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Abstract: Considerable progress has been made in the prediction methods of 3D structures of RNAs.
In contrast, no such methods are available for DNAs. The determination of 3D structures of the latter
is also increasingly needed for understanding their functions and designing new DNA molecules.
Since the number of experimental structures of DNA is limited at present, here, we propose a
computational and template-based method, 3dDNA, which combines DNA and RNA template
libraries to predict DNA 3D structures. It was benchmarked on three test sets with different numbers
of chains, and the results show that 3dDNA can predict DNA 3D structures with a mean RMSD of
about 2.36 Å for those with one or two chains and fewer than 4 Å with three or more chains.
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1. Introduction

There is an increasing need for determining 3D structures of DNA. A typical ex-
ample is DNA aptamer selection [1–3]. Aptamers for a desired target are selected from
a large oligonucleotide library, usually through SELEX (Sequential Evolution of Ligands
by Exponential Enrichment). After multiple rounds of SELEX, the number of resulting
aptamer candidates is still very large. Therefore, it is still hard work to deter-mine the best
one from the candidates. If we can computationally build 3D structures of the candidates,
it could be very helpful for increasing the efficiency of aptamer selection. However, no
direct methods of predicting 3D structures of DNAs are currently available, although those
for RNAs have been developed for a long time [4–30]. In this work we report a prediction
method of 3D structures of DNA by extending that of RNA.

Similar to Anfinsen’s assumption for protein [31], RNA 3D structures can be as-sumed
to be in the minimum free-energy state, and so their prediction generally includes two steps:
sampling conformation space and picking out the minimum free-energy model. Current
prediction methods of RNA 3D structures can be divided into two classes roughly: the
ab initio approach and template-based approach. The former looks for the 3D structure
of an RNA by using molecular dynamics to simulate its folding process, but usually
using a coarse-grained model [32] and a reduced force field [33] due to the limitation of
computational capacity, which usually makes their accuracies decrease with the increase in
RNA length. The latter looks for the 3D structure of an RNA by searching and assembling
the 3D templates from experimental RNA structures that have similar sequence or sequence
fragments with those of the target RNA. This approach can increase the efficiency of the
sampling of conformation space and prediction accuracy and is widely used by many
prediction methods of RNA 3D structures, such as ASSEMBLE [5], RNAComposer [6–8],
and 3dRNA. So, we use the template-based approach for 3dDNA, especially based on
3dRNA, proposed in our laboratory, which can automatically predict the 3D structure of an
RNA by assembling 3D templates of Smallest Secondary Elements (SSEs), including stem,
hairpin loop, bulge loop, internal loop, open loop, and junction.
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In contrast to RNA, there were only indirect methods to predict DNA 3D struc-
ture [34,35], which first predicted the 3D structure of the corresponding RNA [5,6], then
converted it into that of DNA by replacing the nucleotide U with T, and finally refined
the resulting 3D structures through energy minimization. This approach is mainly lim-
ited to predict the 3D structures of stem-loop aptamers with smaller loops (six or fewer
nucleotides) and the accuracy is more than 4.0 Å of the RMSD. Here, we present a template-
based method of building 3D structures of DNA directly.

2. Results

For a target DNA, 3dDNA can give assembled, optimized, and best structures. The
assembled structure is one just assembled by using the 3D templates for each SSE of the
target DNA and minimized by Amber to avoid atom clash. It can be further optimized by
SAMC to give optimized structures. If the perfect template for each SSE of the DNA can be
found in the template library, the assembled structure is considered as the best structure,
otherwise, the optimized structure is considered as the best structure. During the test,
the secondary structure of the target DNA is obtained by X3DNA from its PDB structure.
Furthermore, we removed 3D templates extracted from the 3D structures of the DNAs in
the test set from the SSE 3D templates library.

2.1. Prediction Accuracy of DNAs with Single Chain

To benchmark 3dDNA, all the sequences with single chain were clustered using
CD-HIT-EST [36] with the cutoff of 80% firstly, then 31 DNAs were selected as Test Set 1 ac-
cording to the criteria: length and 2D structure. The detailed information and predictions
of this test set are given in Figure 1 and Table 1. When considering the open loops, the
mean RMSD values of the assembled, optimized, and best structures are 3.29 Å, 3.34 Å, and
2.58 Å, respectively. If not considering the open loops, they are 2.28 Å, 3.08 Å, and 2.36 Å.
In fact, we found that the structures of the open loops in DNAs are very flexible, which
will affect the reasonable evaluation of the prediction performance of 3dDNA. As shown
in Figure 2, among the 20 native models measured by NMR experiment, the open-loop
structure of a DNA (PDB ID 1EN1) is very flexible. When the open loop is not considered,
the RMSD of the assembled structure of 1EN1 is reduced from 8.32 Å to 4.2 Å.

Molecules 2022, 27, x FOR PEER REVIEW 2 of 17 
 

 

the 3D structure of an RNA by assembling 3D templates of Smallest Secondary Elements 

(SSEs), including stem, hairpin loop, bulge loop, internal loop, open loop, and junction. 

In contrast to RNA, there were only indirect methods to predict DNA 3D structure 

[34,35], which first predicted the 3D structure of the corresponding RNA [5,6], then con-

verted it into that of DNA by replacing the nucleotide U with T, and finally refined the 

resulting 3D structures through energy minimization. This approach is mainly limited to 

predict the 3D structures of stem-loop aptamers with smaller loops (six or fewer nucleo-

tides) and the accuracy is more than 4.0 Å  of the RMSD. Here, we present a template-

based method of building 3D structures of DNA directly.  

2. Results 

For a target DNA, 3dDNA can give assembled, optimized, and best structures. The 

assembled structure is one just assembled by using the 3D templates for each SSE of the 

target DNA and minimized by Amber to avoid atom clash. It can be further optimized by 

SAMC to give optimized structures. If the perfect template for each SSE of the DNA can 

be found in the template library, the assembled structure is considered as the best struc-

ture, otherwise, the optimized structure is considered as the best structure. During the 

test, the secondary structure of the target DNA is obtained by X3DNA from its PDB struc-

ture. Furthermore, we removed 3D templates extracted from the 3D structures of the 

DNAs in the test set from the SSE 3D templates library.  

2.1. Prediction Accuracy of DNAs with Single Chain 

To benchmark 3dDNA, all the sequences with single chain were clustered using CD-

HIT-EST [36] with the cutoff of 80% firstly, then 31 DNAs were selected as Test Set 1 ac-

cording to the criteria: length and 2D structure. The detailed information and predictions 

of this test set are given in Figure 1 and Table 1. When considering the open loops, the 

mean RMSD values of the assembled, optimized, and best structures are 3.29 Å , 3.34 Å , 

and 2.58 Å , respectively. If not considering the open loops, they are 2.28 Å , 3.08 Å , and 

2.36 Å . In fact, we found that the structures of the open loops in DNAs are very flexible, 

which will affect the reasonable evaluation of the prediction performance of 3dDNA. As 

shown in Figure 2, among the 20 native models measured by NMR experiment, the open-

loop structure of a DNA (PDB ID 1EN1) is very flexible. When the open loop is not con-

sidered, the RMSD of the assembled structure of 1EN1 is reduced from 8.32 Å  to 4.2 Å .  

 

Figure 1. Comparison of the prediction accuracies (all-atom RMSDs) of 3dDNA for the assembled, 

optimized, and best structures of 31 single-chain DNAs with or without open loops. 

  

Figure 1. Comparison of the prediction accuracies (all-atom RMSDs) of 3dDNA for the assembled,
optimized, and best structures of 31 single-chain DNAs with or without open loops.



Molecules 2022, 27, 5936 3 of 15

Table 1. Information and prediction accuracies (RMSD in Å) of 31 single-chain DNAs.

PDB ID Resolution Length 2D Structure
Assembled Optimized Best

All No Open
Loop All No Open

Loop All No Open
Loop

1KR8 \ 7 ((...)) 2.34 2.34 1.25 1.25 2.34 2.34
3WPD 2.75 10 ((.....)). 1.15 1.18 1.38 1.21 1.15 1.18
1ZHU \ 10 ..((...)). 3.15 0.91 5.57 3.76 3.15 0.91
1FV8 \ 11 (((( . . . )))) 2.43 2.43 2.01 2.01 2.43 2.43

3WPG 2.25 11 ((.....)).. 2.13 1.13 1.87 1.18 2.13 1.13
3VA3_1 2.71 12 ((((..)))).. 3.05 2.71 3.13 2.19 3.05 2.71
2FDC_1 3.30 12 (((....))).. 6.32 4.47 4.92 2.95 6.32 4.47

6FK5 2.02 14 (((((...))))). 2.87 2.28 2.69 2.13 2.87 2.28
1L0R \ 14 (( . . . ))((...)) 3.62 3.62 3.46 3.46 3.62 3.62

1UUT_1 2.00 15 ((((((...)))))) 3.16 3.16 2.85 2.85 3.16 3.16
6FK4 2.30 16 ..(((((...))))). 3.39 2.38 3.26 1.32 3.39 2.38

1OMH 1.95 25 ..((((( . . . .)))))......... 9.77 1.36 6.59 3.23 6.59 3.23
5YWS_1 2.00 17 ..((((((.)))))).. 1.38 1.53 3.10 2.06 1.38 1.53
4KB1_1 1.80 18 ((((((....)))))..) 0.55 0.55 5.30 5.3 0.55 0.55
6A47_1 1.90 19 ..(((((((..))))))). 2.55 1.76 3.45 2.53 2.55 1.76
3C2P_1 2.00 20 .......(((((...))))) 1.00 0.68 1.36 1.25 1.00 0.68
3C46_1 2.00 21 .......(((((...))))). 7.42 0.42 7.36 1.15 7.36 1.15
2A60_1 2.60 22 ((((((((....)))).)))). 2.11 1.32 2.16 1.47 2.11 1.32

2CDM_2 2.70 23 (((((....))))).....(..) 1.52 0.69 2.09 1.52 1.52 0.69
2OEY \ 25 (((((..(((((...)))))))))) 5.14 5.14 5.48 5.48 5.14 5.14

2VIC_1 2.35 26 ....((((((((.....)))).)))) 6.00 1.86 5.25 3.65 6.00 1.86
5ITT_2 2.53 26 .(((((.(((((.))))).))))).. 1.91 1.53 4.63 4.42 1.91 1.53

5HTO_2 1.90 30 (((..... [ [..(((((]]...)))))))) 0.64 0.64 1.55 1.55 0.64 0.64
5ZE2_1 3.30 31 .((((((((((((......)))))))))))) 3.14 3.18 4.67 4.6 3.14 3.18

4F43 2.35 32 (((((((((((((((..))))))))))))))) 0.82 0.82 1.37 1.37 0.82 0.82
1EZN \ 36 (((((((((((..))))((((..))))..))))))) 8.71 8.71 8.73 8.73 8.71 8.71

5XN0_1 2.60 35 ..(((((((((((((((...))))))))))))))) 2.63 2.21 2.24 1.95 2.63 2.21
6U82_1 3.21 38 ((((((((((((((((...))))))))))...)))))) 2.44 2.44 4.40 4.40 2.44 2.44

6GDN_2 3.00 42 ((((((((..........(..)..((((..)))))))))))) 2.39 2.39 3.1 3.1 2.39 2.39
6X68_2 3.66 50 ..(((((((((((((((((((((....))))))))))))))))))))).. 1.08 0.30 3.93 3.78 1.08 0.30

6X68_1 3.66 74 (.((((((((.((((((((((((((((((((((((....)))))))
))))))))))))))))).)))))))).) 2.91 2.91 7.12 7.12 2.91 2.91

Average \ \ \ 3.24 2.28 3.81 3.08 3.13 2.36
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3.0 Å , 5.64 Å , and 2.83 Å , respectively (Figure 4 and Table 2). Overall, 3dDNA can reach 

Figure 2. The structural analysis of open loop in a DNA (PDB ID 1EN1). (A) The secondary structure
of 1EN1. (B) The native, assembled model and optimized structures are marked with grey, green, and
blue, respectively. The first model in NMR selected as native. When the open loop is not considered,
the RMSD of the assembled structure drops from 8.32Å to 4.2Å. (C) Twenty models obtained from
the NMR experiment, of which model 1 is marked with grey. The 2D and 3D structures are generated
by Forna [37] and PyMOL [38], respectively.

It is worthwhile to note that the assembled structures of only 9 of 31 DNAs have
RMSDs higher than the mean one. Among them, DNA 1OMH without perfect templates
can be optimized more closely to the native structure, while DNA 2FDC_1, 2VIC_2, and
1EZN with perfect templates generally show poor effect of optimization; Figure 3 shows
two detailed examples. These results show that the best structure of a DNA can represent
its native structure in most cases.
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Figure 3. Two example of predicted 3D structures by 3dDNA. (A) The 2D and 3D structures of DNA
4KB1_1 with perfect template; the RMSD of assembled (green) and optimized (blue) structures with a
native one (grey) are 0.56 Å and 5.3 Å, respectively. (B) The 2D and predicted 3D structures of DNA
1OMH with imperfect template, the RMSD of assembled (green) and optimized (blue) structures
with a native one (white) are 9.8 Å and 6.5 Å, respectively.

2.2. Prediction Accuracy of DNAs with Double Chains

The DNAs with a single chain are only a small part of DNAs, 87% of which have
two chains. A total of 56 DNAs were selected as Test Set 2 according to their length and
2D structure complexity. The detailed information of DNAs of this test set is given in
Table 2. The mean RMSD value of the assembled, optimized structure, and best structures
are 3.0 Å, 5.64 Å, and 2.83 Å, respectively (Figure 4 and Table 2). Overall, 3dDNA can
reach higher prediction accuracy (2.83 Å on average) for the best structure of double-chain
DNA predictions with perfect templates, with only 11 cases of high RMSDs (>4.0 Å) out of
56 cases. As shown in Figure 5, the assembled structure of 3RB6_1 with perfect template
becomes much worse when optimized, and so it is the ideal predicted structure. However,
for the DNA 4DAV without perfect templates, the assembled structure can be further
optimized, and the optimized structure is the ideal predicted structure.
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optimized, and best structure of double-chain DNAs, respectively.



Molecules 2022, 27, 5936 5 of 15

Table 2. Information and prediction accuracies (RMSD in Å) of 56 double-chain DNAs.

PDB ID Resolution Length 2D Struacture Assembled Optimized Best

3UM4 2.82 9 ((..&..)) 7.60 5.36 7.60
1FD5 1.10 12 ((((.&.)))). 4.19 3.95 4.19
2BQ2 \ 13 .((((.&.)))). 2.86 2.91 2.86
1OKA \ 15 ((((( . . . .&))))) 0.66 5.87 0.66
3G38 3.04 17 ((((..(.&)...)))) 8.75 3.02 8.75
3AU6 3.30 18 (((((((&...))))))) 1.83 5.97 1.83
3M7K 1.92 19 ((((((....&.).))))) 4.06 3.89 3.89
6USO 2.54 19 (...((.........&))) 1.93 5.95 1.93
1BSU 2.00 20 ((((.((((&.)))).)))) 1.20 2.75 1.20
1M6G 1.65 21 ((((((....&....)))))) 0.64 7.49 0.64
467D 2.16 21 ((((......&......)))) 8.50 8.14 8.50

2HVI_1 1.98 22 (((((((((&...))))))))) 0.65 6.11 0.65
4UN4_1 2.37 22 ((((((((...&..)))))))) 4.27 3.54 4.27
3HOV 3.50 23 (((((............&))))) 0.59 3.39 0.59
3VH0 2.90 23 (..((((...(&)..))))...) 6.66 6.90 6.66
6KF9 3.79 24 .((((((.(.....&).)))))). 6.43 6.72 6.43
4DAV 2.20 25 ....((...((.&....))...)). 10.77 4.92 4.92
2R7Z 3.80 25 ((((((...........&)))))). 1.94 4.17 1.94
4FLT 2.90 25 ((((((((...&.....)))))))) 2.01 3.48 2.01

3L4J_2 2.48 26 ((((((((((&.....)))))))))) 1.72 6.08 1.72
1Y1W 4.00 27 (((((((............&))))))) 0.55 12.47 0.55
5VU8 3.20 27 ..(((((((((...&...))))))))) 2.23 3.39 2.23
2HHV 1.55 28 ((.(((((((.(&..).))))))).)). 3.17 4.19 3.17
4DFP 2.00 29 ((((((((((((&....)))))))))))) 0.49 5.57 0.49
1QSK \ 30 .(((((.....(((((.&.)))))))))). 2.68 2.72 2.68
6RAX 3.99 30 ((((((((.............&)))))))) 2.59 17.35 2.59
3GIM 2.70 32 ((((((((((((.&......)))))))))))) 1.87 5.29 1.87
6P70 1.75 41 ((((((((((........&............)))))))))) 1.07 4.00 1.07
3I4M 3.70 33 ((((((((((...........&)))))))))). 1.60 4.31 1.60

3RB6_1 2.70 33 ((((((((((((.&......)))))))))))). 0.93 4.95 0.93
2JEJ 1.86 34 (((((((((((((..&.....))))))))))))) 2.80 4.28 2.80

6H67 3.60 35 (((((((((((..........&..))))))))))) 3.68 4.05 3.68
6OW3_1 2.77 36 ((((((((........&...........)))))))) 1.72 4.6 1.72
2O5I_1 2.50 37 (((((((((((((..........&))))))))))))) 1.32 3.66 1.32
6M0V 3.00 37 ((((((((....................&)))))))) 0.44 3.48 0.44

5D4D_1 3.00 38 ((((((((((......&...........)))))))))) 1.7 17.72 1.7
5FJ8 3.90 39 (.(.(((((((((..........&..))))))))).)). 5.63 3.81 3.81

6OVR_1 2.84 39 ((.(((((((.........&.........))))))).)) 3.08 16.29 3.08
5FW1 2.50 40 ((((((((....................&...)))))))) 0.47 3.15 0.47

4G7H_1 2.90 41 ((((((((((......&..............)))))))))) 1.08 5.97 1.08
5U8S 6.10 41 ((((((((((((((............&)))))))))))))) 1.67 4.50 1.67
6KQE 3.30 42 ((((((((((.......&..............)))))))))) 1.62 6.36 1.62
1R9T 3.50 43 ((((((((((((................&..)))))))))))) 1.09 3.16 1.09
4QJU 2.16 43 (((..(.(((.((((.((...&.))..).))).)))).))).. 4.97 6.36 4.97
5M64 4.60 45 ....(((((((.(((....&....))).))))))).......... 1.23 3.42 1.23
6JDV 3.10 47 (((((((((((........................&))))))))))) 0.74 3.11 0.74
4YG4 3.50 49 (.(((((((((((((.((((........&)))).))))))))))))).) 7.78 8.38 7.78

5T1J_2 2.95 49 (((((((((((((((((((.....&.....))))))))))))))))))) 1.92 3.61 1.92
4PU4 3.79 50 .(.((((..((((((((......(.&.)......))))))))..))))). 3.72 6.35 3.72

4C2T_1 4.00 51 ((((((.(((((((((((((.....&))))))))))))).))))))..... 4.92 6.09 4.92
4NE1_3 6.50 53 ((((((((((((((((((((((..(.&.)..)))))))))))))))))))))) 3.02 2.13 3.02
5XOG 3.00 54 .(((((((((((((((.((((...........&)))).))))))))))))))). 2.96 3.53 2.96

5XVO_3 3.10 55 .((((((((((((((((((((((....&.)))))))))))))))))))))).... 6.19 4.57 4.57
4XLP_1 4.00 56 (((((((((((((((((((((((((.....&))))))))))))))))))))))))) 0.89 4.25 0.89
2CRX 2.50 70 .(((((((((((((((((.................&.................))))))))))))))))) 1.57 6.65 1.57
6FLQ 4.10 71 ((((((((((((((..(((((((((.(....&....)).))))))))..........)))))))))))))) 4.80 6.04 4.80

Average \ \ \ 3.0 5.64 2.83
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2D and 3D structures of DNA 3RB6_1 with perfect template, the RMSD of assembled (green) and
optimized (blue) structures with a native one (grey) are 0.93 Å and 4.95 Å, respectively. (B) The
2D and 3D structures of DNA 4DAV with imperfect template; the RMSD of assembled (green) and
optimized (blue) structures with a native one (grey) are 10.77 Å and 4.92 Å, respectively.

2.3. Prediction Accuracy of DNAs with Multiple Chains

To further test the prediction accuracy of 3dDNA, we also built a test set (Test Set 3) of
29 DNAs selected from 236 DNAs with multi-chains according to the following standard:
length, 2D structure complexity, and number of chains. As shown in Figure 6 and Table 3,
the mean RMSDs of the assembled, optimized, and best structures are 6.9 Å, 7.64 Å, and
5.28 Å, respectively. Similar to the DNAs with single and double chains, 3dDNA can give
near-native predictions for 3D structures of the DNAs with multi-chains when having
perfect templates in 3dDNA_Lib, and the assembled structures of the multi-chain DNAs
without perfect templates can be further optimized. As shown in Figure 7, the assembled
structure of 1TW8 with perfect template is more accurate than the optimized structure.
There are also some exceptions, for example, the assembled structure of the DNA 6L74 with
imperfect templates is optimized to be bad, which leads to the best structures not being the
ideal predicted structures. On average, the prediction accuracy of 3dDNA for DNAs with
multi-chains is lower than that for DNAs with single and double chains. In fact, there are a
large number of broken loop structures in double-chain and multi-chain DNAs, especially
in the latter, but such broken loop structures are very uncommon in the 3D template library,
that is, perfect templates are basically not found in the template library, which leads to their
prediction accuracy being worse than that of single-chain DNAs.

2.4. Comparison with Indirect Method

The 3D structures of some short hairpin aptamers were predicted using the indirect
approach mentioned above [34,35]. For comparison, the hairpin aptamers used in the
indirect predictions by Jeddi are taken as Test Set 4, which contains 24 small hairpin
aptamers with lengths from 7nt to 27nt. The detailed information of the Test Set 4 is given
in Table 4.

Figure 8 and Table 4 show the comparison of 3dDNA and indirect predictions. The
mean RMSD values of 3dDNA predictions for assembled, optimized, and best structures
are 2.67Å, 3.00Å, and 2.69Å, respectively, and they are significantly smaller than indirect
predictions (4Å on average). For the best structures, 3dDNA gives smaller RMSDs for
17 out of 24 DNAs than the indirect predictions. It is noted that all DNAs in Test Set 4 can
find the perfect template in the template library, except 1EN1 (the assembled structure with
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a RMSD of 8.32Å). These results show that the prediction accuracies of 3dDNA are much
better than indirect predictions.
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Figure 6. Comparison of the prediction accuracies (all-atom RMSDs) of 3dDNA for assembled,
optimized, and best structures of DNAs with multi-chains.

Table 3. Information and prediction accuracies (RMSD in Å) of 29 multi-chain DNAs.

PDB ID Resolution Length 2D Structure Assembled Optimized Best

4YD2 2.47 18 (((((..&....)&)))) 8.25 8.39 8.39
5VZ8 1.60 19 ((((..(((&))).&)))) 1.90 3.21 1.90
4YCX 2.10 20 ((((..((((&))))&)))) 2.18 7.78 2.18
6WIC 1.55 20 ((((.(&(((&))))&)))) 3.55 7.81 7.81

5D4B_2 2.66 21 .....(&(((((.&)))))). 14.15 9.60 9.60
2GWS_1 2.40 23 ((((..(((((&))))).&)))) 1.17 3.05 1.17
3HW8 1.95 24 ((((..((((((&))))))&)))) 0.75 8.04 0.75
3BAM 1.80 25 ..(((((((((.&.)))&)))))). 3.30 3.92 3.30

4MKY_2 2.40 29 (((&..)))...((&(((&..))).)).. 11.17 8.74 8.74
5HR9_2 2.20 31 (((.(((.(((((((&)))))))&))).))) 3.00 3.10 3.00

5J0S 2.00 33 (((((..(((((((((&))))))))).&))))) 1.07 9.61 1.07
5VRW 2.58 33 .((((.((((((((((&))))))))))&)))). 3.43 8.61 3.43

2WWY_2 2.90 35 .(.&(((((((((.(.&.).))))))))))..... 9.84 6.27 6.27
4P0Q 2.85 36 .(((((((((.(.((((&.)))).&).))))))))) 2.18 4.88 2.18

1ZR2_2 3.90 37 .(((((((((((((.((..&)).&))))))))))))) 7.50 4.43 7.50
4NCB_1 2.19 38 .((((((((((((.(.&...))&).)..))))))))). 12.60 10.63 10.63
4P0S_3 6.00 42 .((((((.(.((&)).).)))))).(..((.(&.).))..). 17.83 9.80 9.80

6L74 3.12 43 ((((((((((..(...&)&..............)))))))))) 2.84 6.83 6.83
4P0R_1 6.50 47 ..(((((.(.((&)).).)))))....(((((((((&))))))))). 15.45 8.37 8.37
2VS8_2 2.10 53 (((((((((.(.((&(((((((((((&))))))))))))).)&.))))))))) 13.04 4.74 4.74
1TW8 2.80 55 ((((((((((((.&..)))))))))).&))((((((((((.&..)))))))))). 0.90 7.95 0.90
4LD0 3.75 57 .((((((((((((((...))))))(((((((&..)))))))(((.&))))))))))) 2.00 8.42 2.00
6S16 3.41 59 (((((((((((((((...))))))(((((((((&)))))))))(((&)))))))))))) 1.23 4.50 1.23

1P8K 2.60 65 ((((((((((((((((((&((((((((((((.&))))))))))))))))&))))))))
)))))). 11.78 2.22 11.78

4BAC 3.26 66 ...((((((((((((((((&)))))))))))))))).....(((((((((((.&.))))))))))) 15.11 10.96 10.96

6X67_2 3.47 70 ..(((((((((((((((((((((((&)))))))))))))))))))))))....((((((((&))
)))))) 1.31 11.65 1.31
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Table 3. Cont.

PDB ID Resolution Length 2D Structure Assembled Optimized Best

1IHF 2.50 72 .((((((((((((((((((((..((((((((((((&.))))))))))))..&))))))
)))))))))))))) 0.41 21.0 0.41

5HOO_2 3.30 73 (((((((((((((((((((((((((&))))))))))))))))))))))))).....((((
((&....)))))) 18.67 12.94 12.94

2IRF 2.20 79 ((((((((((((&((((((((((((&((((((((((((&.))))))))))))&))
))))))))))&.)))))))))))) 16.14 4.13 4.13

Average \ \ \ 6.9 7.64 5.28
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Figure 7. Two examples of the 3D structures of multi-chains DNA predicted by 3dDNA. (A) The
2D and 3D structures of DNA 1TW8 with perfect template; the RMSD of assembled (green) and
optimized (blue) structures with a native one (grey) are 0.9Å and 8.0 Å, respectively. (B) The 2D and
3D structure DNAs 4L74 with imperfect template; the RMSD of assembled (green) and optimized
(blue) structures with a native one (grey) are 2.8 Å and 6.8 Å, respectively.
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Table 4. Information and prediction accuracies (RMSD in Å) of 24 DNAs.

PDB ID Length 2D Structure
3dDNA Indirect

PredictionAssembled Optimized Best

1AC7 16 ((((((....)))))) 2.32 5.47 2.32 3.59
1BJH 11 ((((...)))) 2.65 2.34 2.65 2.41

1DGO 18 (((((((....))))))) 2.84 1.97 2.84 3.49
1ECU 19 ((((((((...)))))))) 2.42 2.11 2.42 3.02
1EN1 18 (.(((.....)))).... 8.32 3.55 3.55 6.89
1IDX 18 (((((((....))))))) 4.65 3.41 4.65 3.49
1II1 18 (((((((....))))))) 3.59 2.59 3.59 3.01
1JVE 27 ((((((((((((...)))))))))))) 0.76 1.92 0.76 4.90
1KR8 7 ((...)) 2.33 1.22 2.33 1.99
1LA8 13 (((((...))))) 1.75 3.15 1.75 3.98
1NGO 27 (((((((((((.....))))))))))) 3.03 3.87 3.03 6.42
1NGU 27 ((((..(((((.....)))))..)))) 3.93 6.58 3.93 8.59
1P0U 13 (((((...))))) 1.07 1.79 1.07 3.28
1PQT 7 ((...)) 2.49 1.24 2.49 1.87
1QE7 18 (((((((....))))))) 3.43 2.17 3.43 3.47
1XUE 17 ((...((...))...)) 0.95 3.55 0.95 4.19
1ZHU 10 ..((...)). 3.15 6.88 3.15 3.05
2K71 8 ((....)) 3.89 1.68 3.89 2.56
2L5K 23 (((...((((...))))...))) 3.47 3.2 3.47 4.07
2LO5 12 ((((...).))) 2.67 1.74 2.67 4.01
2LO8 10 (((...).)) 2.80 2.33 2.80 5.53
2M8Y 15 ((((((...)))))) 0.83 3.11 0.83 3.56
2VAH 18 (((((((....))))))) 0.45 1.39 0.45 4.10
2VAI 18 (((((((....))))))) 0.47 1.39 0.47 4.07

Average \ \ 2.67 2.86 2.47 4.00

3. Method
3.1. Classification of DNA Structures

We analyzed all of the DNA 3D structures in PDB and found that they can be divided
into 5 classes:

(1) DNA without base pairs: unStru-DNA. The total number is 645, and the proportion
of this class is about 12%.

(2) DNA with pure duplex structure, and the base pairs are canonical ones: Helix-DNA.
The total number is 977, and the proportion of this class is about 18 %.

(3) DNA with both duplex and loop structures: D-DNA. The total number of the
D-DNAs is 3604, and the proportion of this class is about 61%. Of them, the molecules with
single, double, and triple chains account for 6%, 87%, and 5%, respectively. A very small
part of this class contains more than three chains.

(4) The DNAs containing triple helices: T-DNA. The total number is 134, and the
proportion of this class is about 2%.

(5) The DNAs containing quadruple helices or consecutive stacking G-quadruples:
G-DNA. The total number is 185, and the proportion of this class is about 3%.

This work only considers the DNAs of the third class, which account for 61% of all
DNAs as shown in Figure 9. The DNAs of the first two classes are not considered because
one has no stable structures, and one has the standard B-helix structure, while the last two
classes are also not considered due to their small number.

3.2. Smallest Secondary Elements

3dDNA is extended from our 3dRNA [9–11], which is a template-based method
of building 3D structures of RNAs by assembling 3D templates of Smallest Secondary
Elements (SSEs). The 2D or 3D structures of an RNA or DNA can be decomposed into
different types of SSEs. The SSEs are defined as stems, hairpin loops, bulge loops, internal
loops, open loops, break loops, and junction loops (multi-branch loops) with connected
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2-base-pairs at each end. As an example, Figure 10 shows the process of decomposing
DNA 1QSK into five SSEs, which contain two stems or helices, one bulge loop, one open
loop, and one break loop. It is noted that any adjoining SSEs have two common base pairs
that are superposed when assembling the SSEs into the whole 3D structure. Furthermore,
compared with RNA, the break loop is a new type of SSE since most DNAs are multi-chain
structures. As shown in Figure 10A, a break loop is marked by a red rectangular box, which
means a helix connected to two broken single chains. Although the open loop and the
broken loop in Figure 10A look the same, the positions of the helical and loop regions of
the two are opposite, resulting in different secondary structures of the two, which directly
affect the subsequent template search and module assembly.
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Figure 10. The workflow of decomposing DNA 1QSK to five SSEs. Break loop, bulge loop, and
open loop are marked by red, grey, and yellow rectangular boxes, respectively. (A) The secondary
structure of DNA 1QSK. (B) All the SSEs, which together form a secondary structure tree (SST) of
DNA 1QSK, including two helices and one open loop with 2D structure “.(()).”, a bulge loop with 2D
structure “(( . . . ..(())))”, and a break loop with 2D structure “((.&.))”. DNA 2D plots are generated
using Forna [37].

3.3. DNA SSE 3D Template Library

To build the 3D template library of DNA SSEs, 8460 DNA structures were collected
from the RCSB PDB database [39]. Among them, DNAs with fewer than 4 nucleotides or
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having the same structures as other DNAs were removed first, and then the rest of the
DNAs were filtered by “clean”, “mutate”, and “amber”, respectively, where “clean” means
to extract only the atoms that contain DNA in the PDB structure, “mutate” means to mutate
all the nonstandard bases in DNA as the standard base “AUCG”, and “amber” is mainly
used to complete the atomic deletion problem in DNA, referring to the article [30] for
these detailed procedures. Furthermore, in the remaining DNAs, those without base pairs,
with only pure double helices, or with triplex and quadruple helices were also removed
as shown above. Only DNAs with both loop and stem structures were considered. As
a result, 3604 DNAs were kept, among which 87% of molecules contain double chains,
6% single chains, 5% triple chains, and 2% four or more chains. Finally, according to the
secondary structures [40] of these remaining DNAs, their 3D structures were split into 3D
templates according to the SSEs. It is noted that unlike the abundant junctions in RNA,
there are only a few 3-way and 4-way junctions in DNA. In this way, all DNA 3D structures
were decomposed to form an SSE 3D template library, 3dDNA_Lib, containing 5505 helices,
3949 loops (hairpin loops, bulge loops, internal loops, and junctions), and 3480 break
loops. In order to enrich the 3D template library, 3dDNA_Lib and 3dRNA_Lib were
combined together to form the DNA template library. If an SSE cannot find a 3D template
in 3dDNA_Lib, it can search a template in 3dRNA_Lib with the nucleotide U being replaced
by the nucleotide T. The template library 3dRNA_Lib is much larger than 3dDNA_Lib.

3.4. The Workflow of 3dDNA

The workflow of 3dDNA is similar to 3dRNA (Figure 11). For a target DNA, its
sequence and secondary structure are taken as inputs. According to the secondary structure,
the DNA is firstly decomposed into SSEs. Secondly, 3dDNA finds a 3D template for each
SSE according to certain rules, with the following priority order: secondary structure
topology and sequence similarity. Ideally, more than one template will be found for each
SSE in the DNA SSE 3D template library (3dDNA_Lib), and then the template with the
highest score will be selected. The scoring of each SSE is defined as follows. Firstly, if
the secondary structure is the same, give 5 points, otherwise, give 0 points. Then, if the
sequence is traversed, 1 point will be given for the same nucleotide in the loop region and
0.2 points will be given for the same nucleotide in the helix region. If the template of an SSE
is not found in 3dDNA_Lib, it will switch to search in the RNA SSE 3D template library
(3dRNA_Lib) built in 3dRNA. It may happen that the template of an SSE cannot be found in
both template libraries, the bi-residues method or Distance Geometry (DG) algorithm [41]
will be called to construct a template for the SSE. Thirdly, we assemble the selected template
of each SSE with that of its parent SSE. Any two SSEs are superposed with reference to the
two common base pairs according to the Kabsch algorithm [42]. Subsequently, the sequence
of the assembled structure is mutated to meet the target sequence, and the assembled
models are minimized (1000 steps) with AMBER 98 force field [43,44] to repair the chain
connectivity of the assembled structures. In the next step, the templates of all SSEs are
analyzed. When all SSEs have perfect templates, the assembled structure is considered
as the final structure of the target DNA, otherwise the assembled structure needs to be
further optimized. The perfect template means that all SSE in DNA can be found in the
DNA template library with matching secondary structures. For an assembled structure that
needs to be further optimized, the residue-level simulated annealing Monte Carlo (SAMC)
method and a residue-level energy function in 3dRNA are modified by replacing U with
T to perform the optimization. The optimized structures are ranked by the residue-level
energy function, and the top 5 optimized structures are given as the final output structures.
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parts: Templates Searching, Assemble, and Optimization.

The details of the SAMC method and the energy function can be found in our previous
work [10]. Briefly, the optimization of an assembled structure uses a coarse-grained model
with each residue being represented by 6 atoms: the phosphate atom P of the backbone, C4′

and C2′ atoms from the sugar ring, and C2, C4, and C6 atoms from the base. During the MC
process, the smallest movable element is randomly set according to the secondary structure
of the initial structure, but the conformations of all helices and short loops (hairpin loops of
<5 nt or internal loops of <7 nt) are fixed, except their orientations. In each step of SAMC,
we randomly select a moveable element to be translated, rotated around a point, or rotated
around an axis. Then, the generated large number of candidate structures are clustered,
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and the centroid of each cluster is ranked by the coarse-graining model of 3dRNAscore [45],
which is a knowledge-based statistical potential that combines distance-dependent energy
and torsion-angle-dependent energy. Finally, the ranked top 5 (the default value) optimized
DNA are given.

4. Conclusions

We developed a template-based method, 3dDNA, for fully automated prediction of
the tertiary structures of DNAs from their sequences and secondary structures. Systematic
tests show that for sets of DNAs with single chains, two chains, and multi-chains, the
prediction accuracy of 3dDNA can reach average RMSDs of 3.13 Å, 2.83 Å, and 5.28 Å,
respectively. Therefore, the prediction accuracy of 3D structures of the DNAs with single
chains and two chains are similar to that of 3dRNA, but that for multi-chains DNAs
is lower than the former and needs to further improve. Furthermore, the accuracy of
3dDNA is significantly higher than the indirect methods. Furthermore, we found that the
best structures have lower RMSD values on average than the assembled and optimized
structures, the best structure of DNA is the assembled structure if the templates of all SSEs
are perfect, otherwise it is the optimized structure. In the future, we hope to include DNAs
with triple and quadruple helices [46] in 3dDNA and develop Alphafold-like [47] DNA
3D structure prediction methods. We believe that the increase in RNA and DNA in the
experiment will continue to improve the accuracy of 3dDNA.
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