [ + + ]x t x t x t N( ) ( 1). . . . . ( ) T
sp sp sp

and

= −x t f y( ) ( )sp
1

sp

Finally,

̂ = Δ −X t D t u t x t( ) ( ) ( ) ( )0 (24)

The main objective of the controller is that X̂(t) should be
equal to xsp(t). Then X̂(t) is given as the input to the nonlinear
static block of the WNN with the same nonlinear block
parameters to get the WNN output. Now, the output is
denormalized back to the original range. This will make the
controller track the arbitrary temperature set point profile.

4. RESULTS AND DISCUSSION
The aim is to initially find the weights for the Wiener neural
network that successfully track the temperature profile provided
from the existing data set. This process is known as the
modeling/system identification of the batch reactor process.
Secondly, the weights obtained from the modeling are
incorporated in the generalized predictive controller (GPC) to
track the arbitrary set point profile. The results section is divided
into two parts: Part A consists of the results obtained during the
modeling of the batch reactor to satisfactorily track the data set
temperature profile. Part B consists of the results obtained
during the design of the generalized predictive controller. The
tracking performance of the controller with respect to various set
point profiles can be examined.
4.1.Model Parametrization of the Batch Reactor Using

WNN. An input−output data set was provided for an earlier
conducted experiment on the lab-scale batch reactor. The
Wiener neural network (WNN) is trained with the advanced
backpropagation algorithm to track the output from the
provided data set. The input is the input feed rate, and the

output is the batch reactor temperature. The temperature profile
to be tracked is highly nonlinear, which adds to the complexity of
the problem statement as well. The data set provided has 161
fields. The maximum permissible error is considered to be
around 0.5 °C for most of the fields in the data set except for

Figure 8. Comparison of the actual and model data set for modeling a
batch reactor using WNN.

Figure 9. Error obtained between the actual and model data set of the
WNN model.

Figure 10. Tracking performance of GPC for an arbitrary temperature
profile.
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some fields (especially in the start and the end of the training of
WNN).
Based on the data set provided and the assumptions made (as

stated in the methodology) and after meticulously following the
methodology, the tracking profile is obtained for the input−
output data set (Figure 8).
The weights of the Wiener neural network for the provided

input−output data set are obtained using eqs 17, 18, and 19. On
solving these equations in the MATLAB interface to get the
optimal tracking performance, the following weights are
obtained for the given data set: a1̂= −0.3076; a2̂= −0.1306;

a3̂= −0.3585; b̂1= −0.3138; b̂2= −1.1216; b̂3= −0.2703; c1̂=
0.1051; and c2̂= −0.0525.
The graph below shows the variation of error of the Wiener

neural network along different time samples (Figure 9).
4.2. WNN-Based GPC Control. For the designing of GPC,

the following assumptions are considered: prediction horizon
(N) = 5 and control horizon (Nu) = 3. The graph given below
shows the tracking performance of the WNN-based GPC for an
arbitrary set point profile.
The variation of error with respect to the tracking of the

temperature profile in Figure 10 is given in Figure 11.
The graph below shows the response of the manipulated

variable (MV) signal for controller tracking shown in Figure 10
(Figure 12).
The proposed neural networkmodel tracks the desired output

satisfactorily with the following observed error specifications:
maximum observed error (for training WNN) = 0.703413 °C,
minimum observed error (for training WNN) = 0.001282 °C,
average observed error (for training WNN) = 0.203271 °C,
maximum observed error (for WGPC set point profile tracking)
= 4.006069 °C, minimum observed error (For WGPC set point
profile tracking) = 6.39209*10−5 °C, average observed error (for
WGPC set point profile tracking) = 0.037184 °C, maximum
observed error (for WGPC constant set point) = 0.896911 °C,
minimum observed error (forWGPC constant set point) = 0 °C,
and average observed error (for WGPC constant set point) =
0.007803 °C.
The real-time process variable response of generalized

predictive control on the lab-scale batch reactor is shown in

Figure 11. Error plot of WGPC for the temperature profile set point.

Figure 12. Manipulated variable response of the batch reactor.
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Figure 13, and the corresponding manipulated variable response
is given in Figure 14.
The response shows the coolant valve opening based on the

control signal generated from the WNN-based GPC. It was
observed that the control signal is smooth over a time, which
leads to the convergence of the process variable without much
oscillations.
The advantage of the methodology is that the continuous

weight will be updated with respect to the dynamic character-
istics of the plant. The limitations of the approach are that it
requires more data for a more efficient model and that more time
and effort are required for computation.
In the previous research of our work on the batch reactor, few

oscillations in the process variable have been observed due the
change in model which is not captured regularly for updates. In
this WNN-based approach, the dynamic model is captured and
the dynamic controller is designed so as to which will make the
control variable to settle in line with the profile without much
oscillations. In most pharmaceutical companies, refineries, and
chemical industries, they use a batch reactor the most, and the
common issue faced is the thermal runaway. Using the regularly
updated andmore precisely controlled algorithms such as WNN

prediction based controllers, one can be able to maintain the
temperature of the reactor in a controlled manner to avoid any
thermal runaway. The energy consumption with respect to the
thermal input still remains challenging in most industries, which
can be reduced by effective machine learning, deep learning, and
neural network concepts for modeling and control.

5. CONCLUSIONS
The work methodology deployed was the advanced back-
propagation algorithm. This algorithm involves assuming
weights for the neural network and then finding the output
and the respective error along with the change in the direction of
weights in the former step. The error due to each of the assumed
weights is calculated, and then the weights are adjusted based on
this factor. The algorithm is repeated until the error reaches a
permissible level/value to carry out further operation.

1. The output from the neural network satisfactorily tracks
the desired output from the data set.

2. The average error associated with the training of the
neural network is found to be 0.203271 °C.

3. The WNN-based GPC (WGPC) is able to track any kind
of temperature set point satisfactorily. Hence, the
nonlinear tracking of the temperature profile is success-
fully carried out using the modeling of the batch reactor
and designing of the generalized predictive controller.

4. The simulation and experimental validation of the WNN-
based GPC controller on the pilot plant give satisfactory
tracking with the optimal control signal.

6. FUTURE WORK
At present, only a servo operation is presented in this work. As a
future work, load operation would be carried out to analyze the
product conversion rate. Hence, the online reoptimization of the
temperature profile is needed to maximize the product
conversion rate, which is one of the realistic problems in most
of the process industries. Also, only the experimental temper-
ature tracking is projected; the analytical characterization with
respect to the product formed at the end of the batch process can
be carried out with a viscometer, high-performance liquid
chromatography, gas chromatography, etc. This work is under
progress and planned to be presented in a future publication.

Figure 13. Real-time response of the WNN-GPC controller process variable.

Figure 14. Real-time response of the WNN-GPC controller
manipulated variable.
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Support vector regression, a support vector machine, and
principal component analysis could be used to increase the
productive outcome.
Along with this, the experimental setup of the batch reactor

can be further used for the novel catalyst synthesis and biodiesel
production toward the product development. Soft sensing
nonlinear estimators can also be implemented for measuring the
concentration of the product produced.
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MPC model predictive controller
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SVM support vector machine

SVR support vector regression
w weight
WGPC Wiener-neural-network-based generalized predictive

controller
WMPC Wiener-neural-network-based model predictive con-
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