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Abstract

The need to estimate divergence times in evolutionary histories in the presence of various sources of substitution rate vari-
ation has stimulated a rich development of relaxed molecular clock models. Viral evolutionary studies frequently adopt an
uncorrelated clock model as a generic relaxed molecular clock process, but this may impose considerable estimation bias if
discrete rate variation exists among clades or lineages. For HIV-1 group M, rate variation among subtypes has been shown
to result in inconsistencies in time to the most recent common ancestor estimation. Although this calls into question the
adequacy of available molecular dating methods, no solution to this problem has been offered so far. Here, we investigate
the use of mixed effects molecular clock models, which combine both fixed and random effects in the evolutionary rate, to
estimate divergence times. Using simulation, we demonstrate that this model outperforms existing molecular clock models
in a Bayesian framework for estimating time-measured phylogenies in the presence of mixed sources of rate variation,
while also maintaining good performance in simpler scenarios. By analysing a comprehensive HIV-1 group M complete ge-
nome data set we confirm considerable rate variation among subtypes that is not adequately modelled by uncorrelated re-
laxed clock models. The mixed effects clock model can accommodate this rate variation and results in a time to the most re-
cent common ancestor of HIV-1 group M of 1920 (1915–25), which is only slightly earlier than the uncorrelated relaxed clock
estimate for the same data set. The use of complete genome data appears to have a more profound impact than the molecu-
lar clock model because it reduces the credible intervals by 50 per cent relative to similar estimates based on short envelope
gene sequences.
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1. Introduction

Molecular clocks enable the estimation of phylogenetic histories
in units of time by sharing external time-calibration information
across the phylogeny. From these time-scaled evolutionary histo-
ries, inferring divergence times is of broad interest in evolutionary
biology with applications to a wide range of taxonomic groups
and evolutionary time scales, from macroevolutionary processes
of speciation to within-host evolution of viruses. Such histories
are key in molecular epidemiology and phylodynamic inference of
fast evolving viruses (Pybus and Rambaut 2009). They provide esti-
mates of the time to the most recent common ancestor (tMRCA),
offering insights into the origins of epidemics, as well as the times
of all other branching events that often correspond to virus trans-
mission from one case to the next. The latter insight has led to the
development of formal phylodynamic approaches that adopt coa-
lescent (e.g. Volz et al. 2009) or birth-death modelling (e.g. Stadler
et al. 2012) to infer transmission dynamics from time-scaled phy-
logenies. To calibrate phylogenetic time scales for rapidly evolving
viruses, phylodynamic inference generally relies on divergence ac-
cumulating over the sampling time interval to inform dated-tip
molecular clock models (Rambaut 2000). All these models are
implemented in Bayesian statistical inference frameworks that al-
low the joint estimation of time-scaled evolutionary histories,
tree-generative processes, and also trait diffusion processes di-
rectly from sequences with their associated traits (Bouckaert et al.
2014; Suchard et al. 2018).

Early molecular clock models have assumed a constant rate
of molecular evolution across the phylogeny, but models that
explicitly incorporate rate variation now supersede these early
clocks. Although numerous models relax the strict molecular
clock assumption, they can be broadly categorized into models
of uncorrelated and autocorrelated rates across phylogeny
branches. For organisms evolving on macro-evolutionary scales,
which are frequently characterized by correlations between
substitution rate and life-history traits, a Brownian autocorre-
lated clock model provides a reasonable description of long-
term changes in the substitution rate (Thorne, Kishino, and
Painter 1998). Specifically, these autocorrelated clocks assume
that the logarithm of the substitution rate evolves according to
a Brownian motion (Thorne, Kishino, and Painter 1998), akin to
how continuous traits are frequently modelled to evolve on
trees (Felsenstein 1985). Viruses, however, are often character-
ized by short-term evolutionary time scales with little or no rel-
evance in modelling rate variation according to the evolution of
life history traits. This explains why an uncorrelated clock that
assumes independent substitution rates across successive
branches in the tree is the most commonly adopted relaxed
clock for viruses. The most popular implementation draws
branch-specific rates independently from an underlying (typi-
cally lognormal) distribution with an unknown, but estimable
mean and variance (Drummond et al. 2006).

While commonly perceived to be a flexible relaxed clock
model, the uncorrelated clock does not adequately accommo-
date all sources of rate variation in viruses. This has been illus-
trated in detail for the influenza A virus that is characterized by
several host-specific lineages (Worobey, Han, and Rambaut
2014). Allowing these host lineages to have independent rates
of evolution appears necessary to reliably estimate divergence
times as well as tree topologies (Worobey, Han, and Rambaut
2014). This represents a specific case of local molecular clocks
that induce strong rate autocorrelation and for which an uncor-
related clock is particularly ill-suited. Also for HIV-1 group M,
considerable variation in rates has been demonstrated among

different subtype clades (Wertheim, Fourment, and Kosakovsky
Pond 2012). As this is not appropriately accommodated by the
uncorrelated relaxed (UC) molecular clock, it may also affect di-
vergence time estimates, as suggested by simulation analyses
(Wertheim, Fourment, and Kosakovsky Pond 2012). Wertheim,
Fourment, and Kosakovsky Pond (2012) refer to rate variation
among lineages as heterotachy and conclude that the available
relaxed clock implementations are unable to appropriately han-
dle this.

While local molecular clocks, either specified a priori (Yoder
and Yang 2000) or identified a posteriori (Drummond and
Suchard 2010), offer a valuable alternative to the UC clock in dif-
ferent cases, local clocks alone may be overly rigid and lead to
bias in divergence time estimation when considerable variation
among branches exists in addition to clade or lineage-specific
effects on the rate. In previous work on testing HIV-1 evolution-
ary rate differences within and between hosts, Vrancken et al.
(2014) introduce a mixed effects (ME) molecular clock model
that combines the merits of both uncorrelated and correlated,
local clocks. Here, we aim to evaluate this model for divergence
time estimation. Specifically, we use the ME clock model to re-
visit the problem of rate variation among HIV-1 group M sub-
types and how this may affect tMRCA estimates (Wertheim,
Fourment, and Kosakovsky Pond 2012). Because the origin of
HIV-1 has in the past been subject to contentious theories, there
stands longstanding interest in estimating the tMRCA of HIV-1
group M. Following simulations to assess the performance of
the model, we characterize the rate variation among subtypes
based on complete genome data. We subsequently accommo-
date major subtype differences in an ME model in order to esti-
mate HIV-1 divergence times.

2. Materials and methods
2.1 Bayesian divergence time estimation using an ME
clock model

To accommodate both clade-specific rates and uncorrelated
rate variation among branches in the estimation of divergence
times, we employ a molecular clock model that combines both
fixed and random effects. We here present a more general for-
mulation of the ME molecular clock model originally proposed
by Vrancken et al. (2014), where the substitution rate parameter
ri on branch i follows:

logri ¼ b0 þ
Xp

j¼1

Xijbj þ �i (1)

where b0 is an unknown grand mean representing the back-
ground rate, bj is the estimated effect size of the jth covariate Xij

(out of p covariates), and �i are independent and normally dis-
tributed random variables with mean 0 and an estimable vari-
ance. For a clade-specific rate effect with estimable size bj, we
set Xij ¼1 for all branches encompassed by the clade and Xij ¼0
for all other branches. In the analyses of the simulated data, we
specify a normal prior distribution for b0 with mean �6 and a
standard deviation of 3 and a normal prior distribution for bj

with mean 0 and a standard deviation of 1. For the larger empir-
ical HIV data set, we specify normal prior distributions for both
b0 and bj with mean 0 and a standard deviation of 100. Through
simulation, we compare this ME model to other molecular clock
models implemented in BEAST (Suchard et al. 2018), including a
strict clock (SC), a fixed local (FL) clock (Yoder and Yang 2000;
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Worobey, Han, and Rambaut 2014), a random local (RL) clock
(Drummond and Suchard 2010), and a UC clock model with a log
normal distribution (Drummond et al. 2006). We approximate
the joint posterior and its marginalizations using standard
Markov chain Monte Carlo (MCMC) transition kernels (including
random walk operators on the b parameters in the ME model).
We use BEAGLE for efficient likelihood computation (Ayres et al.
2012) and simulate the MCMC chains sufficiently long to ensure
stationarity and mixing as diagnosed using Tracer (Rambaut
et al. 2018). We summarize posterior tree distributions in the
form of maximum clade credibility (MCC) trees and visualize
these trees using FigTree (http://tree.bio.ed.ac.uk/software/fig
tree/, last accessed on 20 October 2018).

2.2 Codon substitution rate estimation

We estimate absolute nonsynonymous (rN) and synonymous
substitution (rS) rates using a codon substitution model ap-
proach (Baele et al. 2016) implemented in BEAST. This Bayesian
evolutionary inference approach adopts the (Muse and Gaut
1994) substitution model (MG94) and, in order to scale the sub-
stitution process in units of time, applies a standardization that
corresponds to rN þ rS expected rate changes per time unit
(Baele et al. 2016). We model substitution rate variation among
sites according to a discrete c distribution with four categories.
To reduce the computational burden associated with codon
substitution likelihood computations in a Bayesian framework,
we keep the tree topology fixed to the MCC tree obtained by a
nucleotide substitution analysis (using a UC relaxed clock). As
an approximation to the standard dN/dS selection measures,
we summarize nonsynonymous over synonymous substitution
rate ratios as rN=3�rS as we expect about three times higher
nonsynonymous substitution rate under neutrality. We com-
pare these estimates to a maximum likelihood (ML) estimate of
dN/dS under a MG94 codon substitution model obtained by
HyPhy (Pond et al. 2005).

2.3 Simulations

We follow Wertheim et al. (2012) in simulating sequence data
over a forty-taxon phylogeny comprised of four identical ten-
taxon clades (Supplementary Fig. S1). The root of the tree is fixed
at 80 years before present (ybp), and the four major clades (A, B,
C, and D) have a fixed age of 40 ybp. The taxa within each clade
are sampled at five different time points (t ¼ 0; 4; 8; 12; 16 ybp),
two per time point. The simulations we aim to perform vary in
the substitution rates that are assigned to the branches in the
phylogeny, which are used to convert the tree in units of substi-
tution. To emulate random effects on evolutionary rate varia-
tion, we draw branch-specific substitution rates from a
lognormal distribution. For Clade D branches and branches an-
cestral to the four major clades, we draw rates from a lognormal
distribution with a mean of ln(0.001) substitutions per site per
year and a standard deviation of 0.25. The simulation scenarios
vary in the lognormal parameterization for clades A, B, and/or
C, with different means emulating different fixed effects on evo-
lutionary rate variation. Standard deviations of lognormal dis-
tributions with different means are set to values that
correspond to the same coefficient of variation
(¼ 0:25=lnð0:001Þ) as for the lognormal distribution on the
branches ancestral to the clades. We use pBUSS (Bielejec et al.
2014) to simulate alignments of 1,000 nt under a general time-
reversible (GTR) model of evolution parameterized using rela-
tive rates (rAC ¼ 0:234; rAG ¼ 0:710; rAT ¼ 0:113; rCG ¼ 0:130;

rCT ¼ 1:000; rGT ¼ 0:170) and nucleotide frequencies (pA ¼ 0:41;
pC ¼ 0:17; pG ¼ 0:21; pT ¼ 0:21) as estimated from a complete ge-
nome HIV-1 group M data set (see below). Among-site rate het-
erogeneity was accommodated using a discrete c distribution
with four categories and a shape parameter of 0.40. For each
rate configuration, we simulate 20 replicate data sets and ana-
lyse them using 5 different clock models implemented in
BEAST: SC, FL, RL, UC (all four with default prior specification),
and ME. As primary outcomes, we monitor relative error
(jx� x̂j =x, where x is the true value and x̂ is the estimate) and
coverage, the percentage by which the credible intervals include
x, for tMRCA estimates for the four clades and the root node.
Estimator coverage reflects the probability that the true value
from which the data derive falls within the model estimated
nominal credible interval and hence predicts the performance
of the methods across a wide set of data sets. We note that in
Bayesian inference a strict relationship between the coverage
percentage and the percentage used to construct highest den-
sity posterior density (HPD) intervals does not necessarily hold.
To represent a single measurement, we summarize mean rela-
tive errors and coverage expectations across the five nodes of
interest, acknowledging that these do not provide independent
estimates of the properties of interest. So, coverage, for exam-
ple, is presented as the proportion of the 5� 20 95 per cent HPD
intervals that contain the true node age.

2.4 HIV-1 group M data set

We compiled a data set of 465 HIV-1 group M genomes, includ-
ing 104A, 82B, 93C, 63D, 45F, 60G, 9H, 7J, and two K genomes.
In Supplementary Data, we detail how the data set was com-
piled on a subtype by subtype basis. This generally involved
selecting a subset of genomes available on GenBank, merging
data sets from previously published studies or a combination of
both, followed by a filtering step (removing multiple genomes
per patient, duplicates, unusually divergent genomes, cultured
viruses, and outliers in a root-to-tip divergence analysis) and re-
combination screening. The sequences were aligned using
MAFFT (Katoh, Asimenos, and Toh 2009) and the resulting se-
quence alignment was manually edited, taking care to maintain
the reading frames in coding genes. We investigated temporal
signal in this data by plotting root-to-tip divergence as a func-
tion of sampling time using TempEst (Rambaut et al. 2016).
As input for these analyses, we used an ML tree reconstructed
by PhyML (Guindon et al. 2009) under a GTR substitution model
with a discrete c distribution to model rate variation among
sites. For HIV-1 group M analyses, we generally exclude sub-
types G, H, J, and K because of the possible confounding effect of
recombination (subtype G) (Abecasis et al. 2007; Lemey et al.
2009), and the low number of representative genomes (subtype
H, J, and K). For the codon substitution model analyses, we
edited the alignment into a single coding reading frame by re-
moving genome regions in which reading frames overlap.

BEAST analyses were performed under the same substitution
model specifications as for the ML reconstruction. We first com-
pare SC and UC estimates for the separate subtypes and then
compare SC, UC as well as ME estimates on the complete group
M data set. For the individual subtypes, we specify an exponen-
tial growth model as the coalescent tree prior except for subtype
B, which follows a logistic growth model as previously estab-
lished (Robbins et al. 2003; Worobey et al. 2016). To investigate
the sensitivity of evolutionary rate estimates to the parametric
coalescent prior specification, we also obtain UC rate estimates
using a non-parametric coalescent model (Gill et al. 2013).

M. Bletsa et al. | 3

http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
https://academic.oup.com/ve/article-lookup/doi/10.1093/ve/vez036#supplementary-data
https://academic.oup.com/ve/article-lookup/doi/10.1093/ve/vez036#supplementary-data


For the complete group M data set, we follow Faria et al. (2014)
in (i) specifying a ‘nested’ coalescent model with an overall
exponential-logistic growth and a separate logistic model for
the subtype B clade, and (ii) in including the sequence data from
old samples as ‘internal controls’ in the node height estimation
process. Specifically, we include the available sequence data for
three old samples: the previously published short sequence
stretches for ZR59 (Zhu et al. 1998) and 1960A (Worobey et al.
2008) and a newly obtained near complete genome from a DRC
sample dating back to 1966 that clusters basal to subtype C
(DRC66; Gryseels et al. 2019). The two independently obtained
1960A sequence stretches were combined into a single sequence
(represented by a consensus sequence where they overlapped).
Two stop codons in DRC66 were masked (replacing a C by a Y in
both occasions). For these three taxa, we do not specify a sam-
pling date but infer the height of the relevant tips together with
the heights of the internal tree nodes (Shapiro et al. 2011). All
alignment files, ML tree files, and the BEAST xml file for the ME
model are available at https://github.com/phylogeography/
HIVmixedEffectsClock (last accessed on 1 June 2019).

3. Results
3.1 Simulations

Because combining fixed and random effects in a molecular
clock model may raise concerns about identifiability, we first
use simulation to explore the performance of the model relative
to other molecular clock models implemented in BEAST
(Suchard et al. 2018). Specifically, we adopt the simulation setup
and scenarios used by Wertheim, Fourment, and Kosakovsky
Pond (2012) to illustrate the shortcomings of standard molecular
clock models in the presence of different sources of rate vari-
ability among branches.

We first explore the impact of varying the mean rate in one
of the four identical ten-taxon clades while also accommodat-
ing random variability in rates among branches (Fig. 1). When
the rates in one clade are on average three to four times lower
or higher than the rates on the other clades, the ME model con-
sistently returns the smallest relative error for the divergence
times of interest followed by the FL clock model. The latter is
not surprising as the rate distributions are largely non-
overlapping under these simulation settings. Interestingly, the
UC clock yields the highest error in these cases, in agreement
with the findings of Worobey, Han, and Rambaut (2014) for a
scenario of highly correlated rates across branches. As mean
rate differences decrease below twofold, relative errors shrink
for all models and the models become virtually indistinguish-
able. Notably, for the same mean rate among all branches,
which reduces to a scenario of exclusively random variation,
the ME maintains good performance. So, while overparameter-
ized for such rate variation, the model efficiently shrinks to an
UC parameterization in practice.

For the divergence time 95 per cent HPDs used under all
models, coverage remains under nominal expectations. The ME
model, however, achieves coverages that are generally the clos-
est to nominal, with little variation among the different simula-
tion scenarios. Coverage for the SC and UC estimates on the
other hand substantially decreases with larger mean rate
differences.

In a second set of simulations, we explore twofold mean rate
differences for two different clades as well as FL clock scenarios
(Fig. 2). While twofold mean rate differences for two clades re-
sult in somewhat larger relative errors than for one clade, the

ME model consistently yields the lowest errors. Also in these
cases, the ME model coverage approximates nominal values
better than any other model. Without random variation, the ME
model also yields the lowest errors for twofold rate differences
in one or two clades. Even without rate variation (i.e. an SC sce-
nario), the ME model performs well. Although again overpara-
meterized for such scenarios, the ME model efficiently shrinks
to an FL clock or even an SC in practice. The fact that mean rela-
tive error for the ME can be lower than the FL clock in scenarios
without random rate variation seems surprising, but could be
attributed to the log-parameterization in the ME model and its
associated prior specification (cf. Section 2). Indeed, when we
re-analyse the last simulation scenario (lA ¼ lC ¼ 2:0�10�3) us-
ing an FL clock model with the same log-parameterization and
prior specification as for the ME model, we obtain a mean rela-
tive error of 0.08698 (stdev ¼0.06312), which was marginally
lower than the mean relative error for the ME model (0.08736,
stdev ¼0.06254). Coverage patterns are not as consistent among
models in the FL (and SC) clock scenarios, but the ME clock
maintains good performance.

3.2 HIV-1 group M

We investigate temporal signal in the HIV-1 group M complete
genome data set and in the individual subtype clades by
regressing root-to-tip divergence against sampling time (Fig. 3)
(Rambaut et al. 2016). This analysis identifies a clear accumula-
tion of genetic divergence over the sampling time range in each
analysis albeit with differing proportions of variance explained
by sampling time. Specifically, the sparsely sampled subtype H
and J return the lowest coefficients of determination (Fig. 3).
According to the slopes of the regressions, which are only rough
indications of the evolutionary rate, subtypes A, B, and C evolve
at similarly high rates of evolution, followed by subtype G, D,
and F, and trailed by subtype J and H.

Next, we perform Bayesian inference of evolutionary rates
and divergence dates using a UC clock model for the subtype-
specific data sets and using a UC as well as an ME clock model
for the HIV-1 group M data set (Fig. 4). In this comparison, we do
not include the poorly represented subtypes H and J, which are
associated with considerable uncertainty (Supplementary Fig.
S2) and do not require relaxed molecular clock modelling
(Supplementary Fig. S3). The separate evolutionary rate esti-
mates for the different subtypes suggest lower rate of evolution
for subtypes D and F compared with subtypes A, B, and C, and
an elevated rate for subtype B among the latter three (Fig. 4A).
A lower genomic substitution rate for HIV-1 subtype D has pre-
viously been demonstrated by Pati~no-Galindo and González-
Candelas (2017).

To examine the extent to which varying selective pressure
explains rate differences among the subtypes, we infer absolute
synonymous and non-synonymous substitution rates using a
recently developed Bayesian approach (Baele et al. 2016) (Fig. 5).
Posterior estimates indicate that substitution rate differences
between subtypes A and C and subtypes D and F are somewhat
more reflected in synonymous substitution rates and hence
they do not follow differences in dN/dS. The higher subtype B
rate suggested by the relaxed clock analyses, however, can to a
large extent be attributed to a higher nonsynonymous substitu-
tion rate as also indicated by a higher dN/dS.

The comparison of independent rate estimates to a sum-
mary of the branch-specific rates under an UC clock model in
the group M analysis indicates a pronounced smoothing effect
of the UC clock model on discrete rate differences across clades
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Figure 1. Simulation analyses for a different mean rate in one of four identical clades of a 40 taxa tree with dated tips. The scenario of rate variation is depicted on the

left; the resulting mean relative errors and coverage proportions are shown in the middle and on the right, respectively, for the five different models (SC, strict clock;

UC, uncorrelated relaxed; FL, fixed local; RL, random local; ME, mixed effects). The rate distributions are depicted on a log scale. In the simulations, rates are drawn

from the grey rate distribution (with a mean rate of 0.001 substitutions per site per year) for all branches except for one of the clades (‘clade A’), for which rates are

drawn from the pink distributions with means (lA) indicated on a natural scale in the plots. The relative rate bar plots summarize mean relative errors across 20 repli-

cates, and for the age estimates for five nodes of interest in each replicate. The whiskers represent standard errors. Coverage bar plots summarize coverage proportions

across 20 replicates and for the same age estimates. In the relative rate and coverage bar plots, we use a star to indicate the model with the lowest error and highest

coverage, respectively (if there is a single best value).
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in the joint analysis (Fig. 4A). Except for the subtype D tMRCA
estimate, which is associated with considerable uncertainty,
the impact of the smoothing effect on tMRCA estimation is,
however, not very pronounced (Fig. 4B). While joint posterior
mean tMRCA estimates can be either more recent (subtypes A,
D, and F) or older (subtypes B and C) compared to the indepen-
dent estimates, such differences remain limited when taking
into consideration the credible intervals of the estimates. So, al-
though the joint estimates for the subtype tMRCAs may be
somewhat more biased, they benefit from considerable shrink-
age in uncertainty.

Based on the rate differences observed in the independent
analyses, the ME molecular clock model for the group M data
was set up with a fixed effect on the subtype B clade and a dif-
ferent shared fixed effect on the subtypes D and F clades. In line

with expectations from the independent analyses, the ME
model yields a positive effect estimate (on the log scale) for the
subtype B rate (posterior mean: 0.221, 95% HPD [0.164, 0.272])
and a negative effect estimate on the subtypes D and F rate
(�0.067 [�0.126, �0.027]). The model also demonstrates signifi-
cant additional rate variation among branches as indicated by
the posterior estimate for the standard deviation of the normal
distribution over the random effects (0.184 [0.157, 0.211]). The
ME rate estimates for the different subtypes generally fall in be-
tween the independent and joint UC rate estimates (Fig. 4A),
and enjoy the smallest uncertainty. Only the subtype B ME rate
is larger than both these estimates in agreement with the rela-
tively large effect size estimated for this clade. The effect on
subtype tMRCA estimates is relatively subtle (Fig. 4B), with in-
termediate age estimates for subtypes B and D, but slightly older
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age estimates for the other subtypes. In line with the limited
differences for the subtype ages, the estimated HIV-1 group M
tMRCA under the ME model is only marginally older (1918 [1910,
1926]) than the estimate under the UC model (1923 [1912, 1932])
indicating that, in this case, the major rate differences among
subtypes do not have a strong impact on estimates of the origin
of HIV-1 group M.

Our group M data set includes short sequence stretches from
samples dating back to 1959 (ZR59; Zhu et al. 1998) and 1960
(1960A; Worobey et al. 2008), as well as a newly obtained near
complete genome from a DRC sample dating back to 1966
(DRC66; Gryseels et al. 2019). We estimate the age of these tips
in order to assess the broad accuracy of the inferred phyloge-
netic time scale. As expected, ZR59 is a sister lineage of subtype
D (but with moderate posterior probability ¼ 0.68), 1960A

clusters within subtype A (basal to sub-subtype A4) and DRC66
falls basal to subtype C (Fig. 6). The credible intervals for the tip
age estimates ([1949, 1964], [1952, 1980], and [1953, 1971] for
ZR59, 1960A, and DRC66, respectively) all include the true age of
the sample. In line with the subtle differences in tMRCA esti-
mates between UC and ME, this is also the case for the tip date
estimates under the UC model (data not shown).

4. Discussion

In this study, we evaluate an ME molecular clock model to esti-
mate divergence times in the presence of mixed sources of evo-
lutionary rate variation. The model combines the concept of
local molecular clocks, which allow specifying different rate
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parameters a priori to different collections of branches in a phy-
logeny (Yoder and Yang 2000; Worobey, Han, and Rambaut
2014), with the concept of UC molecular clocks, which draw
branch-specific rates from an underlying distribution
(Drummond et al. 2006). While the latter has grown into the de-
fault relaxed molecular clock choice in viral evolutionary stud-
ies, it is not flexible enough to accommodate discrete rate
variation among a select number of clades or lineages. This has
been demonstrated for different HIV-1 group M subtypes, calling

into question the accuracy of tMRCA estimates (Wertheim,
Fourment, and Kosakovsky Pond 2012). We note that our ME
clock model is different from the mixed clock model recently
developed by Lartillot, Phillips, and Ronquist (2016) because in
the latter the correlated clock model component consist of a
Brownian relaxed clock. As opposed to UC clocks, Brownian-like
or autocorrelated clock models have not found much use in vi-
ral evolutionary studies. However, they may prove useful in
specific cases and they could potentially be combined with the
FL clock effects we use in our ME model.

Vrancken et al. (2014) introduced the ME model to quantify
HIV-1 evolutionary rate differences within and between hosts
in an extensively sampled known transmission history. In this
case, the relative order and timing of divergence events could
be constrained based on known time intervals for transmission
in a custom coalescent model. Here, we propose a more general
implementation of the ME model that allows an arbitrary num-
ber of fixed effects, and we assess its performance for diver-
gence time estimation without particular node constraints. By
examining relatively simple scenarios that were previously sim-
ulated to illustrate problems with UC molecular clock applica-
tions (Wertheim, Fourment, and Kosakovsky Pond 2012), we
demonstrate good performance in terms of relative error and
coverage even when sequences are simulated under more par-
simonious molecular clock models. However, we caution
against over-interpreting the lower ME mean relative errors un-
der these simpler scenarios (e.g. relative to the FL clock) as we
demonstrated such differences are impacted by different prior
specification. Despite this and the limited exploration of our
simulations, they reassure us that the true values of the model’s
underlying parameters can be reasonably learned.

In our ME clock analyses, we do not assess the significance of
the fixed effects for branch covariates. Confronted with similar
problems in our evolutionary framework, we have shown that a
Bayesian stochastic search variable selection procedure can suc-
cessfully estimate Bayes factor support values for inclusion of
covariates. In fact, such a procedure lies at the basis of identify-
ing a number of unknown rate changes in the tree in the RL mo-
lecular clock approach (Drummond and Suchard 2010). It would
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be relatively straightforward to place spike-and-slab priors
(Madigan and Raftery 1994) on the fixed effects within the ME
clock model and simultaneously estimate their inclusion proba-
bilities. Alternatively, Vrancken et al. (2014) demonstrated how
to compute Bayes factor support for a fixed effect through the ra-
tio of posterior odds over the prior odds that the rate on a collec-
tion of branches is different from the background rate. However,
we do not pursue testing the significance of fixed effects here be-
cause the specification of these effects arose from prior analyses
of the same data that we subsequently analyse using the ME
model. Testing significance using the same data from which the
hypotheses are derived would be a data dredging exercise. For
the same reason and to avoid identifiability issues, we also re-
main relatively sparse in our fixed effects specification in the ME
model.

In many cases, it may prove challenging to adequately parti-
tion the tree for fixed effects specification. Here, we rely on the
HIV-1 group M subtype classification and separate rate esti-
mates for the corresponding clades to specify our ME model. In
this case, we cannot extend the fixed effects specification to
deeper branches, but we hope that random effects accommo-
date rate differences on these branches. In addition, extensive
sampling from Central Africa has revealed divergent lineages
that obfuscate the subtype structure (Rambaut et al. 2001;
Lihana et al. 2012). If complete genome sequences would be
available for such lineages, their inclusion would complicate
the specification of the fixed effects. For such challenging sce-
narios, it may be useful to examine whether an RL clock can as-
sign rate changes to a select number branches with reasonable
credibility, which could then serve as the basis for fixed effects
specification in the ME model.

What underlies the evolutionary rate differences between
the HIV-1 M subtypes remains an important question. Codon
substitution model analyses indicate that the lower subtypes D
and F rate is also reflected in synonymous substitution rates,
which could point at different mutation rates or generation
time differences. Although the latter could be the consequence
of different replication rates, subtype D has been associated
with faster disease progression (see, e.g. Kaleebu et al. 2001), so
this stands at odds with the expected relationship between rep-
lication rate and disease progression (Lemey et al. 2007) and

may point at an impact of the transmission dynamics on evolu-
tionary rates (Maljkovic Berry et al. 2007; Vrancken et al. 2015).
The high subtype B evolutionary rate could be attributed to dif-
ferences in selective pressure. This can perhaps be explained by
the fact that this subtype represents the founder effect of HIV-1
lineage from Africa into a predominantly Caucasian population
with a distinct immunological profile (e.g. in terms of HLA var-
iants and HLA haplotypes). Site-specific selection analyses may
further clarify whether this founder effect is indeed associated
with a stronger immune response and viral adaptation. To illus-
trate the plausibility of this scenario, Snoeck et al. (2011)
mapped sites under positive selection in HIV-1 subtype B and
found antibody epitopes to be significantly associated with pos-
itive selection across the genome, while CD4 and CD8 T-cell
epitopes were significantly associated with positive selection in
gp41 and in gag and gp120, respectively. If the evolutionary rate
increase was indeed associated with the specific introduction of
subtype B in North America, the fixed effect would be more ap-
propriately specified on the North American subcluster that is
nested within the Caribbean subtype B diversity (cf. Worobey
et al. 2016). Finally, we acknowledge that alternative explana-
tions may exist for evolutionary rate differences between
subtypes, including differences in undetected levels of recombi-
nation, different risk group compositions (Vrancken et al. 2015),
and differences in substitution patterns (Hilton and Bloom
2018).

Our HIV-1 complete genome analyses of separate subtypes
reveals evolutionary rate differences that are not entirely con-
sistent with those found by Wertheim, Fourment, and
Kosakovsky Pond (2012). In contrast with our estimates,
Wertheim, Fourment, and Kosakovsky Pond (2012) found a
lower rate for subtype C and a relatively higher rate for subtype
F. This could be due to differences in the data set used, in partic-
ular due to their focus on the conserved pol gene for which the
temporal signal is likely to be weaker than for complete genome
data. It is also possible that evolutionary rate differences vary
across the genome, which can be modelled by partitioning and
fitting partition-specific molecular clock models (Pati~no-
Galindo and González-Candelas 2017). Alternatively, genome
evolution may be characterized by a more general process of
heterotachy, in which specific sites switch substitution rate in
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Figure 6. HIV-1 group M maximum clade credibility tree estimated using the mixed effects clock model. All subtype clades, except for subtype A, are represented as a
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particular lineages. If that is the case, it may be useful to examine
the use of more complex models such as Markov-modulated sub-
stitution processes that allow sites to switch between different
rates throughout the phylogeny (Gascuel and Guindon 2007).

A comparison of ME and UC clock model estimates indicates
a limited impact of the major differences in rate between sub-
types on the tMRCA estimation of HIV-1 group M. The some-
what older tMRCA estimate under the ME model compared with
the UC clock model runs contrary to the expectations by
Wertheim, Fourment, and Kosakovsky Pond (2012) of a younger
tMRCA. However, these expectations are based on the relatively
simple simulation scenarios and the impact may depend on the
degree of rate variation and how it is distributed in the phylog-
eny. The complete genome data suggested the largest rate dif-
ference between subtypes B and D, which make up sister clades
in group M. The smoothing effect of the UC clock model may
therefore have the largest impact on the age estimates of both
subtypes and the B&D MRCA, but it has less impact on deeper
nodes in the tree including the root node. In this respect, it is
worth noting that for both models the posterior age estimates
for the sequences for three old samples approximate the true
age very well, which provides reasonable reassurance of the ac-
curacy to the estimated time scales.

Arguably more important than the clock model in our case is
the use of complete genome data to estimate the tMRCA of HIV-
1 group M. In Fig. 7, we compare our estimates to a series of pre-
vious estimates. In comparison to the previous most recent esti-
mate by Faria et al. (2014) obtained using similar methodology
for env C2V3 sequences, which was already relatively precise
(1920 [1909, 1930]), the credible intervals of our estimates are
further reduced by 50 per cent.

In conclusion, the ME clock provides a useful model to esti-
mate divergence times when both discrete variation among line-
ages or clades and random noise affect the rate of evolution in
phylogenetic histories. For HIV-1 group M, complete genome
data suggest significant rate variation among subtypes that the
ME model adequately captures, thereby addressing the problem
put forward by Wertheim, Fourment, and Kosakovsky Pond
(2012). The impact on divergence time estimates, in particular on
the origin of HIV-1 group M, remains limited and the use of com-
plete genome data to reduce estimation uncertainty appears to
be more important than molecular clock model choice.
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Substitution Rate of HIV-1 Subtypes: A Genomic Approach’,
Virus Evolution, 3: vex029.

Pond, S. L. K., Frost, S. D. W., and Muse, S. V. (2005) ‘HyPhy:
Hypothesis Testing Using Phylogenies’, Bioinformatics (Oxford,
England), 21: 676.

Pybus, O. G., and Rambaut, A. (2009) ‘Evolutionary Analysis of
the Dynamics of Viral Infectious Disease’, Nature Reviews.
Genetics, 10: 540.

Rambaut, A. (2000) ‘Estimating the Rate of Molecular Evolution:
Incorporating Non-Contemporaneous Sequences into
Maximum Likelihood Phylogenies’, Bioinformatics (Oxford,
England), 16: 395.

et al. (2018) ‘Posterior Summarization in Bayesian
Phylogenetics Using Tracer 1.7’, Systematic Biology, 67: 901.

et al. (2016) ‘Exploring the Temporal Structure of
Heterochronous Sequences Using TempEst (Formerly
Path-O-Gen)’, Virus Evolution, 2: vew007.

et al. (2001) ‘Human Immunodeficiency Virus. Phylogeny
and the Origin of HIV-1’, Nature, 410: 1047.

Robbins, K. E. et al. (2003) ‘U.S. Human Immunodeficiency Virus
Type 1 Epidemic: Date of Origin, Population History, and
Characterization of Early Strains’, Journal of Virology, 77: 6359.

Salemi, M. et al. (2001) ‘Dating the Common Ancestor of SIVcpz
and HIV-1 Group M and the Origin of HIV-1 Subtypes Using a
New Method to Uncover Clock-like Molecular Evolution’,
FASEB Journal, 15: 276.

Shapiro, B. et al. (2011) ‘A Bayesian Phylogenetic Method to
Estimate Unknown Sequence Ages’, Molecular Biology and
Evolution, 28: 879.

Snoeck, J. et al. (2011) ‘Mapping of Positive Selection Sites in the
HIV-1 Genome in the Context of RNA and Protein Structural
Constraints’, Retrovirology, 8: 87.

Stadler, T. et al. (2012) ‘Estimating the Basic Reproductive
Number from Viral Sequence Data’, Molecular Biology and
Evolution, 29: 347.

Suchard, M. A. et al. (2018) ‘Bayesian Phylogenetic and
Phylodynamic Data Integration Using BEAST 1.10’, Virus
Evolution, 4: vey016.

Thorne, J., Kishino, H., and Painter, I. (1998) ‘Estimating the Rate
of Evolution of the Rate of Molecular Evolution’, Molecular
Biology and Evolution, 15: 1647.

Volz, E. M. et al. (2009) ‘Phylodynamics of Infectious Disease
Epidemics’, Genetics, 183: 1421.

Vrancken, B. et al. (2015) ‘Disentangling the Impact of
Within-Host Evolution and Transmission Dynamics on the
Tempo of HIV-1 Evolution’, AIDS (London, England), 29: 1549.

et al. (2014) ‘The Genealogical Population Dynamics of
HIV-1 in a Large Transmission Chain: Bridging Within and
Among Host Evolutionary Rates’, PLoS Computational Biology,
10: e1003505.

Wertheim, J. O., Fourment, M., and Kosakovsky Pond, S. L. (2012)
‘Inconsistencies in Estimating the Age of HIV-1 Subtypes Due
to Heterotachy’, Molecular Biology and Evolution, 29: 451.

Worobey, M. et al. (2008) ‘Direct Evidence of Extensive Diversity
of HIV-1 in Kinshasa by 1960’, Nature, 455: 661.

, Han, G.-Z., and Rambaut, A. (2014) ‘A Synchronized Global
Sweep of the Internal Genes of Modern Avian Influenza Virus’,
Nature, 508: 254.

et al. (2016) ‘1970s and ‘Patient 0’ HIV-1 Genomes Illuminate
Early HIV/AIDS History in North America’, Nature, 539: 98.

Yoder, A. D., and Yang, Z. (2000) ‘Estimation of Primate
Speciation Dates Using Local Molecular Clocks’, Molecular
Biology and Evolution, 17: 1081.

Yusim, K. et al. (2001) ‘Using Human Immunodeficiency Virus
Type 1 Sequences to Infer Historical Features of the
Acquired Immune Deficiency Syndrome Epidemic and
Human Immunodeficiency Virus Evolution’, Philosophical
Transactions of the Royal Society of London. Series B, Biological
Sciences, 356: 855.

Zhu, T. et al. (1998) ‘An African HIV-1 Sequence From 1959
and Implications for the Origin of the Epidemic’, Nature, 391:
594.

M. Bletsa et al. | 11


