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Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral
sclerosis with associated frontotemporal dementia (ALS/FTD) are major neuro-
degenerative diseases for which there are no cures. All are characterised by
damage to several seemingly disparate cellular processes. The broad nature of
this damage makes understanding pathogenic mechanisms and devising new
treatments difficult. Can the different damaged functions be linked together in a
common disease pathway and which damaged function should be targeted for
therapy? Many functions damaged in neurodegenerative diseases are regulated
by communications that mitochondria make with a specialised region of the
endoplasmic reticulum (ER; mitochondria-associated ER membranes or
‘MAM’). Moreover, several recent studies have shown that disturbances to
ER–mitochondria contacts occur in neurodegenerative diseases. Here, we
review these findings.

Alzheimer's Disease, Parkinson's Disease, Amyotrophic Lateral Sclerosis,
and Frontotemporal Dementia Are Major Diseases for which We Have No
Cures
AD, PD, and ALS/FTD are devastating neurodegenerative diseases that afflict huge numbers
of the world's population. It has been estimated that there are 46 million people worldwide
with dementia, with AD being the most common form of this diseasei. In addition, more than
7 million people are believed to be living with PDii. ALS is the most common form of motor
neuron disease and is estimated to afflict over 400,000 people in the worldiii. Moreover, ALS is
now known to be clinically, pathologically, and genetically linked to FTD, which is the second
most-common form of presenile dementia after AD [1]. Together, these diseases not only
inflict a huge amount of suffering to both patients and carers, but also represent a massive
economic burden to our societies: the global cost of dementia alone has recently been
estimated to be US$ 818 billioni.

Despite these human and economic costs, there are still no cures for AD, PD, or ALS/FTD.
Indeed, for AD and ALS/FTD, there are not even effective disease-modifying treatments.
Improving and refining current pharmacological approaches represents one route to tackle
this problem, but there is also a strong case to be made for identifying and developing new
therapeutic targets.

Trends
Mitochondria and the ER form close
physical contacts.

ER–mitochondria contacts regulate
functions damaged in neurodegenera-
tive diseases.

ER–mitochondria contacts are damaged
in neurodegenerative diseases.
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Glossary
Amyloid b (Ab): an approximate
40–43 amino acid peptide that is the
major protein constituent at the core
of the amyloid plaque. The longer
forms of Ab are believed to be
pathogenic.
Amyloid plaque: regions of
degenerating neurites surrounding an
amyloid (Ab) core. A hallmark
pathology of AD.
Amyloid precursor protein (APP):
a type-1 membrane-spanning protein
from which Ab peptides are derived.
APP is cleaved by b- and g-
secretases to release Ab. The APP
gene is mutated in some familial
forms of AD and some of these
mutations affect APP processing and
Ab production. Duplication of the
APP gene also causes familial AD.
Apolipoprotein E (ApoE): functions
to mediate lipid transport between
tissues and/or cells. There are three
major APOE alleles corresponding to
combinations of amino acids at
residues 112 and 158 (E2, E3, and
E4). The APOE4 allele is the major
genetic risk factor for late-onset AD.
C9ORF72 (and dipeptide repeat
proteins): mutations in the C9ORF72
gene cause a large number of familial
ALS/FTD cases. The disease-causing
mutations involve expansion of a
hexanucleotide repeat within intron 1,
but how this causes disease is not
clear. One suggestion is that the
expansion reduces expression of
C9ORF72, which then leads to
disease. Another is that it acts to
sequester mRNA-binding proteins
and/or transcription factors, such that
expression of key genes is disrupted
to induce disease. Finally, translation
of the intronic repeat has been
demonstrated, which produces
polypeptides comprising repeating di-
amino acids; these dipeptide repeats
are a pathology of ALS/FTD.
ER–mitochondria tethering
proteins: (i) Fission 1 homologue
(Fis1) and Bap31. Mitochondrial Fis1
and ER-located Bap31 are proposed
ER–mitochondria tethering proteins
linked to apoptosis; (ii) inositol 1,4,5-
trisphosphate (IP3) receptors and the
mitochondrial voltage-dependent
anion channel (VDAC) interact via
GRP75 to form a proposed ER–
mitochondria tethering complex; (iii)
Mitofusin 1 and 2. Mitochondrial
proteins involved in mitochondria
fusion. Some mitofusin 2 is reported
to locate to ER, where it can interact

Convergence of Pathological and Genetic Lesions in AD, PD, and ALS/FTD
Despite affecting different regions of the nervous system, AD, PD, and ALS/FTD share several
common features. All involve distinct protein pathologies and, although most cases are spo-
radic, there are also important genetic components. In AD, the principal pathological features are
extracellular accumulations of amyloid b (Ab; see Glossary) peptides within neuritic plaques and
intraneuronal accumulations of the microtubule-associated protein Tau within neurofibrillary
tangles [2,3]. Ab is derived by proteolytic processing from the amyloid precursor protein
(APP) and mutations in APP are causative for some dominantly inherited forms of Alzheimer's
disease. Moreover, mutations in the Presenilin genes (PSEN), which encode key proteins of the
g-secretase enzyme complex involved in cleaving APP to produce Ab also cause familial AD
[2,3]. Many of these APP and PSEN mutations affect APP processing and Ab production [2,3].

In a similar fashion, pathological and genetic evidence converge for PD. This disease is
characterised by the degeneration of dopaminergic neurons in the substantia nigra together
with intraneuronal inclusions termed ‘Lewy bodies’. /-Synuclein is the major protein constituent
of Lewy bodies and genetic abnormalities of SNCA, the gene encoding a-synuclein, cause
dominantly inherited PD [4]. Tau pathology is also seen in some forms of dementia linked with
Parkinsonism (FTD and Parkinsonism linked to chromosome 17; FTDP-17) and mutations in
MAPT (the gene encoding Tau) are causative for these disease forms [2].

Likewise, for ALS/FTD, deposits of Tar DNA-binding protein 43 (TDP-43), Fused in Sar-
coma (FUS), and dipeptide repeat proteins derived from the C9ORF72 gene are major
pathologies, and mutations in TDP43, FUS, and C9ORF72 cause dominantly inherited forms of
disease [1]. Thus, for all of these major neurodegenerative diseases, there is convergence of
pathological and genetic evidence for each disease. This has focussed much recent therapeutic
work on inhibiting development of the underlying pathologies. However, so far, no drugs
targeting these pathologies have entered clinical practice.

Damage to a Large Number of Cellular Processes Occurs in AD, PD, and
ALS/FTD
While there is individual convergence of pathological and genetic evidence for each of the three
major neurodegenerative diseases, there is also remarkable similarity in the damage to down-
stream physiological processes that occurs in all three diseases. Thus, features of all three
diseases include damage to mitochondria, Ca2+ homeostasis, lipid metabolism, axonal trans-
port, the ER [involving activation of the unfolded protein response (UPR)], autophagy, and
also inflammatory responses [5–16]. One conundrum is how damage to so many apparently
disparate physiological processes might link together in a common disease pathway. Moreover,
the diversity of these features also makes devising new treatment strategies difficult. If alter-
natives to targeting underlying proteinaceous pathologies are to be considered as treatments,
then which of these different disrupted cellular functions should be prioritised as a therapeutic
target? This point has been eloquently discussed for AD [17].

Mitochondria Form Close Associations with the ER and these Regulate Many
of the Functions that Are Damaged in Neurodegenerative Diseases
Mitochondria have pivotal roles in a variety of cellular functions, including energy metabolism,
Ca2+ homeostasis, lipid synthesis, and apoptosis. These functions require a dynamic spatial
organisation that permits relaying of signals to and from other organelles. In particular, mito-
chondria are associated with the ER, with 5–20% of the mitochondrial surface closely apposed
(10–30 nm distance) to ER membranes [18–21]. These ER membrane domains are known as
MAM. A large body of evidence demonstrates that mitochondria communicate directly with ER
through MAM to regulate several fundamental cellular processes [19–21]. These are discussed
below.
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Ca2+ Exchange
ER–mitochondria contacts facilitate Ca2+ exchange between the two organelles and, in partic-
ular, uptake of Ca2+ by mitochondria following its release from ER stores via inositol 1,4,5-
trisphosphate (IP3) receptors. Ca2+ is required by mitochondria for generating ATP via the
tricarboxylic acid cycle since several mitochondrial enzymes involved in ATP synthesis (e.g.,
some dehydrogenases) are regulated by Ca2+ [19–21]. The Ca2+ concentrations required to
elicit a response at the mitochondrial surface are high, but having close contacts with the ER
(where luminal concentrations are up to 0.5 mM) means that Ca2+ released from the ER can
achieve high local concentrations (Ca2+ puffs) capable of driving an effect. However, excessive
uptake of Ca2+ by mitochondria can lead to opening of the mitochondrial permeability transition
pore and signalling for apoptosis [19].

Phospholipid Exchange
ER–mitochondria contacts facilitate phospholipid exchange between the two organelles. This is
important because the enzymes involved in some lipid biosynthesis are present in both
organelles and so exchange is required for their production [19–21]. Indeed, MAM are now
known to be a specialised type of lipid raft (also known as detergent-resistant membranes) [22].

Intracellular Trafficking
ER–mitochondria associations are linked to intracellular trafficking of mitochondria and ER. Both
ER and mitochondria are transported by kinesin 1 and cytoplasmic dynein molecular motors
[23,24]. In neurons, kinesin 1 drives anterograde (towards the synapse) transport of mitochon-
dria through axons (axonal transport) [24]. Attachment of mitochondria to kinesin 1 involves the
outer mitochondrial membrane protein Miro, which acts as a Ca2+ sensor; elevated Ca2+ levels
halt transport [25–27]. Miro has been shown to localise to ER–mitochondria contact sites and a
proportion of ER has been shown to be cotransported with mitochondria [28,29]. Thus, some
ER may be cotransported with mitochondria through axons and Miro may sense Ca2+ exchange
between the two organelles to regulate this transport in response to physiological stimuli.

ER Stress and the UPR
ER–mitochondria contacts have now been linked to ER stress and the UPR. The ER–UPR is an
intracellular signalling pathway that is activated by the accumulation of unfolded proteins in the
ER, which then stimulates transcriptional responses to modulate the protein-folding capacity of
the ER [9]. Two of the known tethering proteins involved in connecting ER with mitochondria,
mitofusin 2 and vesicle-associated membrane protein-associated protein B (VAPB) [30–32],
have roles in the UPR [33–35]. Also, a variety of ER chaperones involved in protein folding, such
as BiP, calnexin, calreticulin, ERp44, ERp57, and the Sigma 1 receptor, are present in MAM
[36], and structural uncoupling of ER from mitochondria induces ER stress and the UPR [37].
Thus, crosstalk between ER and mitochondria at ER–mitochondria contacts may have a role in
facilitating stress responses and UPR.

Autophagy
ER–mitochondria associations have been linked to autophagy, a mechanism by which aggre-
gated proteins and damaged organelles are removed from the cytoplasm [5]. Autophagy
involves engulfment of damaged proteins and organelles by double-membrane autophago-
somes and then fusion of these vesicles with lysosomes to permit degradation of their contents.
The source of autophagosomal membranes is not fully known, but some have recently been
shown to form at ER–mitochondria contact sites [38].

Mitochondrial Biogenesis
A role for ER–mitochondria contacts relates to mitochondrial biogenesis. Thus, mitochondrial
fission occurs at sites of ER–mitochondria contacts [39,40] and mitofusin 2, which regulates

with mitochondrial mitofusin 1/2 to
tether the two organelles; (iv) Vesicle-
associated membrane protein-
associated protein B (VAPB) and
protein tyrosine phosphatase-
interacting protein 51 (PTPIP51).
VAPB is an ER protein that binds to
the outer mitochondrial membrane
protein PTPIP51. VAPB and PTPIP51
tether ER with mitochondria and
these tethers are broken in ALS/FTD.
No PTPIP51 homologues are present
in Drosophila melanogaster,
Caenorhabditis elegans, or
Saccharomyces cerevisiae; thus, the
VAPB–PTPIP51 tethering complex
appears vertebrate specific.
Frontotemporal dementia (FTD):
the most common form of presenile
dementia after AD.
Fused in sarcoma (FUS):
accumulations of FUS are a
pathology in some forms of ALS and
associated FTD. Mutations in the
FUS gene cause some familial forms
of ALS/FTD.
Glycogen synthase kinase-3b
(GSK-3b): a serine/threonine kinase
that is strongly linked to several
neurodegenerative diseases.
Hereditary spastic paraplegia
(HSP): a group of inherited diseases
that display clinical features of
progressive weakness and spasticity
mainly in the lower extremities owing
to axonal degeneration.
Leucine-rich repeat kinase 2
(LRRK2): mutations in LRRK2 are
the most common genetic cause of
PD.
Lewy bodies: the hallmark,
intraneuronal pathology of PD.
Mitochondria-associated
membranes (MAM): the regions of
ER that are closely associated with
mitochondria. A large body of
evidence demonstrates that
mitochondria communicate with ER
via MAM to regulate several
fundamental cellular functions.
Neurofibrillary tangles: an
intraneuronal hallmark pathology of
AD. Under the electron microscope,
neurofibrillary tangles comprise
bundles of paired helical filaments
that are assembled from Tau.
Nod-like receptor protein 3
(NLRP3) and the inflammasome:
NLRP3 is a component of the
inflammasome, which detects cellular
stresses to activate the inflammatory
cytokine interleukin 1b.
Parkin: component of the E3
ubiquitin ligase complex involved in
targeting of proteins for degradation
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by the proteasome. Mutations in the
gene encoding Parkin cause some
forms of autosomal recessive juvenile
PD.
Presenilin 1 and 2: components of
the g-secretase enzyme complex
involved in cleaving APP to release
Ab. Mutations in the genes encoding
Presenilin cause some familial forms
of AD. Most of these mutants are
‘loss of function’, but lead to an
increase in the relative proportions of
Ab(1–42)/Ab(1–40).
Protein deglycase (DJ-1):
mutations in DJ-1 cause some
autosomal recessive early-onset
forms of PD.
Reactive oxygen species (ROS):
chemically reactive oxygen species
that can have damaging effects on
cells.
Receptor expression-enhancing
protein 1 (REEP1): protein located
in MAM and which is mutated in HSP
and some distal hereditary motor
neuropathies.
Sigma 1 receptor: an ER-resident
protein chaperone that is present in
MAM. Mutations in the gene
encoding Sigma 1 that are believed
to be loss of function cause some
familial forms of ALS/FTD.
Superoxide dismutase 1 (SOD1): a
major antioxidant enzyme. Mutations
in SOD1 cause some dominantly
inherited forms of familial ALS.
a-Synuclein: the major protein
constituent of Lewy bodies. Point
mutations and genomic
multiplications of the gene encoding
/-synuclein cause some dominantly
inherited forms of familial PD.
Tar DNA-binding proteins-43
(TDP-43): accumulations of TDP-43
are a major pathology in ALS and
FTD. Mutations in the TDP43 gene
cause some familial forms of ALS/
FTD.
Tau: a microtubule-associated
protein that is the major biochemical
component of paired helical filaments
in AD. Mutations in MAPT cause
familial FTD and Parkinsonism linked
to chromosome 17.
Unfolded protein response (UPR):
a physiological response of the ER to
stresses induced by disturbances of
protein folding.
Wnt signalling pathway: a signal
transduction pathway that leads to
changes in gene expression and
which involves GSK-3b.

mitochondrial fusion, is also a proposed tethering protein that connects ER with mitochondria
(see below) [30].

Inflammasome Formation
Finally, ER–mitochondria associations have been linked to formation of the inflammasome.
Tissue damage and cell stresses, such as occur in neurodegenerative diseases, are sensed by
the innate immune system through pattern recognition receptors. One class of these is the
NOD-like receptors (NLRs), which sense abnormal cytosolic changes. Upon activation, some
NLRs, including NLRP3, form multiprotein complexes, which have been named the ‘inflam-
masome’; these function to initiate proteolytic maturation of the proinflammatory cytokine
interleukin 1b [41]. Reactive oxygen species (ROS) from mitochondria are one signal for
activation of the NLRP3 inflammasome. Recently, ROS was shown to induce relocation of NLRP
to MAM, and this may provide a mechanism whereby NLRP senses damage to mitochondria to
activate the inflammasome [42].

Remarkably, all of these functions regulated by ER–mitochondria associations are affected in
AD, PD, and ALS/FTD. Such links have generated interest in investigating ER–mitochondria
associations in these diseases.

ER–Mitochondria Tethers
Despite their fundamental importance to cell metabolism, the mechanisms that mediate recruit-
ment of ER membranes to mitochondria are not fully understood. Electron microscopy (EM)
reveals the presence of structures that appear to tether ER with mitochondria [18] (Figure 1), but
the biochemical makeup of these is not clear. In yeast, proteins of the ER–mitochondria
encounter structure (ERMES) act as a molecular tether between ER and mitochondria [43],
but ERMES proteins are yeast specific and no mammalian orthologues have been identified
[19–21]. In mammals, interactions between ER-anchored IP3 receptors and the mitochondrial
voltage-dependent anion channel (VDAC) via GRP75 were proposed as a tether [44,45]
(Figure 2). However, complete loss of IP3 receptors does not affect ER–mitochondria contacts,
which argues against a physical tethering role for these molecules [18]. Homo- and heterotypic
interactions between mitochondrial mitofusin 1/2 and ER-located mitofusin 2 have also been
proposed as a tethering complex [30] (Figure 2), but later studies from three different laboratories
have now shown that loss of mitofusin 2 leads to an increase and not a decrease in
ER–mitochondria contacts, which casts doubt on this finding [46–48]. Recently, the integral
ER protein VAPB was shown to bind to the outer mitochondrial membrane protein, protein

CTRL

(A)
VAPB+PTPIP51 High Mag

Mitochondria

ER

(B) (C)

Figure 1. Electron Microscope Images of Endoplasmic Reticulum (ER)-–Mitochondria Contacts in NSC34
Motor Neuron Cells. A control cell is shown (CTRL) (A) along with a cell transfected with the tethering proteins vesicle-
associated membrane protein-associated protein B (VAPB) and protein tyrosine phosphatase interacting protein 51
(PTPIP51) (B) [32]. Some selected ER–mitochondria associations are highlighted in red. Transfection of VAPB and PTPIP51
dramatically increases ER–mitochondria associations. (C) A high-magnification image of a mitochondrion with associated
ER in a VAPB/PTPIP51 co-transfected cell; putative tethering structures are discernible connecting the two organelles
(arrowheads). Scale bars = 500 nm (A,B) and 100 nm (C).
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tyrosine phosphatase interacting protein 51 (PTPIP51) to tether ER with mitochondria [31,32]
(Figure 2). VAPB is a MAM protein and binds to PTPIP51 in several different biochemical
assays. Modulating VAPB and PTPIP51 expression induces appropriate changes in
ER–mitochondria contacts and Ca2+ exchange between the two organelles; monitoring
Ca2+ exchange is a physiological readout of ER–mitochondria associations [31,32]. Recently,
the biochemical interaction between VAPB and PTPIP51 was independently verified [49].
Biochemical evidence also links a complex of the mitochondrial fission protein, Fission
1 homologue (Fis1) and ER-located Bap31 with apoptotic functions of ER–mitochondria
associations, but the role of these proteins in nonapoptotic processes is unclear [50]
(Figure 2). Finally, the multifunctional sorting protein phosphofurin acidic cluster sorting
protein 2 (PACS-2) and Bap31 have been linked to ER–mitochondria associations, but
whether these are functional scaffolds or regulators of scaffolding protein function are again
unclear [37].

Thus, several different protein complexes have been proposed as ER–mitochondria tethers, but
since the distances between physiological ER–mitochondria contacts varies between approxi-
mately 10 nm and 30 nm [18–21], it may be that a variety of tethering proteins exists. Indeed,
both rough and smooth ER form contacts with mitochondria [18] and, therefore, having different
ER-tethering proteins may permit the selective recruitment of different domains and subdomains
of ER.

ER–Mitochondria Associations Are Disrupted in AD, PD, and ALS/FTD
Since many functions regulated by ER–mitochondria associations are damaged in neurode-
generative diseases, several recent studies have investigated ER–mitochondria contacts in
these disorders. We now know that ER–mitochondria associations are disrupted in AD, PD, and
ALS/FTD [22,31,32,51–60].

ER

Mitochondrion

IP3R

VDAC

Mfn2(B)(A)

Mfn1/Mfn2

VAPB

PTPIP51

Bap31

Fis1

MAM

Grp75

(C) (D)

Figure 2. Proposed Endoplasmic Reticulum (ER)–Mitochondria Tethering Protein Complexes. (A) Inositol 1,4,5-
trisphosphate (IP3) receptors (IP3R) and voltage-dependent anion channel (VDAC) interact via GRP75. (B) ER-located
mitofusin 2 interacts with mitochondrial mitofusin1/2 (Mfn1, Mfn2). (C) Vesicle-associated membrane protein-associated
protein B (VAPB) binds to protein tyrosine phosphatase interacting protein 51 (PTPIP51). (D) (Bap31) binds to Fission 1
homologue (Fis1).
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For AD, both Presenilin 1 and Presenilin 2 (major components of the g-secretase complex that
processes APP to release Ab and which are both mutated in familial AD) are present in MAM
[57]. There is much evidence that the AD mutant Presenilins are catalytic loss-of-function
mutants [61] and both loss of Presenilins and expression of mutant Presenilins have been
shown to affect ER–mitochondria associations and related functions [22,56,62]. Likewise,
alterations to ER–mitochondria associations and functions are seen in APP transgenic mouse
models, and treatment of neurons with Ab affects ER–mitochondria contacts [55]. Also, MAM
have been shown to be a site of production of Ab and this is consistent with the localisation of
Presenilins to these regions of ER [57,63]. Finally, the e4 allele of apolipoprotein E (ApoE4) has
been shown to upregulate the activity of MAM [60]. Individuals carrying one or two copies of the
ApoE4 allele have an increased risk of developing AD compared with those carrying the ApoE3
allele [64].

In PD, /-synuclein, Parkin, and protein deglycase (DJ-1) (which are mutated in different
familial forms of disease) all alter ER–mitochondria associations [51–54]. Moreover, /-synuclein,
which is most strongly linked to PD, is present in MAM, although its functional role in this
compartment is not clear [51].

In ALS/FTD, overexpression of both wild-type and familial ALS/FTD mutant TDP-43 has been
shown to not only reduce ER–mitochondria associations, but also disrupt Ca2+ exchange
between the two organelles, which is a physiological readout of ER–mitochondria contacts
[32]. The finding that wild-type as well as mutant TDP-43 decrease ER–mitochondria associ-
ations is consistent with the phenotypes observed in TDP-43 transgenic mice, where both wild-
type and mutant TDP-43 induce disease [65]. Indeed, there is evidence that mutations in the 30

untranslated region of TDP43 cause disease by increasing wild-type TDP-43 protein expression
[66]. Likewise, loss of Sigma 1 receptor (which is responsible for some familial forms of ALS/FTD)
has been shown to break ER–mitochondria associations [58]. Most recently, receptor expres-
sion enhancing protein 1 (REEP1), which is linked to hereditary spastic paraplegia (HSP)
and some hereditary motor neuron disorders, has been shown to influence ER–mitochondria
associations [59]. REEP1 localises to ER–mitochondria contact sites and, compared with wild
type, HSP REEP1 disease mutants have diminished ER–mitochondria associations [59].

While all of the above findings demonstrate defective ER–mitochondria associations in disease,
there are some inconsistencies in the different studies. Thus, for AD, one group reported that
loss of familial Alzheimer's mutant Presenilin 1 increased ER–mitochondria interactions, whereas
another reported that Presenilin 2 but not Presenilin 1 increased these interactions [22,56]. A
further study presented evidence that loss of Presenilin 1 function was associated with
decreased, not increased ER–mitochondria tethering [62]. Likewise, for PD, one report showed
that expression of wild-type and mutant PD /-synuclein decreased, whereas another showed
that it increased, ER–mitochondria contacts [51,53]. Also, reports that overexpression of
/-synuclein, Parkin, and DJ-1 all increase ER–mitochondria interactions are not simple to
reconcile [52–54]. This is because the genetics of PD indicates that overexpression of /-syn-
uclein, but loss of Parkin and DJ-1, cause disease.

The reasons for these different findings are not fully clear, but may relate to the methods used to
quantify ER–mitochondria contacts. While assaying biochemical and physiological readouts of
ER–mitochondria associations (e.g., Ca2+ exchange and phospholipid metabolism) are valid, it is
also important to measure how an experimental challenge affects the physical distances
between mitochondria and ER, and the proportions of the mitochondrial surface that are
apposed to ER. Some studies have utilised confocal microscopy to quantify these parameters,
but this does not permit accurate quantification of the 10–30-nm distances that define
ER–mitochondria associations [18–21]. Indeed, the identification of mitofusin 2 as an
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ER–mitochondria tethering protein involved confocal microscopy, but subsequent EM studies
(which can reliably quantify 10–30-nm distances) have challenged this finding [30,46–48].
Others have also highlighted the need for methods that provide higher resolution than confocal
microscopy to quantify ER–mitochondria contacts [21]. One possibility is that increases in
ER–mitochondria contacts detected by confocal microscopy after exposure to neurodegen-
erative disease insult represent an artefact due to a redistribution of mitochondria within cells.
For example, many neurodegenerative disease insults, such as Ab and /-synuclein,
affect intracellular trafficking of mitochondria (in neurons, this includes axonal transport) to
induce accumulation of mitochondria in perinuclear regions, which are regions rich in ER
[67,68]. Such mitochondrial accumulation does not necessarily lead to increased physiological
communications with ER, and confocal microscopy is unable to accurately detect whether this
is the case.

Of course, it may be that different neurodegenerative disease insults affect ER–mitochondria
associations in different ways, some increasing and some decreasing contacts. Indeed, abnor-
mal increases and decreases to contacts are both likely to be detrimental to cells. Increasing
contacts are predicted to lead to increased mitochondrial Ca2+ levels, which could induce
opening of the mitochondrial permeability transition pore and signalling for apoptosis [19]. By
contrast, reducing contacts may lead to reductions in mitochondrial Ca2+ levels and decreased
ATP production. Indeed, transgenic APP, Tau, and Presenilin 1 mouse models all display
reduced ATP production and elegant recent studies highlighted how even relatively minor
reductions in ATP production can induce disease [69,70]. Whatever the precise details, accurate
methods to determine how neurodegenerative disease insults affect ER–mitochondria contacts
and to correlate any changes with biochemical and physiological readouts of ER–mitochondria
associations are required (Box 1).

The Mechanisms Regulating ER-Mitochondria Contacts and how these Might
be Perturbed in Neurodegenerative Diseases
As detailed above, studies to identify new ER–mitochondria tethering proteins are still underway
and this has limited how signal transduction and other cellular processes might impact upon ER–
mitochondria associations. One attractive notion is that changes in physiological demands of the
cell (e.g., requirements for increased mitochondrial ATP or altered lipid production) might
somehow signal to induce changes in ER–mitochondria contacts that could facilitate such
demands. PACS2 and the mitochondrial ubiquitin ligase MITOL may function in this way, but
how they affect tethering proteins remains unclear [37,71].

Despite these limitations, some of the mechanisms regulating the VAPB–PTPIP51 tethers are
now being revealed and these have direct implications for neurodegenerative diseases. Glyco-
gen synthase kinase 3b (GSK-3b) has been shown to be a regulator of the VAPB–PTPIP51
interaction; activating reduces whereas inhibiting GSK-3b increases binding of VAPB to
PTPIP51 [32]. The precise mechanism underlying this effect is not clear, but may occur via
direct phosphorylation of VAPB and/or PTPIP51 by GSK-3b to inhibit their binding, or signalling
via GSK-3b to downstream effectors that somehow influences VAPB/PTPIP51 phosphorylation
and/or binding.

Whatever the route, such findings provide a mechanism to connect TDP-43 and ER–mitochon-
dria tethering in ALS/FTD. TDP-43 induced disruption to ER–mitochondria associations has
been shown to involve breaking of the VAPB–PTPIP51 tethers [32]. Moreover, several groups
have now reported links between TDP-43 and GSK-3b activity [32,72–74]. Thus, in disease
states, TDP-43 may activate GSK-3b to inhibit binding of VAPB to PTPIP51 and so reduce ER–
mitochondria associations (Figure 3). Therefore, activation of GSK-3b may be a key event in
TDP-43-linked ALS/FTD. Since GSK-3b is also strongly implicated in AD and PD [75,76],
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alterations to GSK-3b activity may be a common mechanism for disrupting the VAPB–PTPIP51
tethers and ER–mitochondria associations in at least some forms of neurodegenerative disease.

The ER–Mitochondria Axis as a Therapeutic Target
Together, the above findings highlight damage to ER–mitochondria associations as a new
pathogenic mechanism in AD, PD, and ALS/FTD. Damage to ER–mitochondria associations
also provides an explanation for the seemingly disparate features of these neurodegenerative
diseases, since the ER–mitochondria axis regulates many cell functions that are disrupted in
disease (Figure 4). Thus, correcting damaged ER–mitochondria associations may correct
damage to other neurodegenerative disease-linked features.

For AD and PD, there is not as yet complete consensus on the effects of different disease-
associated insults, and the mechanisms leading to altered ER–mitochondria associations are
not clear. However, for ALS/FTD, two different insults (TDP-43 and loss of Sigma 1 receptor
function) have been shown to loosen ER–mitochondria associations; these studies involved
quantification of ER–mitochondria contacts by EM and proximity ligation assays [32,58]. These
assays are more capable of detecting changes in ER–mitochondria contacts than other
immunocytochemical and confocal microscope-based methods (Box 1). Such findings are in
line with a recent elegant study that identified lowered ATP production by mitochondria as driver
of motor neuron degeneration in ALS [70]; the TDP-43 and Sigma 1 receptor loss-induced

Box 1. Methods to Quantify ER–Mitochondria Associations

Physiological contacts between ER and mitochondria are defined as involving distances of approximately 10–30 nm [18–
21]. Such close connections are required to properly facilitate Ca2+ and phospholipid exchange between the two
organelles. Some studies have utilised confocal microscopy to quantify ER–mitochondria contacts. Here, ER and
mitochondria are immunostained using different fluorophores and colocalisation of pixels (e.g., via Mander's overlap
coefficient) is then used to quantify ER–mitochondria associations. A criticism of this approach is that confocal
microscopy does not permit accurate quantification of distances involving 10–30 nm. Indeed, the lateral resolution
of the confocal microscope is approximately 250 nm [81], which is about an order of magnitude less than that required.
For this reason, other methods need to be used that are capable of properly resolving 10–30-nm distances (e.g.,
[18,21,32]). EM is one such method, but here it is important to quantify the proportion of the mitochondrial surface closely
apposed to ER and not simply the number of contacts. Thus, a mitochondrion that forms three different contacts with ER
that involve only 5% of its surface may well have lower physiological communications with the ER than a mitochondrion
that forms a single contact involving over 20% of its surface. Scoring methods need to reflect this aspect.

Super-resolution light microscopy methods, such as structured illumination microscopy (SIM), photoactivation localisa-
tion microscopy (PALM), and stochastic optical reconstruction microscopy (STORM), provide alternative nonEM routes
for quantifying ER–mitochondria contacts. SIM is probably the simplest to utilise technically and provides lateral
resolution of approximately 50 nm [82,83]. STORM and PALM, which involve single-molecule fluorescent localisation
methods, provide resolutions of approximately 20 nm laterally and 50 nm axially [83]. Some of these methods can also
provide 3D information and data from living cells with up to approximately 100-Hz resolution for SIM [82]. STORM has
already been successfully used to analyse ER and mitochondria co-distributions in living cells [84].

Alternative microscopy methods include use of in situ proximity ligation assays [85]. Here, conventionally fixed cells and
tissues are probed with primary antibodies to ER and outer mitochondrial membrane proteins that are known to reside in
close proximity (e.g., tethering proteins), followed by secondary antibodies coupled to specific oligonucleotides. These
oligonucleotides facilitate hybridisation and ligation of connector oligonucleotides to form a circular DNA molecule, which
then serves as a template for rolling circular amplification. Use of labelled nucleotides enables microscopic detection and
quantification of hybridisation signals. The distances detected by proximity ligation assays are similar to those detected
by resonance energy transfer between fluorophores (i.e., approximately 30 nm) [85]. Such proximity ligations assays
have already been used to quantify ER–mitochondria associations [55,58] and binding of VAPB to PTPIP51 [31]. Other
methods include use of dimer-dependent fluorophores fused to proteins that interact at the ER–mitochondria interface,
although the effects of expression per se of such proteins on ER–mitochondria contacts may need to be taken into
account in any quantification [86].

Finally, functional assays of ER–mitochondria associations, such as lipid metabolism and/or Ca2+ homeostasis, can be
used as complementary physiological readouts. Temporal measurements of Ca2+ uptake by mitochondria following
physiological release from ER stores are particularly relevant in this context, since tightening and loosening of contacts
are predicted to alter the times required for peak mitochondrial Ca2+ uptake [31,87].
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loosening of ER–mitochondria associations are predicted to lower mitochondrial ATP produc-
tion [18–21]. Moreover, the finding that TDP-43-induced loosening of ER–mitochondria contacts
involves breaking of the VAPB–PTPIP51 tethers identifies a molecular target against which to
screen potential drugs [32]. Thus, the case for targeting ER–mitochondria contacts as a
therapeutic target is strongest for ALS/FTD.

Neurodegenera�ve disease insult

Mitochondria 
damage

ER damage Disrupted calcium
 homeostasis

Disrupted lipid 
metabolism

Axonal transport 
damage

 Autophagy 
damage

ER–Mitochondria axis disrup�on

Figure 4. Disruption to Endoplasmic Reticulum (ER)–Mitochondria Associations Provides a Mechanism by
which many of the Disparate Pathological Features of Neurodegenerative Diseases Might Arise.

GSK-3β

TDP-43

ER

Mitochondrion

ER

 Mitochondrion

VAPB
Key:

PTPIP51
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Figure 3. Tar DNA-Binding Protein 43 (TDP-43) Loosens Endoplasmic Reticulum (ER)–Mitochondria Asso-
ciations in Amyotrophic Lateral Sclerosis with Associated Frontotemporal Dementia (ALS/FTD). (A) Normal
situation. (B) Disease situation. TDP-43 induces activation glycogen synthase kinase 3b (GSK-3b), which then disrupts
binding of vesicle-associated membrane protein-associated protein B (VAPB) to protein tyrosine phosphatase interacting
protein 51 (PTPIP51) to reduce ER–mitochondria associations and Ca2+ exchange between the two organelles.
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Concluding Remarks and Future Directions
AD, PD, and ALS/FTD are major diseases for which we have no cures. Although all are classified
as neurodegenerative diseases, they are clinically distinct and involve damage to different
neuronal populations. Moreover, damage is linked to the development of protein inclusions
within affected neurons and the constituent proteins can be different for each disease. Despite
these differences, all three diseases display some common features. In particular, they all involve
disruption to several seemingly disparate cellular functions, including damage to mitochondria,
Ca2+ homeostasis, lipid metabolism, axonal transport, the ER/UPR, autophagy, and inflamma-
tory responses. Recently, several studies have shown that some insults associated these
neurodegenerative diseases perturb ER–mitochondria associations and linked signalling.
ER–mitochondria associations regulate many of the functions that are perturbed in AD, PD,
and ALS/FTD. Thus, damage to the ER–mitochondria axis provides a mechanism by which
these different disease features might arise.

In future studies, the effects of other neurodegenerative disease insults on the ER–mitochondria
axis need to be investigated to determine whether all or only some induce damage and, also,
whether any damage is similar for different insults. For PD, it will be important to determine
whether mutant genes that cause more common familial forms of PD, such as that encoding
Leucine-rich repeat kinase 2 (LRRK2), affect ER–mitochondria associations. There is cir-
cumstantial evidence that this may be the case, since most patients with familial LRRK2 display
/-synuclein pathology and /-synuclein affects ER–mitochondria contacts [51,53,77]. Also,
LRRK2 has been linked to GSK-3b activity, possibly via the Wnt signalling pathway [78–80]
and GSK-3b is a regulator of the VAPB–PTPIP51 interaction [32]. Likewise, for ALS/FTD, the
effects of other familial disease genes needs to be investigated, especially ones that are linked
more specifically to either ALS or FTD. TDP-43 and Sigma 1 receptor cause both familial ALS
and FTD, but some mutant genes such as that encoding mutant superoxide dismutase 1
(SOD1) cause ALS, whereas others, such as MAPT, are linked to FTD [1].

For such studies, it will be important to utilise methods that can reliably quantify ER–mitochon-
dria contacts of 10–30-nm distances. As detailed above and in Box 1, confocal microscopy has
been used in some studies, but this cannot properly resolve such distances and its use may have
led to conflicting results.

Future studies also need to identify more clearly, the mechanisms involved in damage. For
example, do different neurodegenerative disease insults that affect ER–mitochondria associa-
tions all do so via a common mechanism or might there be different routes for damage. Such
information will facilitate any therapeutic targeting of ER–mitochondria associations for neuro-
degenerative disease (see Outstanding Questions).
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