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1. Introduction 

Epigenetic regulation, including DNA methylation and demethylation 
[1], histone modification, incorporation of histone variants [2, 3], and 
non-coding RNAs [4], plays a key role in modulating chromatin state 
and gene expression without altering DNA sequence. Aberrations of 
epigenetic regulators and chromatin modifications have proven links 
with human disease: e.g., cancer. Polycomb group proteins (PcGs) are 
crucial epigenetic regulators that form chromatin-modifying complexes, 
whose composition may be cell-context-dependent. In mammals, two 
major PcG complexes, Polycomb repressive complex 1 (PRC1) and 2 
(PRC2), have been identified [5, 6]. Core components of PRC1 complex 
contain ring finger protein RING1A/B, B lymphoma Mo-MLV insertion 
region 1 (BMI1), chromobox homolog (CBX), PHC, and SCML 
subunits [5-7]. The PRC1 establishes repressive chromatin structure via 
E3 ubiquitin ligase RING1A/B that monoubiquitylates Lys 119 of 
histone H2A (H2AK119ub1) [8, 9]. Core subunits of PRC2, conserved 
from Drosophila to mammals, include suppressor of Zeste 12 (SUZ12), 
embryonic ectoderm development (EED), retinoblastoma suppressor 
associated protein 46/48 (RbAp46/48), and histone methyltransferase 
(HMTase) EZH2, which catalyzes trimethylation of histone H3 at Lys 27 
(H3K27me3) to generate another epigenetic silencing mark [10-14] (Fig. 
1A). However, study also reveals RING1B can maintain chromatin 
compaction and repress gene expression independent of its histone 
ubiquitination activity [15]. PcG proteins suppress transcription by 
forming chromatin loops with DNA methylation, which may impede 
DNA access to transcription factors [16]. Exact functions and molecular 
mechanisms underlying high-order chromatin configuration remain 
unexplored. Other than PcG proteins, Trithorax group (TrxG) proteins 
are known as critical to epigenetic regulation of senescence, cell cycle, 
DNA damage and stem cell biology. TrxG plays a role opposite to PcG: 
transcriptional activator of gene expression, modifying chromatin 
structure via trimethylation of histone H3 at Lys 4 (H3K4me3) [17]. It 
has been reported that many genes involved in development and 
differentiation concomitantly carry both repressive H3K27me3 and 
active H3K4me3 marks, known as bivalent chromatin domains. These 

bivalent loci are poised in a state ready for transcriptional activation or 
repression. Activated genes lose H3K27me3 and are enriched for 
H3K4me3; whereas repressed genes retain H3K27me3 or gain silencing 
marks like DNA methylation, but lose H3K4me3 [5]. 
  EZH2, catalytic subunit of PRC2, is predominantly considered to 
trimethylates Lys 27 of histone H3, leading to silencing of target genes 
involved in cell cycle regulation, senescence, cell fate determination, 
cell differentiation and cancer [6]. Yet besides its PRC2-dependent 
transcriptional repression function, recent evidence indicates that EZH2 
also mediates gene activation through methylating nonhistone proteins 
or forming transcriptional complexes with other factors to activate 
downstream target genes in a PRC2-independent fashion [18-22] (Fig. 
2). Mounting evidence shows that overexpression/amplification or 
mutations of EZH2 have been detected in a variety of cancers, and are 
associated with tumor development and progression [23]. EZH2 also 
plays vital roles in stem cell maintenance and lineage differentiation 
[24-26]. Thus, EZH2/EZH2-mediated signaling deregulation contributes 
to numerous human pathologies, making this signaling an attractive 
therapeutic prospect and molecular marker to serve as targeted 
therapy/personalized treatment of human maladies, including cancers. 
 
 
2. Domain structure and function of EZH2 
 
2.1. Domain organization of EZH2 
 
Human EZH2 was mapped to chromosome 7q35, which contains 20 
exons and encodes 746 amino acids (Fig. 1B) [27]. EZH2 harbors 
functional domains: WD-40 binding domain (WDB), domains I-II, two 
SWI3, ADA2, N-CoR and TFIIIB (SANT) domains, cysteine-rich CXC 
domain and evolutionarily conserved carboxy-terminal Su(var)3-9, 
enhancer of zeste, trithorax (SET) domain. The SET domain of EZH2 is 
the catalytic domain required for HMTase activity [11, 14, 28, 29]. 
Moreover, complex of EZH2 with other PRC2 components, noncatalytic 
subunits EED and SUZ12, is necessary to gain robust HMTase activity 
[28, 30-34]. WDB is EED-interacting domain. Domain II is binding 
region for SUZ12, and SANT domains are for interaction with histone. 
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Figure 1. Core subunits of PRC2 and domain structure of 
EZH2. (A) Core subunits of mammalian PRC2 include 
suppressor of Zeste 12 (SUZ12), embryonic ectoderm 
development (EED), retinoblastoma suppressor-associated 
protein 46/48 (RbAp46/48), and histone methyltransferase 
(HMTase) EZH2, which catalyzes the trimethylation of histone 
H3 at Lys 27 (H3K27me3) to generate epigenetic silencing 
mark [10-14]. (B) Schematic diagram of EZH2 functional 
domains, WD-40 binding domain (WDB), domains I-II, two 
SWI3, ADA2, N-CoR and TFIIIB (SANT) domains, cysteine-rich 
CXC and evolutionarily conserved carboxy-terminal 
Su(var)3-9, enhancer of zeste, trithorax (SET) domain. EZH2’s 
SET catalytic domain is needed for HMTase activity [11, 14, 28, 
29]. WDB is EED-interacting domain. Domain II is binding 
region for SUZ12, SANT domains for interaction with histone 
 
2.2. Polycomb-dependent transcriptional repression function of 
EZH2 
 
As a catalytic subunit of PRC2, EZH2 is primarily considered as an 
epigenetic silencer for transcriptional repressing of gene expression, 
including a variety of tumor suppressor genes. With PRC2 recruited to 
target genes, EZH2 containing SET domain catalyzes trimethylation of 
histone H3 at Lys 27 (H3K27me3). Subsequently, the PRC1 subunit, 
CBX, recognizes and binds to H3K27me3 mark, then catalytic subunit 
of PRC1, RING1, monoubiquitylates Lys 119 of histone H2A 
(H2AK119ub1) to impede RNA polymerase II-dependent transcriptional 
elongation and repress gene transcription [5] (Fig. 2A). Although 
coordinated recruitment of PRC1/2 is widely quoted in the literature, 
genome-wide mapping of histone modifications and localization of 
PRC1 and 2 subunits by chromatin immunoprecipitation-sequencing 
found that some genes that lack H2AK119ub1 are also targeted by PRC2 
[35]. Besides, some reports indicate PRC1 recruitment and 
PRC1-mediated H2AK119ub1 occurring independently of 
PRC2/H3K27me3 [36-38]. Moreover, Tavares et al. recently unraveled 
that RYBP-PRC1 complex, consisting of RING1 YY1 binding protein 
(RYBP) and PRC1 catalytic subunits, mediates H2AK119ub1 at normal 
level both in PRC2-null mESCs and wild type mESCs, portending 
PRC2/H3K27me3 as not needed for recruitment of RYBP-PRC1 
complex and RYBP-PRC1-mediated H2AK119ub1 on PcG target loci 
[39]. These studies revealed that PRC1 and PRC2 may also regulate 
gene expression independent of each other. 
    Aside from well-recognized epigenetic gene silencing function, 
recent study demonstrated EZH2 interacts with and directly methylates 
non-histone target, cardiac transcription factor GATA4 at Lys 299. 
PRC2-mediated GATA4 methylation impaired its interaction with and 
acetylation by p300 to attenuate GATA4 transcriptional activity and gene 
expression [40] (Fig. 2B). Moreover, EZH2 binds and methylates ROR 
at Lys 38 which is recognized and ubiquitinated by 
DCAF1/DDB1/CUL4 ubiquitin ligase complex, giving rise to 
RORdegradation and transcriptional repression of RORtarget genes 
[41] (Fig. 2B). These studies explore novel mechanism of 
PRC2-mediated gene suppression: EZH2 directly methylating 
transcriptional factor and inhibiting transcriptional activity. 
 

    Diverse epigenetic modification regulators can cooperatively 
fine-tune gene expression. Indeed, EZH2 physically interacts with and 
recruits DNA methyltransferases DNMT1, DNMT3A and DNMT3B to 
methylate CpG and establish a more deeply repressive chromatin state 
[42]. Yet knocking down EZH2 increases transcription of genes with 
minimal DNA methylation but not genes with heavily DNA 
hypermethylation [43, 44]. Several studies reveal EZH2 target genes 
pre-marked by PRC2-mediated H3K27me3 in normal cells as strongly 
correlated with genes becoming aberrantly hypermethylated in cancer 
cells, suggesting genes pre-marked H3K27me3 by PRC2 in normal 
development later become densely DNA-hypermethylated in the 
presence of oncogenic cues like abnormally elevated EZH2 expression 
[45-47]. Moreover, PRC2 interacts with histone deacetylase (HDAC), 
which may modify the histone mark by deacetylating H3K27 and 
relieving lysine side chain for methylation by PRC2, resulting in 

transcriptional silencing [48, 49]. These three groups of epigenetic 
silencing regulators EZH2, DNMTs and HDACs may contribute to 
modulating aberrant gene expression in cancer cells, and their functional 
connections have been observed in cancers of colon, breast, lung, liver, 
ovarian and prostate, as well as acute promyelocytic leukemia [46, 47, 
50]. 
 
2.3. Polycomb-independent transcriptional activation function of 
EZH2 
 
Apart form its transcriptional repression function, emerging studies 
uncover the noncanonical role of EZH2 showing that EZH2 also 
functions as an activator by methylating nonhistone proteins or forming 
transcriptional complexes with other factors to activate downstream 
target genes in a PRC2-independent manner [18-22] (Fig. 2C). Lee et al. 
demonstrated that in estrogen receptor (ER)-negative basal-like breast 
cancer cells, EZH2 physically interacts with nuclear factor-kappaB 
(NF-κB) components RelA/RelB as a ternary complex to activate a 
subset of NF-κB target genes independently of its HMTase activity [21] 
(Fig. 2C, top). In ER-positive luminal-like breast cancer cells, EZH2 
also acts as an activator independently of its SET domain through 
association with ER and WNT signaling components TCF/-catenin to 
activate ER target genes such as c-myc and cyclin D1 [20] (Fig. 2C, 
middle left). Similarly, Jung et al. revealed that EZH2 forms complex 
with DNA repair protein PCNA-associated factor (PAF) and 
TCF/-catenin to promote WNT target gene transactivation 
independently of EZH2's HMTase activity, contributing to intestinal 
tumorigenesis [18] (Fig. 2C, middle right). 
    In contrast to methyltransferase activity of EZH2 dispensable for 
EZH2-mediated gene activation mentioned above, Xu et al. 
demonstrated methyltransferase activity of EZH2 is required for both 
EZH2-mediated transcriptional activation and androgen-independent 
growth of castration-resistant prostate cancer cells [22]. AKT-mediated 
EZH2 phosphorylation at Ser21 promotes EZH2 binding with androgen 
receptor (AR) and methylating AR or AR-associated proteins, resulting 
in transcriptional activation of a subset of its target genes [22] (Fig. 2C, 
bottom left). Recently, Kim et al. showed EZH2 phosphorylation at 
Ser21 by AKT is also required for EZH2 association with STAT3 and the 
enhanced STAT3 activity, that occur preferentially in glioma stem-like 
cells relative to non-stem tumor cells. Phosphorylated EZH2 interacts 
with and methylates STAT3 at Lys 180, which augments STAT3 activity 
by enhancing tyrosine phosphorylation of STAT3, resulting in 
transcriptional activation (Fig. 2C, bottom right) [19]. Such results 
contrast with EZH2-mediated methylation of GATA4 or ROR, which 
decrease their transcriptional activity [40, 41]. 
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Figure 2. EZH2-mediated gene repression and activation 
mechanisms. (A) PRC2-dependent epigenetic silencing. With 
PRC2 (EZH2, EED, SUZ12, and RbAp46/48) recruited to target 
genes, EZH2 catalyzes trimethylation of histone H3 at Lys 27 
(H3K27me3). PRC1 then recognizes and binds to H3K27me3 
mark so as to monoubiquitylate Lys 119 of histone H2A 
(H2AK119ub1), resulting in epigenetic silencing. (B) 
EZH2-mediated gene repression via methylation of 
non-histone proteins. (Left) EZH2 interacts with and directly 
methylates cardiac transcription factor GATA4 at Lys 299. 
PRC2-mediated GATA4 methylation impairs interaction with 
and acetylation by p300, resulting in attenuated GATA4 
transcriptional activity and gene repression [40]. (Right) EZH2 
binds and methylates ROR at Lys 38 which is recognized 
and ubiquitinated by DCAF1/DDB1/CUL4 ligase complex, 
spawning ROR degradation and transcriptional repression 
of ROR target genes [41]. (C) PRC2-independent gene 
activation. (Top) EZH2 interacts with nuclear factor-kappaB 
(NF-κB) components RelA/RelB as ternary complex to 
activate gene expression [21]. (Middle left) EZH2 associates 
with ER and WNT signaling components TCF/-catenin to 
activate ER target genes [20]. (Middle right) EZH2 forms 
complex with DNA repair protein PCNA-associated factor 
(PAF) and TCF/-catenin to promote WNT target gene 
transactivation [18]. (Bottom left) AKT-mediated EZH2 
phosphorylation at Ser21 promotes EZH2 binding with 
androgen receptor (AR) and methylating AR or AR-associated 
proteins, leading to transcriptional activation [22]. (Bottom 
right) EZH2 phosphorylation at Ser21 by AKT. 
Phosphorylated EZH2 interacts with and methylates STAT3 at 
Lys 180, augmenting STAT3 activity to yield transcriptional 
activation [19]. 

 
3. Roles of EZH2 in cancer progression 
 
Overexpression/amplification or mutation of EZH2 have been found in a 
wide range of cancer types, including breast, prostate, lung, liver, colon, 
ovarian, bladder, glioblastoma and lymphoma. Elevated expression of 
EZH2 correlates with tumor malignancy, poor prognosis and poor 
patient survival [6]. Overexpression and amplification of EZH2 is barely 
detected in early stage of prostate cancers, but is more general in late 
stages. Increased copies of EZH2, with corresponding enhanced protein 
expression, are found in more than 50% of the hormone-refractory 
prostate cancers [51]. Similarly, tissue microarray analysis of breast 
caner tissue samples showed EZH2 highly expressed in invasive breast 
cancer and metastatic breast cancer compared with normal or atypical 
hyperplasia, plus associated with breast cancer aggressiveness and poor 
clinical outcome [52]. Ecotopic expression of EZH2 in breast epithelial 
cells promotes oncogenic transformation by measuring 
anchorage-independent growth and cell invasion [52]. In EZH2 
transgenic mouse model, ovexpression of EZH2 in mammary epithelial 
cells using the mouse mammary tumor virus long terminal repeat causes 
epithelial hyperplasia, highlighting the potential role of EZH2 in tumor 
progression [53]. 
    Various heterozygous mutations of EZH2 at tyrosine 641 (Y641) in 
the SET domain have been found in 22% of germinal center B-cell and 
diffuse large B-cell lymphoma (DLBCLs) and 7% of follicular 
lymphoma [54]. This Y641 somatic mutation causes a gain-of-function 
mutation, but Y641 mutant EZH2 exhibits catalytic activity toward 
substrates differently from wild-type (WT) EZH2. Y641 mutant EZH2 
preferentially catalyzes tri-methylation of H3K27, but exhibits limited 
ability to catalyze the first mono- and di-methylation of H3K27. By 
contrast, WT EZH2 exerts highest catalytic activity for the first mono- 
and di-methylation of H3K27, but relatively weak catalytic activity for 
the tri-methylation of H3K27 [55]. Intriguingly, Y641 mutant EZH2 
detected in B-cell lymphoma is always heterozygous. Thus, 
heterozygous Y641 mutant EZH2 can work along with WT EZH2 to 
raise H3K27me3 levels, which may be functionally like EZH2 
overexpression [56]. Another heterozygous mutation of EZH2 at alanine 
677 to glycine (A677G) is also identified in lymphoma cell lines and 
primary lymphoma samples with frequency less than 2-3% [55]. Similar 
to activating mutation of Y641 mutant EZH2, expression of A677G 
mutant EZH2 induces a global hypertrimethylation of H3K27. However, 
different from WT EZH2 and Y641 mutant, A677G mutant EZH2 
efficiently methylates all three substrates (unmodified, mono- and 
dimethylated H3K27), indicating A677G mutant EZH2 deregulates 
H3K27 methylation without needing working with WT EZH2 as is the 
case for Y641 mutant EZH2 [55].  
     Mutations of EZH2 are detected in 10-13% of 
myelodyplasia-myeloproliferative neoplasm, 13% of myelofibrosis and 
6% of various myelodysplastic syndrome subtypes, not occurring at 
single residue but throughout the gene. Most such mutations are 
nonsense and stop codon mutation, resulting in loss of HMTase activity, 
apparently unlike Y641 and A677 mutants [57], raising the possibility 
for EZH2 acting as a tumor suppressor. These studies indicate both 
activating and inactivating mutations of EZH2 can be associated with 
certain malignancy, their differential roles in regulating specific cohort 
of target genes that contribute to tumorigenesis may be context 
dependent and need to be explored further. 
 
 
4.  Targeting EZH2 or EZH2-mediated signaling for potential 
cancer therapy 
 
Given its role in tumor progression and stem cell maintenance, EZH2 or 
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EZH2-mediated signaling may be attractive targets for potential cancer 
therapeutics. Several studies show the small molecule 
3-deazaneplanocin A (DZNep), a S-adenosylhomocysteine hydrolase 
inhibitor, which inhibits methylation reaction and induces EZH2 
degradation, suppresses various types of cancer growth and reduce 
tumor formation: e.g., glioblastoma cancer stem cells, ovarian cancer 
stem cell-like populations, prostate cancer/cancer stem cells [23]. Still, 
DZNep is not a specific EZH2 inhibitor; it also influences other 
processes that involve methylation reaction. Recently, several highly 
potent and selective inhibitors of EZH2, such as GSK126, GSK343, 
EPZ005687, EPZ-6438 and El1, have been discovered [58]. Among 
them, GSK126 and EPZ-6438 are the most potent and selective 
S-adenosyl-methionine (SAM)-competitive, small-molecule inhibitors 
of EZH2 methyltransferase activity. GSK126 could effectively suppress 
proliferation of EZH2 mutant DLBCL cell lines and inhibit tumor 
growth in xenograft mouse model of EZH2 mutant DLBCL in vivo, 
indicating pharmacological inhibition of EZH2 activity may show 
promise in treating DLBCL harboring activating mutations of EZH2 
[59]. EPZ-6438 causes apoptosis and differentiation in SMARCB1 
mutant malignant rhabdoid tumor (MRT) Cells, and completely inhibits 
growth of MRT xenografts in mice without tumor regrowth after dosing 
cessation [60]. This study reveals that inhibition of EZH2 activity may 
be a compelling therapeutics for a spectrum of cancers with genetic 
alterations conferring a proliferative dependency on EZH2 enzymatic 
activity despite EZH2 itself is not genetically changed in the cancers. 
EPZ-6438 also eliminates the growth of several EZH2 mutant 
xenografts including WSU-DLCL2 (Y641F), Pfeiffer (A677G), 
KARPAS-422 (Y641N) etc., and has been approved for human clinical 
trials in patients with advanced solid tumors or with B-cell lymphoma 
[58]. Moreover, down regulation of EZH2 expression by siRNAs or 
shRNAs has also been shown to inhibit cancer cell and tumor growth 
[23]. Besides direct blocking EZH2 activity/expression, EZH2-mediated 
tumorigenic signaling is another attractive therapeutic target. For 
example, study shows EZH2 up-regulating RAF1-ERK--catenin 
pathway, leading to promoting survival and proliferation of breast tumor 
initiating cells [23]. Inhibitors of RAF1-ERK signaling, such as 
sorafenib and AZD6244, are plausible therapeutic agents to eradicate 
breast tumor initiating cells. 
 
 
5. Perspectives 
 
EZH2, deregulated in a wide range of cancers, exerts its functions in 
distinct action modes (Fig. 2). Functioning in both PRC2-dependent 
(canonical) and -independent (noncanonical) manners to repress or 
activate target gene expression, it thus may contribute to tumorigenesis 
via both positive and negative regulation of gene activity in cell-context 
dependent manner. Currently, no EZH2 inhibitors are approved for 
treatment of human cancers; much effort has been made to develop 
EZH2 HMTase inhibitors. Since methyltransferase activity of EZH2 is 
not required for certain EZH2-mediated gene activation (Fig. 2C), 
alternative strategy aside from inhibiting EZH2 enzymatic activity 
warrants attention. In this regard, approaches based on disrupting 
interaction between EZH2 and other factors like ER/TCF/-catenin and 
RelA/RelB might be potential therapeutic targets. 
  In addition to overexpression of EZH2 in cancers, activating 
mutations and inactivating mutations of EZH2 correlate with certain 
types of cancer, pointing to the complicated role of EZH2 mutants in 
cancer meriting further exploration: e.g., whether gain of EZH2 function 
mutant modulates a set of genes similar to or different from those 
regulated by inactivating mutation of EZH2. Given EZH2’s 
multi-faceted role in cancer, insight into sophisticated regulatory 
mechanisms of EZH2/EZH2-mediated signaling will pave the way for 

developing context- or allele-specific (mutant EZH2-specific) strategy 
for targeting EZH2/EZH2-mediated signaling that could serve as future 
targeted therapy/personalized medicine for human cancer. 
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