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Abstract: This paper considers the problem of patient scheduling and capacity planning for the 

vaccination process during the COVID-19 pandemic. The proposed solution is based on a non-

linear mathematical modeling approach representing the dynamics of an open Jackson Network 

and a Generalized Network. To test these models, we proposed three objective functions and 

analyzed different configurations of the process corresponding to various levels of the models’ 

parameters as well as the conditions present in the case study. To assess the computational 

performance of the models, we also experimented with larger instances in terms of number of steps 

or stations used and number of patients scheduled. The computational results show how parameters 

such as the minimum percentage of patients served, the maximum occupation allowed per station 

and the objective functions used have an impact on the configuration of the process. The proposed 

approach can support the decision-making process in vaccination centers to efficiently assign 

human and material resources to maximize the number of patients vaccinated while ensuring 

reasonable waiting times, number of patients in queue and servers’ utilization rates, which in turn 

are key to avoid overcrowding and other negative conditions in the system that could increase the 

risk of infections. 

Keywords: Jackson Network Model, Generalized Queueing Network, Non-Linear Mixed 

Integer Programming, COVID-19 Vaccination, Capacity Planning.
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1. INTRODUCTION

Vaccination centers are locations set up to immunize large numbers of people within short time 

frames. The final aim of setting up vaccination centers is to accelerate disease control through a 

rapid increase in vaccination coverage. However, this goal may not be attainable without proper 

vaccine distribution to vaccination centers and effective vaccine application (Gianfredi et al., 

2021). In this context, planning and managing the capacity of vaccination centers is vital to achieve 

the necessary high vaccination rates to control disease spread.

Planning and managing vaccination centers may include deciding on several aspects such 

as the location and layout of the center, the number and type of staff and the required performance 

to achieve given vaccination quantity targets, among others (Gianfredi et al., 2021). The 

implementation of COVID-19 vaccination centers attempts to address some of these issues. For 

example, Signorelli et al. (2021) presented the implementation of a “vaccine islands” model where 

COVID-19 vaccines were applied in up to 10 “islands”, each with two vaccination servers, divided 

into two parallel rows of five islands separated by a central corridor. This setup allowed to 

administer up to 6,000 shots per day while reducing the overall time a patient spent in the whole 

process and crowds. Similarly, Yogev et al. (2021) presented the implementation of a COVID-19 

vaccination site where six vaccination servers were organized in a C shape with the vaccine 

preparation server at the heart of the C. This setup allowed a productivity of 147 shots per hour 

while improving control and supervision of vaccine administration, patient flow, dose preparation 

burnout and safety.

While these and other experiences on vaccination centers can provide some insight into the 

challenges of planning and managing these centers (Gianfredi et al., 2021), they are not suited for 

determining how to best plan and manage a vaccination center. In this regard, modeling and 
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simulation approaches can be used to test a range of design alternatives for vaccination centers and 

determine their best operating parameters. For example, Pryor et al. (2021) developed a resource 

calculator based on scheduling models to determine the resource allocation needed (staff and room 

capacity) to maximize the number of COVID-19 vaccines applied per hour. Similarly, Wood et al. 

(2021) developed a discrete event simulation model to determine arrival and service rates for 

accommodating practical service and queueing levels in a COVID-19 vaccination center with up 

to six immunizers.

Our work develops a mathematical modeling framework that generalizes patient 

scheduling and resource allocation decision-making for vaccination centers considering 

congestion and workload constraints. These are decisions that hospitals and vaccination centers 

must make under new conditions brought by the pandemic, which make the vaccination process 

different from typical vaccination processes such as seasonal flu vaccination. The starting point is 

a three-step COVID-19 vaccination process observed in a healthcare provider in Bogotá, Colombia 

where, in total the city has to vaccinate in the first phase approximately 5 million of people, more 

details in https://saludata.saludcapital.gov.co/osb/index.php/datos-de-salud/enfermedades-

trasmisibles/covid-19-vacunometro/. In this process, the personal information of a patient is 

verified, she is vaccinated and, finally, her personal and vaccination information is registered in a 

governmental platform. All COVID-19 vaccination centers in Colombia follow this same three-

step vaccination process, though in different scales. 

The remainder of this paper is organized as follows. Section 2 presents a review of related 

literature. Section 3 describes the COVID-19 vaccination center case that serves as the starting 

point of our modeling effort. Section 4 formulates the Jackson Network model and the G/G/m 

model that generalizes the problem. Section 5 reports the computational experiments, their results 
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and the theoretical and managerial implications. Finally, Section 6 draws conclusions and 

opportunities for future research.

2. LITERATURE REVIEW

This section does not intend to provide a comprehensive literature review but to point to the kind 

of studies that are relevant to our work. Sections 2.1 and 2.2 highlight contextual factors that are 

relevant to understand some of the challenges for the operation of vaccination centers, which we 

capture through the way we model demand and some of our constraints. And Section 2.3 points to 

modeling approaches relevant to analyze vaccination processes to help position our work.

2.1. Vaccine distribution challenges

Given the particular conditions of the current COVID-19 pandemic caused by the outbreak of the 

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), many countries face multiple 

challenges for the distribution of COVID-19 vaccines to their population such as the heterogeneity 

of vaccines, the different cold chains needed for each vaccine type and the mismatches between 

the rate of vaccine production, the supply of logistics infrastructure, the medical and technical staff 

at vaccination centers and the people to be vaccinated. Additionally, misinformation, hesitancy 

and unwillingness of part of the population to vaccination also pose challenges for accurately 

assessing the demand for a given distribution time window. Other challenges for the distribution 

of these vaccines are the need for mass vaccination across the entire territory of the country, the 

volume of patient enrollment and scheduling efforts needed, perishability of doses and social 

distancing in vaccination centers, among others (Goralnick et al., 2021).

For example, Mills & Salisbury (2021) mention that, as of the end of 2020 it was unclear how 

resources will be split between different COVID-19 vaccination sites in UK (e.g., primary care 
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networks and mass vaccination centers) and that vaccination programs would be constrained by 

vaccine availability. This was the case specially in developing countries (Sheikh et al., 2021). They 

mention that reported vaccination rates in the UK under normal conditions are 10.7 million doses 

per year (for seasonal flu), where it is estimated that vaccination sites report around 200-500 doses 

per day per site, which adds up to just over 3 million doses per week. These rates were not sufficient 

to quickly vaccinate the 70% of the population needed to reach herd immunity, which raised the 

need for suitable strategies to accelerate and optimize vaccination.

Eshun-Wilson et al. (2021) conducted a survey in US to inform vaccine distribution 

strategies that are aligned with public preferences for COVID-19 vaccination. Their data suggested 

that making vaccination easy (e.g., single over two doses and reduce waiting times at vaccination 

sites) and promoting autonomy by offering choices of vaccine brands and locations may increase 

vaccine uptake, and that vaccine mandates could reduce vaccination in those who are hesitant. 

Many of this information is important to manage the demand in a vaccination process and indeed 

proved to be of use when implemented for mass vaccination (Wang et al., 2021). It is also key 

when used in different operations research modeling strategies to optimize resource allocation and 

vaccination rates.

Finally, the analysis presented by Weintraub et al. (2020) compiles lessons learned from 

past pandemics and vaccine campaigns for successful COVID-19 vaccine delivery. They mention 

that demand must be generated through communication campaigns tailored to specific populations. 

They suggest that qualified organizations and expert coalitions must determine evidence-based 

vaccine allocation strategies. 
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2.2. Vaccine allocation challenges

Goralnick et al. (2021) claim that a hybrid approach using conventional vaccination sites and high-

throughput, large-venue mass-vaccination sites such as stadiums and convention centers is 

essential for COVID-19 vaccine delivery to keep up with vaccine distribution. By January 11, 

2021, for instance, the US had distributed 22.1 million doses but administered only 6.7 million 

vaccinations since vaccination plans relied on leveraging conventional healthcare sites. 

Additionally, they mention that partnerships that draw on innovation and expertise from outside 

healthcare are valuable to identify bottlenecks and accelerate vaccine delivery. More recent studies 

also demonstrated the effectiveness of this approach (Lemaitre et al., 2022; Roy et al., 2021; 

Wrigley-Field et al., 2021). These findings highlight a need for planning strategies for vaccination 

centers with the capacity to quickly adapt their operations according to the demand.

The study presented by Roy et al. (2021) suggests that COVID-19 vaccine allocation 

strategies that incorporate epidemiological factors that account for the vulnerability of zones to the 

epidemic spread may enhance recommendations and aid policy making, as their analysis on real 

demographic and infection data from NY state shows that a small fraction of zones tends to exhibit 

a high resource demand due to their vulnerability to the pandemic spread. Similarly, (Lemaitre et 

al., 2021) propose COVID-19 vaccine allocation strategies that account for spatial heterogeneities 

in transmission rate and disease history among Italian provinces under constraints on vaccine 

supply and distribution logistics. These strategies significantly outperform simple allocation 

strategies based on incidence, population distribution or prevalence of susceptible in each 

province. From these studies we can recognize that COVID-19 vaccination centers not only need 

to be highly efficient but also very flexible to adapt to changing demand conditions.
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Finally, Zhou et al. (2021) show through a simulation study with data from Guangzhou, 

China, that herd immunity is heterogeneously distributed in space, for which reason COVID-19 

vaccine allocation strategies should be spatialized. Accordingly, their simulations show that an 

allocation strategy based on space and age is more effective to control the epidemic duration than 

a random strategy and strategies focused solely on space or age. These findings also highlight that 

vaccination sites should have their own configuration and capacity to adapt. This was further 

demonstrated in a case study involving several Italian provinces conducted by (Lemaitre et al., 

2022).

2.3. Vaccination center planning and management

Some experiences on COVID-19 vaccination center design have shed light on some challenges of 

planning and managing these centers. For example, Yogev et al. (2021) presented two setups for 

the arrangement of vaccination centers. One setup had the vaccine preparation module in the 

backstage, while the other had a C-shaped arrangement with the vaccine preparation module at the 

center of the C. Comparing both setups allowed the authors to share some insights into patient 

flow, personnel burnout, and safety, among others. Although these experiences shed some light 

into the design of vaccination sites for Covid-19, the authors, however, did not take into account 

capacity planning considerations.

Signorelli et al. (2021) emphasize that sharing best practices in immunization delivery is 

fundamental to achieve population health during health emergencies. As a contribution to this, 

they implemented a “vaccine islands” setup, where the anamnestic (medical history) and 

inoculation areas are unified in “islands” each with four and two anamnestic and inoculation 

modules, respectively. Although this setup was efficient for the chosen location, it is unclear 

whether similar setups will adapt to different locations.
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2.3.1. Operations Research strategies

Pryor et al. (2021) use scheduling models to develop a resource calculator to increase COVID-19 

vaccination rates. They stress that vaccination efforts may be hampered by supply, delivery, 

storage, patient prioritization, administration infrastructure or logistics problems, which support 

the development of Operations Research (OR) strategies. These constraints for rapid vaccination 

were specially observed in developing countries (Sheikh et al., 2021). For example, Palmer et al. 

(2017) present a systematic literature review on the application of OR methods for modeling 

patient flow, which is a relevant issue in COVID-19 vaccination processes. 

2.3.2. Simulation strategies

Simulation models have also been proposed to manage and maximize the throughput of 

COVID-19 vaccination centers. For example, Wood et al. (2021) developed a discrete event 

simulation-based approach to plan the demand (arrivals) and capacity (service rates) of vaccination 

centers while accommodating practical service and queueing levels. Similarly, Asgary et al. (2021) 

developed a hybrid discrete event and agent-based simulation to model a drive-thru mass 

vaccination facility. They also coupled it with a machine learning model to assess the potential 

outcomes of the simulation much faster than the simulation itself, which can help authorities 

quickly compare different scenarios.

2.3.3. Mathematical programming and optimization models for the appointment scheduling and 

capacity planning problem

The capacity planning problem for a COVID-19 vaccination center can be modeled as a special 

case of the largely studied appointment scheduling problem. The main characteristics of this 

problem include two conflicting objectives that are considered in three objective functions in our 

study. These objectives are the minimization of waiting times for patients and the maximization 
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of the utilization of resources (such as admin and medical staff). Additional characteristics of this 

problem related to a typical COVID-19 vaccination process are the presence of stochastic 

interarrival and service times and the use of multiple often sequential steps or stations through 

which patients need to go through. Early studies such as the one presented by Anparasan & Lejeune 

(2019) consider the resource deployment problem for epidemic outbreaks, however, this would 

only be a part of the problem in the context of the COVID-19 pandemic.

Kuiper et al. (2021) highlight an important gap between the mathematical optimization 

methods presented in the literature for the patient appointment scheduling problem and healthcare 

practice. The main reasons for this as found in Kuiper et al. (2021) are the uncertain and dynamic 

nature of demand, the dependencies in the process structure and the variety in services and in 

patient and resource characteristics, among others. This reveals the need for further work on 

suitable optimization approaches for appointment scheduling problems in healthcare, such as the 

capacity planning problem for COVID-19 vaccination centers.

Several approaches have been presented in the literature to study appointment scheduling 

problems in clinics. For example, Nguyen et al. (2018) develop a linear programming model that 

determines the required number of physicians over a finite horizon to achieve targets on 

appointment lead-times. Moreno & Blanco (2018) develop an integer linear programming model to plan 

the admission of patients for receiving a set of prescribed clinical services minimizing admission 

dates and length of stay. Dogru & Melouk (2019) propose a simulation-optimization approach that 

sequentially schedules appointments that minimize the weighted expected costs of patient waiting 

time and physician idle time and overtime. Alizadeh et al. (2020) solve a problem with a similar 

objective function using mixed integer linear programming. Instead of minimizing a typical 

expected cost function (e.g., patient waiting time and physician idle time and overtime), Sang et 
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al. (2021) minimize any quantile of the cost distribution, which could be a better approach if 

service level and risk measures are considered. Finally, Yan et al. (2021) formulate a stochastic 

overbooking model that maximizes expected profit (revenue generated from accepted appointment 

requests minus the cost from patient waiting time and physician overtime). 

Maximizing profit is not characteristic of vaccination processes. Additionally, the 

stochastic nature of a COVID-19 vaccination process requires stochastic approaches for the 

solution, which are not always considered (cf. Nguyen et al., 2018; Yan et al., 2021). Several 

approaches assume a fixed and known demand (e.g., Moreno & Blanco, 2018; Alizadeh et al., 

2020; Sang et al., 2021), while the demand is usually unknown in a COVID-19 vaccination 

process. Several approaches also discretize time (e.g., slots, hours) to facilitate the assignment of 

appointments and services (e.g., Alizadeh et al., 2020; Dogru & Melouk, 2019; Moreno & Blanco, 

2018; Nguyen et al., 2018; Yan et al., 2021), which does not usually apply in a COVID-19 

vaccination process. Finally, most of these studies do not consider capacity planning but rather 

optimize the use of available resources (cf. Nguyen et al., 2018). Thus, several configurations 

and/or characteristics commonly considered in existing studies are not similar to those observed 

in a COVID-19 vaccination process.

2.3.4. Contributions of this paper

Our work contributes to modeling strategies for patient scheduling and planning and managing the 

capacity of a sequential COVID-19 vaccination process according to local needs. It also considers 

the stochastic nature of the vaccination process by incorporating stochastic parameters in both the 

demand and the service provision, and analyzes different scenarios of operation that could be 

produced by external conditions (e.g., staff unavailability, unforeseen delays, sudden increases in 

arrivals). These cases can be analyzed using the different objective functions proposed (Server 
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assignment (SA), Patient scheduling (PS) and SA + PS) and setting different servers’ utilization 

rates. These modelling strategies on one hand, are essential for determining the necessary 

additional capacity required in such cases. On the other hand, the models proposed can be adapted 

to different healthcare processes such as other type of vaccinations campaigns or different related 

processes, for which, one of the main objectives is to determine the capacity of each station and to 

schedule the patients arrivals given some operational constraints. They can also be essential for 

cases where new healthcare processes need to be designed or the performance of some KPIs needs 

improvement. 

3. CASE STUDY

3.1. Foundation overview

The Foundation was founded in the 1970s as a private non-profit organization focused on treating 

cardiovascular disease in children from low-income families. In the 1980s, the Foundation 

formally established a social program to pursue its goal, and, to date, more than 5000 patients have 

been successfully treated through this program. In that same period, the Foundation built the 

facilities that house its current hospital with the help of private donations and expanded its scope 

to also treat adults with cardiovascular disease. Nowadays, the Foundation has become established 

as a private non-profit teaching and research hospital for cardiovascular and tertiary care, and it is 

recognized as one of the best Latin-American hospitals by the América Economía ranking. As a 

renowned healthcare provider in Colombia, they joined Colombia’s governmental effort of 

massively vaccinating its population against COVID-19.
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3.2. COVID-19 vaccination process

Colombia started its COVID-19 vaccination program on February 2021. At the time, since 

vaccines were applied according to prioritized population groups, the vaccination program worked 

by scheduling vaccination appointments and involved the following overall activities. First, upon 

receiving vaccine batches, the Colombian government allocated vaccines to departmental 

authorities according to the information on the prioritized population groups that these authorities 

shared with the government. Following, departmental authorities together with healthcare 

providers scheduled vaccination appointments for prioritized population groups. Next, based on 

the scheduled appointments, departmental authorities allocated the necessary vaccines to 

healthcare providers. Finally, on vaccination day, healthcare providers vaccinated all people that 

showed up for their appointment.

After all prioritized population groups were vaccinated, the allocation of vaccines to 

departmental authorities is done based on their demographic weight and unvaccinated population. 

In this new phase of the vaccination program and for large urban areas, departmental authorities 

together with healthcare providers set up bigger vaccination centers, and departmental authorities 

allocate the necessary vaccines to these vaccination centers according to the requests of the 

different healthcare providers operating in a given vaccination center and to the storage and 

handling capacity of the center. For other areas, departmental authorities allocate vaccines to 

individual healthcare providers according to the latter’s requests. In this new phase, vaccination 

centers could schedule appointments, reserve the right to refuse entrance according to vaccine 

availability or work with a mix of these two approaches. Regardless of the approach, patient 

admission is contingent on vaccine availability, which guarantees a normal operation of the 

centers. 
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Regardless of whether the vaccination is scheduled or not, an individual goes through a 

three-step vaccination process.1 First, when the individual arrives, her personal, consent and 

symptom screening information is verified at the verification step or station. At the time, three 

staff members, each serving one individual, verified this information at the Foundation. Second, 

the individual goes to a vaccination server to get her shot. At the time, the Foundation had 10 

vaccination servers, operating most of the time with eight servers and enabling the remaining two 

as needs arose. Finally, the individual goes to the registration station where her personal and 

vaccination information is registered in a governmental web platform. At the time, ten staff 

members, each serving one individual, registered this information at the Foundation. Figure 1 

shows a flowchart of this vaccination process at the Foundation with performance data based on a 

time study.

Verification
m = 3 

Vaccination
m = 10

Registration
m = 10

s = 1.72 min 
σs = 0.55 min

s = 3.20 min 
σs = 0.99 min

s = 4.94 min 
σs = 2.10 min

Figure 1. Vaccination process flowchart at the Foundation.

This general vaccination process constitutes the basis of our optimization model to support 

decisions on the number of staff members (servers) to be assigned to each station, and the number 

of patients to be scheduled in a day considering congestion and workload constraints. Our initial 

1 The process is the same in all healthcare providers and vaccination centers authorized to apply covid-19 vaccines in 
the country. However, there could be differences in the number of staff members assigned to each step of the process.
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analysis of the optimization model assumes the exponential distribution is a good fit to model the 

three service times. Thus, we use an open Jackson Network model for this analysis. As we 

mentioned above, we collected data on service times and, according to an input analysis performed 

in Stat::Fit® Version 3 by Geer Mountain Software Corp., the exponential distribution is a good 

fit to model vaccination and registration times. Thus, we perform an additional analysis where we 

relax the exponential distribution assumption and model the three service times with a general 

distribution.

4. PROBLEM DEFINITION AND MATHEMATICAL FORMULATION

According to the case study described in Section 3, a corresponding queueing network of the 

system is presented in Figure 2.

Verification Vaccination Registration
𝜆� 𝜆� 𝜆�

𝑠� 𝑢� 𝑠� 𝑢� 𝑠� 𝑢�

Figure 2. Queueing network of a typical vaccination process.

Patients arrive to the first step or station at an arrival rate  according to a Poisson process 𝜆1

where the no-show probabilities are not considered. The number of parallel servers in each station 

is denoted with  and the service time is exponentially distributed with mean  . Given that the 𝑠𝑗
1
𝑢𝑗

model does not consider deferral or no-show probabilities, it follows that . The 𝜆1 = 𝜆2 = 𝜆3 = 𝜆

following are the assumptions used for the mathematical model:
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 Arrival rate  follows an exponential distribution and it is considered as a variable 𝜆1

of the model

 Servers has a process time  which follows an exponential distribution𝑠𝑗

 Rework is not presented in the vaccination process neither in registration

 Capacity of queue and system is infinite 

 The discipline of queue is FIFO

 The preparation of vaccines is not considered as a station given that we are studying 

the process where patients are involved

4.1. Jackson Network model

The first model (see Appendix A) corresponds to a nonlinear mathematical Jackson Network 

composed of a set  of different stations, where each station represents a service provider. There 𝑂

are totally  patients to be scheduled in a day of  hours. The decision maker needs to define the 𝑛 𝐻

following parameters: the minimum percentage of patients served per day (denoted by ), the 𝛼

minimum and maximum occupation or utilization (in percentage) of each station, denoted by  𝑐𝑜

and , respectively, and the maximum patient waiting time in queue and number of patients in 𝑏𝑜

queue in each station, denoted by  and , respectively. The random parameters are related to 𝑑𝑜 𝑒𝑜

the service time and service rate in each station, denoted by  and , respectively. 𝑡𝑖𝑜 𝜇𝑜

The decision variables are the frequency of patients scheduled per hour , the number of 𝜆

servers assigned to each station , the probability of idle time in a specific station  and the 𝑠𝑜 𝜋0𝑜

average number of patients in queue in each station .𝐿𝑞𝑜

Three different objective functions are evaluated individually (Equations 1-3). The first 

one minimizes the total number of servers assigned while the second one maximizes the number 
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of patients scheduled. The third objective function considers the previous two objectives together 

and normalizes them by dividing each of them by its best result. 

Equations 4 and 5 define constraints ensuring that patients are scheduled within a day’s 

working hours, defining the time at which each patient must arrive to the vaccination center. It can 

be noted that depending on the objective function, this constraint can generate different results 

even if the parameters  and  are constant. Equations 6 and 7 define the constraints for the 𝑛 𝐻

utilization of each station. The Jackson Network metrics are calculated in Equations 8 and 9, where 

the former is the proportion of idle time of each station and the latter is the average number of 

patients in queue in each station. Equations 10 and 11 define the constraints for the maximum 

average number of patients in queue in each station and the maximum average patient waiting time 

in queue in each station, respectively. Finally, the constraints in Equations 12-15 represent the 

types of variables.

4.2. Mathematical reformulation

The mathematical model presented in Section 1.1 is unsolvable since decision variables are in a 

summation (Equations 1 and 3), in factorial numbers (Equations 8 and 9) and as super indexes 

(Equations 8 and 9). To solve this problem, we propose a reformulation based on the considerations 

presented in Appendix B.

4.3. Generalized Network Model (G/G/m)

Given that Model 1 follows the M/M/s queueing model assumptions, we propose a second model 

with nonexponential interarrival and process time distributions, i.e., a G/G/m model. We refer to 

this model as Model 2. It uses the same notation of Model 1 and we add the elements included are 

presented in Appendix C.
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In Model 2, we use the same three objective functions presented for RF Model 1 and they 

are presented in Equations 39-41. Equations 42-46 replicate Equations 22-26 from RF Model 1, 

i.e., the working hours and utilization constraints. Equation 47 defines the interarrival time squared 

coefficient of variation for the first station, which depends on the number of servers assigned by 

the binary variable. We assume that such coefficient remains the same regardless of whether the 

arrival rate changes. This assumption is grounded on the fact that we are modeling a flow process 

and is further formalized in Equations 48 and 49. Equations 50 and 51 define the Kingman 

approach (Hopp & Spearman, 2011) to the average waiting time. Equations 52 and 53 represent the 

bounds of the average patient waiting time and the average number of patients waiting, 

respectively. Finally, Equations 54-59 represent the type of variables used.

5. COMPUTATIONAL EXPERIMENTS AND RESULTS

5.1. Case study results

To assess the performance of RF Model 1 and the objective functions over the case study data, we 

analyzed the impact of different values of the parameters on the configuration of each station and 

the performance metrics. Table 1 shows the values we tested:

Table 1. Parameter values to test RF Model 1’s performance.

Parameter Values
𝛼 0.80 0.85 0.90 0.95 1 -- --
𝑏𝑜 0.70 0.75 0.80 0.85 00.9 0.95 0.99
𝑛 500 1000 1500 … … … 𝑀𝑎𝑥. 𝑠𝑜𝑙𝑣𝑎𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒

As an example, the results obtained with a single parameter configuration ( , 𝛼 = 0.8 𝑏𝑜

 and ) are presented in Figures 3, 4 and 5: the first shows three configurations of = 0.7  𝑛 = 500
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the process, each corresponding to the solution of one of the objective functions (SA, PS and SA 

+ PS, in that order), and the remaining two show the performance metrics for each station along 

the three objective functions.

𝜆 = 0,66 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠/𝑚𝑖𝑛𝑢𝑡𝑒

Station 1 Station 2 Station 3

𝜆 = 0,83 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠/𝑚𝑖𝑛𝑢𝑡𝑒

Station 1 Station 2 Station 3

𝜆 = 0,81 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠/𝑚𝑖𝑛𝑢𝑡𝑒

Station 1 Station 2 Station 3

Objective Function 1

Objective Function 2

Objective Function 3

Figure 3. Configuration results for the three objective functions.
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Figure 5. Average patient waiting time in queue (min).

As Figure 1 shows, the number of servers for Station 1 is the same among objective 

functions (OF) 1 and 3 (2 servers), while OF2 leads to 3 servers. OF2 also leads to the best 

performance metrics. It is natural to conclude that increasing the number of servers, as OF2 does 

for Station 1, reduces the average utilization rate, the average number of patients in queue and their 

average waiting times, as shown by the results of Station 1 in Figures 2 and 3. The model solved 

with OF3 leads to the highest values for the performance metrics (i.e., worst results) due to the 

balance it seeks between the first two objective functions.

For Station 2, even though OF1 and OF3 generate the same number of servers (4 servers), 

the performance metrics are different among them. Specifically, the performance metrics are better 

with OF1 since it leads to a lower  (average number of patients scheduled per hour). An additional 𝜆

server is obtained with OF2 (5 servers), though its results are similar to those with OF1 since OF2 

leads to a greater . Nonetheless, a closer look shows that the waiting times with OF1 are somewhat 𝜆
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higher than those with OF2, since OF1 aims at minimizing the number of servers. Finally, as with 

Station 1, OF3 leads to the worst performance metrics.

Finally, in Station 3, OF2 and OF3 lead to 6 servers, while OF1 leads to 5 servers. This is 

explained by the minimization of the number of servers, which increases the average patient 

waiting time but satisfying the waiting time constraint from Equation10. Unlike Stations 1 and 2, 

the results of the performance metrics are similar over the three objective functions. The 

computational time required for solving the three objective functions is 0.35s, 0.16s and 0.89s, 

respectively, all lower than a second, which can be a reasonable computational time for a planning 

model. 

As final remarks, in this section we have analyzed the results obtained by the mathematical 

model contrasting the three different objective functions proposed for the case study. The results 

allow us to describe the benefits of different configurations. If the decision maker is focused on 

minimizing the number of servers, OF1 can obtain the best results over this performance metric, 

but if the decision maker is focused on minimizing the utilization rate, OF2 is more suitable. 

Conversely, if the purpose is to use the resources at maximum extent, OF3 should be used. Finally, 

if the main focus of the operation is to reduce the average number of patients in queue and their 

average waiting times, OF2 should be selected. 

5.2. Performance of the Jackson Network model

To test the mathematical model proposed and the different objective functions analyzed, we 

performed an experimentation assessing different scenarios with the parameters previously 

described (  and considering different number of stations: 3 (case study), 5, 10, 15 and 𝛼, 𝑏𝑜 and 𝑛)

20, which allows us to run 1023 instances for each size of the number of stations.
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The first analysis performed corresponds to the number of servers for each objective 

function and for each number of stations. These results are shown in boxplots in Figure 6. Within 

each objective function, the results of the average number of servers are similar over the number 

of stations. It can also be observed that the boxplots of OF1 (a) are shorter than those of OF2 (b) 

and OF3 (c), which is expected since OF1 considers the minimization of the number of servers. 

Also, a larger number of servers is obtained with OF2 (b) because of the direct relationship 

between the maximization of the number of patients scheduled and the number of stations that is 

captured in the utilization constraint from Equation (6).

(a) OF1 (b) OF2

(c) OF3

Figure 6. Average number of servers for each objective function over the number of stations: (a) 

Objective Function 1, (b) Objective Function 2 and (c) Objective Function 3.
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We also analyzed the performance of the system for each objective function and for each 

number of stations in terms of the average number of patients in queue in the network and their 

average waiting times. The boxplots of the average number of patients in queue in the network are 

shown in Figure 7. It can be concluded that for the three objective functions, the highest value of 

patients in queue is obtained by the first configuration analyzed (3 stations). Nevertheless, the 

outliers of the rest of the models are higher than the ones obtained by the first configuration. The 

results obtained with OF2 (b) show the lowest values of patients in queue over the three objective 

functions. This is expected considering the results obtained for the number of servers analyzed in 

Figure 7(b), which shows the highest values of number of servers over the three objective 

functions. 

(a) OF1 (b) OF2
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(c) OF3

Figure 7. Average number of patients in queue for each objective function over the number of 

stations: (a) Objective Function 1, (b) Objective Function 2 and (c) Objective Function 3.

The boxplots of the average patient waiting times in queue in the network are presented in 

Figure 8. In contrast to the results obtained for the number of patients in queue (see Figure 4), the 

average waiting times increase with the number of stations. It can also be observed that OF2 (b) 

leads to the lowest average waiting times over the three objective functions, which is consistent 

with the higher number of servers observed with OF2 compared to OF1 and OF3 (see Figure 4). 

(a) OF1 (b) OF2

(c) OF3
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Figure 8. Average patient waiting time (in minutes) in queue for each objective function over the 

number of stations: (a) Objective Function 1, (b) Objective Function 2 and (c) Objective 

Function 3.

If we compare the results presented in Figures 4, 5 and 6, it can be concluded that OF1 can 

be used to obtain lower values for the number of servers. In contrast, OF2 leads to higher number 

of servers. If the objective of the decision maker is minimizing the average number of patients in 

queue and their average waiting times, she should select OF2.

5.3. Performance of the Generalized Network model

Similar to the previous analyses performed, in this section we describe the results obtained 

with the Generalized Network model in the same way that we described the results of the Jackson 

Network model.  The following are the assumptions used for the mathematical model:

 Arrival rate  follows an General distribution and it is considered as a variable of 𝜆1

the model

 Servers has a process time  which follows a General distribution𝑠𝑗

 Rework is not presented in the vaccination process neither in registration

 Capacity of queue and system is infinite 

 The discipline of queue is FIFO

 The preparation of vaccines is not considered as a station given that we are studying 

the process where patients are involved
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The first part of the results corresponds to the average number of servers for each objective 

function and for each number of stations. These results are shown in boxplots in Figure 9. In 

general, the results obtained with OF1 (a) and OF3 (c) show a lower number of servers compared 

to OF2 (b), and the ranges with OF1 are the smallest. Within OF1 (a) and OF2 (b), the average 

number of servers is similar over the number of stations, which is a similar behavior to that 

observed in Figure 6 (a) and (b). For OF3 (c), the number of servers is quite similar over the 

number of stations, except for the 10-station instances whose values are higher. If we contrast these 

results with the results from Figure 4 (RF Model 1), the ranges with Model 2’s OF2 increase with 

the number of stations. In addition, the results with Model 2’s OF3 show some heterogeneity given 

the peak in the number of servers for the 10-station instances.

(a) OF1 (b) OF2

(c) OF3
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Figure 9. Average number of servers for each objective function over the number of stations 

(Model 2): (a) Objective Function 1, (b) Objective Function 2 and (c) Objective Function 3.

On the other hand, the average number of patients in queue in the network and their average 

waiting times are presented in boxplots in Figures 10 and 11, respectively. From Figure 10, it can 

be concluded that a high number of patients in queue is obtained with both OF1 (a) and OF3 (c), 

while the lowest with OF2 (b). This is due to the main objectives pursued (for example, OF1 

minimizes the number of servers, while OF2 maximizes the scheduled patients, which generates 

higher number of servers and, thus, less patients in queue). For OF3 (c), the number of patients in 

queue over the number of servers is quite similar, except for the 10-station instances, which show 

lower values. These OF3 results are consistent with the previous results on the number of servers 

(see Figure 7 (c)). In contrast to the results presented in Figure 7, the average number of patients 

in queue is lower for the three objective functions analyzed in Model 2. 

(a) OF1 (b) OF2
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(c) OF3

Figure 10. Average number of patients in queue for each objective function over the number of 

stations (Model 2): (a) Objective Function 1, (b) Objective Function 2 and (c) Objective 

Function 3.

From Figure 11, a general conclusion that can be drawn over the three objective functions 

is that the patient waiting time increases with the number of stations (except for the 10-station 

instances with OF3 (c)). In addition, the lowest waiting times are obtained with OF2 (b), while the 

highest with OF3 (c) due to the peaks reached. Overall, the increased waiting times observed in 

this figure are consistent with the results presented in Figure 8, where waiting times also increase 

with the number of stations. However, the ranges obtained with Model 2 are smaller than those 

obtained with RF Model 1.
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(a) OF1 (b) OF2

(c) OF3

Figure 11. Average patient waiting time (in minutes) in queue for each objective function over 

the number of stations (Model 2): (a) Objective Function 1, (b) Objective Function 2 and (c) 

Objective Function 3.

If we analyze the results obtained with Model 2, we can conclude that, on average, OF1 is 

appropriate for obtaining low values for the number of servers. In contrast, OF2 is more 

appropriate for obtaining better results for the average number of patients in queue and their 

average waiting times. Overall, we can observe some differences between the results of Model 2 

and RF Model 1. This is because of two major reasons: (i) Model 2 does not use the assumption 
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of the exponential times and (ii) Model 2 also considers the coefficients of variation among the 

stations. 

5.4. Theoretical and managerial insights

From a theoretical perspective, we highlight two main aspects. First, our approach combines the 

modeling of both patient scheduling and capacity planning, giving the decision maker the option 

to optimize the system for different occupation levels, e.g., staff totally or partially assigned to the 

vaccination operation, as well as for different maximum allowed number of patients in queue, 

which helps manage space availability and crowds in vaccination centers. And second, unlike other 

approaches presented for each of these problems, our approach also considers the stochastic 

behavior of arrival rates and service times. 

Our numerical experiments allow us to highlight two major managerial insights. First, the 

analysis shows that over each objective function analyzed, the average number of servers required 

for each station remains stable independent of the number of stations. By implementing our model 

as a support tool, decision makers can thus efficiently define the capacity of a system in terms of 

staff required (and other associated resources) regardless of how many steps the process has, e.g., 

registry, paperwork validation, instructions, vaccination, medical assessment. They can also use 

this tool to plan patient scheduling, thus combining tactical and operational decisions while 

optimizing either the rate of patients served, the number of medical staff used or a combination of 

these depending on the chosen objective function. Second, the inclusion of the parameter  𝜆

(average number of patients scheduled per hour) as a variable in the mathematical models allows 

to reduce the average number of patients in queue and their average waiting times, which are key 

to avoid overcrowding and reduce the risk of infections. All in all, the capacity planning of stations 
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and patient scheduling can be translated into a staffing decision that can support a cost-effective 

planning and managing of vaccination (and similar) processes by healthcare providers. 

6. Conclusions

Our work studied the joint problem of (i) capacity planning (with multiple and sequential stations 

and multiple servers within each station) and (ii) patient scheduling, where the service times and 

patient arrivals were assumed to be stochastic. The problem was modeled through two different 

approximations: an open Jackson Network model and a Generalized Network model, and for each 

of them we tested three different objective functions that allowed us to analyze different system 

configurations. The first model has the hard assumption of exponential times (Poisson process), 

while the second one relaxes it. Both models were solved using a commercial solver. The 

experimentation performed allowed us to analyze a COVID-19 vaccination case study, whose 

results can be used by the Foundation and other healthcare providers as a tool to plan the 

configuration of their vaccination processes including the patient scheduling according to their 

specific needs and goals. We also tested the proposed models over different instances analyzing 

different parameter configurations and increasing the number of stations. This allowed us to 

optimize the system in each case for different occupation levels as well as for different maximum 

allowed number of patients in queue, which helps manage space availability and crowds in 

vaccination centers.

This work can be extended in several ways. For example, the mathematical models could 

include several other aspects such as the probability of no-shows, reneging and/or deferrals, which 

can increase the models’ flexibility according to different patient behaviors. In addition, another 

objective function that considers the costs of servers (or workers modeled as servers) could be 

included, helping contrast the balance between service level and financial costs.
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Appendix A

Notation:

Sets

𝑂: 𝑠𝑒𝑡 𝑜𝑓 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠 

Parameters

𝑛: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑡𝑜 𝑏𝑒 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑝𝑒𝑟 𝑑𝑎𝑦

𝐻: ℎ𝑜𝑢𝑟𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦

𝛼: 𝑚𝑖𝑛𝑖𝑛𝑢𝑚 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑠𝑒𝑟𝑣𝑒𝑑 𝑝𝑒𝑟 𝑑𝑎𝑦

𝑏𝑜:𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑜 ∈ 𝑂
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𝑐𝑜: 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑜𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑜 ∈ 𝑂

𝑑𝑜: 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑜 ∈ 𝑂

𝑒𝑜: 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑖𝑛 𝑞𝑢𝑒𝑢𝑒 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑜 ∈ 𝑂

Random parameters

𝑡𝑖𝑜: 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑜 ∈ 𝑂

𝜇𝑜: 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑎𝑡𝑒 ( 1
𝑡𝑖𝑜) 𝑖𝑛 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑜 ∈ 𝑂

Variables

𝜆:𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟

𝑠𝑜: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑟𝑣𝑒𝑟𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑒𝑎𝑐ℎ 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑜 ∈ 𝑂

𝜋0𝑜: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 𝑎 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑜 ∈ 𝑂 𝑖𝑠 𝑒𝑚𝑝𝑡𝑦

 𝐿𝑞𝑜: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑖𝑛 𝑞𝑢𝑒𝑢𝑒 𝑖𝑛 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑜 ∈ 𝑂

The mathematical model is as follows:

min ∑
𝑜 ∈  𝑂 

𝑠𝑜 (1)

max 𝜆 (2)

min
∑

𝑜 ∈  𝑂 𝑠𝑜

𝑏𝑒𝑠𝑡 𝑠𝑒𝑟𝑣𝑒𝑟 ―
𝜆

𝑏𝑒𝑠𝑡 𝜆
(3)

Subject to:

𝜆 ≤
𝑛
𝐻 (4)

𝜆 ≥
𝑛
𝐻𝛼 (5)
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𝜆 ≤ 𝑠𝑜𝜇𝑜𝑏𝑜     ∀ 𝑜 ∈ 𝑂 (6)

𝜆 ≥ 𝑠𝑜𝜇𝑜𝑏𝑜     ∀ 𝑜 ∈ 𝑂 (7)

𝜋0𝑜 = ( 1

1 + ∑𝑠𝑜 ― 1
𝑘 = 1

( 𝜆
𝜇𝑜)𝑘

𝑘! +
𝜆𝑠𝑜𝑗𝜇𝑜

𝜇𝑠𝑜
𝑜 𝑠𝑜!(𝜇𝑜𝑠𝑜 ― 𝜆)

)     ∀ 𝑜 ∈ 𝑂
(8)

𝐿𝑞𝑜 =

𝜆𝑠𝑜𝑡𝑖𝑠𝑜
𝑜 𝜋0𝑜( 𝜆

𝜇𝑜𝑠𝑜)
𝑠𝑜!(1 ―

𝜆
𝜇𝑜𝑠𝑜)2      ∀ 𝑜 ∈ 𝑂 (9)

𝐿𝑞𝑜

𝜆 ≤ 𝑑𝑜     ∀ 𝑜 ∈ 𝑂 (10)

𝐿𝑞𝑜 ≤ 𝑒𝑜     ∀ 𝑜 ∈ 𝑂 (11)

𝑠𝑜 ∈ 𝑍     ∀ 𝑜 ∈ 𝑂 (12)

𝜆 ≥ 0 (13)

𝜋0𝑜 ≥ 0     ∀ 𝑜 ∈ 𝑂 (14)

𝐿𝑞𝑜 ≥ 0     ∀ 𝑜 ∈ 𝑂 (15)

Appendix B

 To limit the number of servers for each station, we use  and  as lower and upper 𝑙𝑏𝑜 𝑢𝑏𝑜

bounds for each station, respectively.

 We use a new constraint that determines the bounds for each station:

𝑙𝑏𝑜 ≤ 𝑠𝑜 ≤ 𝑢𝑏𝑜 (16)
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 We introduce a new binary variable  that indicates the number of servers assigned to 𝑧𝑘,𝑜

each station, thus the number of servers for each station is defined as:

𝑠𝑜 =
𝑢𝑝𝑜

∑
𝑘 = 𝑙𝑏𝑜

𝑘𝑧𝑘,𝑜 (17)

The binary variable is limited to:

𝑧𝑗,𝑜 ∈ {0, 1}     ∀ 𝑜 ∈ 𝑂, 𝑗 = {𝑙𝑏𝑜…𝑢𝑏𝑜} (18)

Thus, the modified mathematical model is as follows:

min ∑
𝑜 ∈  𝑂 

𝑢𝑏𝑜

∑
𝑗 = 𝑙𝑏𝑜

𝑗 ∗ 𝑧𝑗,𝑜 (19)

max 𝜆 (20)

min
∑

𝑜 ∈  𝑂 
∑𝑢𝑏𝑜

𝑗 = 𝑙𝑏𝑜
𝑗 ∗ 𝑧𝑗,𝑜

𝑏𝑒𝑠𝑡 𝑆𝑒𝑟𝑣𝑒𝑟 ―
𝜆

𝑏𝑒𝑠𝑡 𝜆 
(21)

Subject to:

𝜆 ≤
𝑛
𝐻 (22)

𝜆 ≥
𝑛
𝐻𝛼 (23)

𝜆 ≤
𝑢𝑏𝑜

∑
𝑗 = 𝑙𝑏𝑜

𝑗 ∗ 𝑧𝑗,𝑜𝜇𝑜𝑏𝑜     ∀ 𝑜 ∈ 𝑂 (24)

𝜆 ≥
𝑢𝑏𝑜

∑
𝑗 = 𝑙𝑏𝑜

𝑗 ∗ 𝑧𝑗,𝑜𝜇𝑜𝑐𝑜    ∀ 𝑜 ∈ 𝑂 (25)

𝑢𝑏𝑜

∑
𝑗 = 𝑙𝑏𝑜

𝑧𝑗,𝑜 = 1     ∀ 𝑜 ∈ 𝑂 (26)
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𝜋0𝑜,𝑗 = ( 1

1 + ∑𝑗 ― 1
𝑘 = 1

( 𝜆
𝜇𝑜)𝑘

𝑘! +
𝜆𝑗𝑗𝜇𝑜

𝜇𝑗
𝑜𝑗!(𝜇𝑜𝑗 ― 𝜆)

)𝑧𝑗,𝑜     ∀ 𝑜 ∈ 𝑂, 𝑗 = {𝑙𝑏𝑜…𝑢𝑏𝑜}
(27)

𝜋0𝑓𝑜 =
𝑢𝑏𝑜

∑
𝑗 = 𝑙𝑏𝑜

𝜋0𝑜,𝑗     ∀ 𝑜 ∈ 𝑂 (28)

𝐿𝑞𝑖𝑜,𝑗 =

𝜆𝑗𝑡𝑖𝑗
𝑜𝜋0𝑜,𝑗( 𝜆

𝜇𝑜𝑗)
𝑗!(1 ―

𝜆
𝜇𝑜𝑗)2      ∀ 𝑜 ∈ 𝑂, 𝑗 = {𝑙𝑏𝑜…𝑢𝑏𝑜} (29)

𝐿𝑞𝑓𝑜 =
𝑢𝑏𝑜

∑
𝑗 = 𝑙𝑏𝑜

𝐿𝑞𝑖𝑜,𝑗     ∀ 𝑜 ∈ 𝑂 (30)

𝐿𝑞𝑓𝑜

𝜆 ≤ 𝑑𝑜     ∀ 𝑜 ∈ 𝑂 (31)

𝐿𝑞𝑓𝑜 ≤ 𝑒𝑜     ∀ 𝑜 ∈ 𝑂 (32)

𝑧𝑗,𝑜 ∈ {0, 1}     ∀ 𝑜 ∈ 𝑂, 𝑗 = {𝑙𝑏𝑜…𝑢𝑏𝑜} (33)

𝜆 ≥ 0 (34)

𝜋0𝑜,𝑗 ≥ 0     ∀ 𝑜 ∈ 𝑂, 𝑗 = {𝑙𝑏𝑜…𝑢𝑏𝑜} (35)

𝜋0𝑓𝑜 ≥ 0     ∀ 𝑜 ∈ 𝑂 (36)

𝐿𝑞𝑖𝑜,𝑗 ≥ 0     ∀ 𝑜 ∈ 𝑂, 𝑗 = {𝑙𝑏𝑜…𝑢𝑏𝑜} (37)

𝐿𝑞𝑓𝑜 ≥ 0     ∀ 𝑜 ∈ 𝑂 (38)

We refer to these models together as Model 1 and will distinguish between the original 

model (OR Model 1) and the reformulated model (RF Model 1) as needed. Table B1. summarizes 

how the original and reformulated models relate to each other.
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Table B1. Relationship between OR Model 1 and RF Model 1.

OR Model 1 RF Model 1
Objective functions

Server assignment (SA) Equation 1 Equation 19
Patient scheduling (PS) Equation 2 Equation 20
SA + PS Equation 3 Equation 21

Constraints
Working hours Equations 4-5 Equations 22-23
Utilization Equations 6-7 Equations 24-26
Idle time probabilitya Equation 8 Equations 27-28
Patients in queuea Equation 9 Equations 29-30
Maximum patients in queue Equation 10 Equation 31
Maximum waiting time Equation 11 Equation 32

Types of variables
Servers Equation 12 Equation 33
Scheduled patients Equation 13 Equation 34
Idle time probability Equation 14 Equations 35-36
Patients in queue Equation 15 Equations 37-38

a Jackson Network metrics

Appendix C

Notation:

Parameters

𝐶𝑎2𝑖: 𝑖𝑛𝑡𝑒𝑟𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛

𝑉𝑎𝑟𝑜: 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑜 ∈ 𝑂

Variables

𝐶𝑎2
𝑜,𝑗: 𝑖𝑛𝑡𝑒𝑟𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑜

∈ 𝑂,  𝑖𝑓 𝑖𝑛 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑜 ― 1 𝑗 𝑠𝑒𝑟𝑣𝑒𝑟𝑠 𝑎𝑟𝑒 𝑢𝑠𝑒𝑑 

𝐶𝑎2𝑓𝑜: 𝑖𝑛𝑡𝑒𝑟𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑜 ∈ 𝑂

𝐶𝑇𝑞𝐼𝑜,𝑗: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑜 ∈ 𝑂 𝑖𝑓 𝑗 𝑠𝑒𝑟𝑣𝑒𝑟𝑠 𝑎𝑟𝑒 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑
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𝐶𝑇𝑞𝐹𝑜: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑜 ∈ 𝑂

The mathematical model is defined as:

min ∑
𝑜 ∈  𝑂 

𝑢𝑏𝑜

∑
𝑗 = 𝑙𝑏𝑜

𝑗 ∗ 𝑧𝑗,𝑜 (39)

max 𝜆 (40)

min
∑

𝑜 ∈  𝑂 
∑𝑢𝑏𝑜

𝑗 = 𝑙𝑏𝑜
𝑗 ∗ 𝑧𝑗,𝑜

𝑏𝑒𝑠𝑡 𝑆𝑒𝑟𝑣𝑒𝑟 ―
𝜆

𝑏𝑒𝑠𝑡 𝜆 
(41)

Subject to (new equations are presented in bold):

𝜆 ≤
𝑛
𝐻 (42)

𝜆 ≥
𝑛
𝐻𝛼 (43)

𝜆 ≤
𝑢𝑏𝑜

∑
𝑗 = 𝑙𝑏𝑜

𝑗 ∗ 𝑧𝑗,𝑜𝜇𝑜𝑏𝑜     ∀ 𝑜 ∈ 𝑂 (44)

𝜆 ≥
𝑢𝑏𝑜

∑
𝑗 = 𝑙𝑏𝑜

𝑗 ∗ 𝑧𝑗,𝑜𝜇𝑜𝑐𝑜    ∀ 𝑜 ∈ 𝑂 (45)

𝑢𝑏𝑜

∑
𝑗 = 𝑙𝑏𝑜

𝑧𝑗,𝑜 = 1     ∀ 𝑜 ∈ 𝑂 (46)

𝑪𝒂𝟐
𝟏,𝒋 = 𝑪𝒂𝟐𝒊 ∗ 𝒛𝒋,𝟏     ∀ 𝒋 = {𝒍𝒃𝟏…𝒖𝒃𝟏} (47)

𝝀𝑪𝒂𝟐
𝒐,𝒋 ― 𝒛𝒋,𝒐 ― 𝟏𝝀(𝟏 ― ( 𝝀

𝒋 ∗ 𝝁𝒐 ― 𝟏)𝟐)
𝒖𝒃𝒐 ― 𝟏

∑
𝒌 = 𝒍𝒃𝒐 ― 𝟏

𝑪𝒂𝟐
𝒐 ― 𝟏,𝒌 = 𝝀( 𝝀

𝒋 ∗ 𝝁𝒐 ― 𝟏)𝟐(𝑽𝒂𝒓𝒐 ― 𝟏

𝒕𝒊𝟐
𝒐 ― 𝟏

)𝒛𝒋,𝒐 ― 𝟏     ∀ 𝒐 ∈ 𝑶,𝒋

= {𝒍𝒃𝟏…𝒖𝒃𝟏} | 𝒐 ≥ 𝟐

(48
)
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𝑪𝒂𝟐𝒇𝒐 =
𝒖𝒃𝒐

∑
𝒋 = 𝒍𝒃𝒐

𝑪𝒂𝟐
𝒐,𝒋    ∀ 𝒐 ∈ 𝑶 (49)

𝑪𝑻𝒒𝑰𝒐,𝒋 =  (𝑪𝒂𝟐𝒇𝒐 + (𝑽𝒂𝒓𝒐

𝒕𝒊𝟐
𝒐

)
𝟐 )(( 𝝀

𝒋𝝁𝒐)
𝟐𝒋 + 𝟐 ― 𝟏

𝒋(𝟏 ― ( 𝝀
𝒋𝝁𝒐)) )𝒕𝒊𝒐𝒛𝒋,𝒐 (50)

𝑪𝑻𝒒𝑭𝒐 =
𝒖𝒃𝒐

∑
𝒋 = 𝒍𝒃𝒐

𝑾𝒒𝑰𝒐,𝒋    ∀ 𝒐 ∈ 𝑶 (51)

𝐶𝑇𝑞𝐹𝑜 ≤ 𝑑𝑜     ∀ 𝑜 ∈ 𝑂 (52)

𝜆𝐶𝑇𝑞𝐹𝑜 ≤ 𝑒𝑜     ∀ 𝑜 ∈ 𝑂 (53)

𝑧𝑗,𝑜 ∈ {0,1}     ∀ 𝑜 ∈ 𝑂, 𝑗 = {𝑙𝑏𝑜…𝑢𝑏𝑜} (54)

𝜆 ≥ 0 (55)

𝐶𝑎2
𝑜,𝑗 ≥ 0     ∀ 𝑜 ∈ 𝑂, 𝑗 = {𝑙𝑏𝑜…𝑢𝑏𝑜} (56)

𝐶𝑎2𝑓𝑜 ≥ 0     ∀ 𝑜 ∈ 𝑂 (57)

𝐶𝑇𝑞𝑖𝑜,𝑗 ≥ 0     ∀ 𝑜 ∈ 𝑂, 𝑗 = {𝑙𝑏𝑜…𝑢𝑏𝑜} (58)

𝐶𝑇𝑞𝑓𝑜 ≥ 0     ∀ 𝑜 ∈ 𝑂 (59)
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