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Activation-Inhibition dynamics of the oscillatory bursts of the human
EEG during resting state. The macroscopic temporal range of few
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Abstract
The ubiquitous brain oscillations occur in bursts of oscillatory activity. The present report tries to define the statistical

characteristics of electroencephalographical (EEG) bursts of oscillatory activity during resting state in humans to define

(i) the statistical properties of amplitude and duration of oscillatory bursts, (ii) its possible correlation, (iii) its frequency

content, and (iv) the presence or not of a fixed threshold to trigger an oscillatory burst. The open eyes EEG recordings of

five subjects with no artifacts were selected from a sample of 40 subjects. The recordings were filtered in frequency ranges

of 2 Hz wide from 1 to 99 Hz. The analytic Hilbert transform was computed to obtain the amplitude envelopes of

oscillatory bursts. The criteria of thresholding and a minimum of three cycles to define an oscillatory burst were imposed.

Amplitude and duration parameters were extracted and they showed durations between hundreds of milliseconds and a few

seconds, and peak amplitudes showed a unimodal distribution. Both parameters were positively correlated and the

oscillatory burst durations were explained by a linear model with the terms peak amplitude and peak amplitude of

amplitude envelope time derivative. The frequency content of the amplitude envelope was contained in the 0–2 Hz range.

The results suggest the presence of amplitude modulated continuous oscillations in the human EEG during the resting

conditions in a broad frequency range, with durations in the range of few seconds and modulated positively by amplitude

and negatively by the time derivative of the amplitude envelope suggesting activation-inhibition dynamics. This macro-

scopic oscillatory network behavior is less pronounced in the low-frequency range (1–3 Hz).

Keywords Oscillatory network activity � Oscillatory bursts � Amplitude duration relationships � Activation-inhibition
dynamics � Frequency content � Resting-state EEG

Introduction

The presence of oscillations is ubiquitous along the ner-

vous system, from very low frequencies to very high-fre-

quency (Niedermeyer and Lopes da Silva 1999). The

neurophysiological characteristics of brain oscillations of

EEG resting state have been classically defined by the

spectral power, which indicates the energy included in a

certain frequency range, topography, and psychophysio-

logical reactivity (Valdés-Sosa et al., 1990). However,

brain oscillations occur in transient bursts of activity. It has

been proposed that these oscillation bursts are the primary

ingredients of oscillatory activity that can be observed over

the scalp (Feingold et al. 2015; Shin et al. 2017). The

oscillatory bursts have been recently characterized as wave

packets (Pal and Panigrahi 2020). The common procedure
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of averaging power would be obscuring the natural neu-

rodynamics of oscillatory bursts. These bursts of oscilla-

tory activity would be the background that determines

cognitive and behavioral activity (Neymotin et al. 2020;

Lakatos et al. 2019). Indeed, the Entrainment Theory

suggests that attention is highly dependent on the phase

resetting of oscillations, permitting a network optimal

response (Lakatos et al. 2008 2019). Related to this con-

cept, the Communication Through Coherence Theory

highlights the phase coherence of oscillations in different

networks to permit coordinated transmission and process-

ing of information in functionally related areas (Fries

2015).

Different criteria have been proposed to characterize

burst oscillations. The two main criteria are related to

defining (i) a burst as a power peak in frequency and time

that exceeds a threshold (Sherman et al. 2016), an alter-

native view (ii) is to consider an amplitude peak of a given

oscillatory frequency in which the next local peak is sep-

arated by a few complete cycles of these oscillations

(Lundqvist et al. 2016); or a combination of both criteria,

as we would follow in the present report. The duration

criterion is important to differentiate a true oscillation from

a transient event, for instance, an evoked potential. The

presence of oscillations would be related to the recurrent

activity of neural circuits that would produce cycles of

extracellular potentials in a given frequency (Wang 2010).

This new conceptualization of oscillatory bursts of

neural activity is suggesting burst rate as a new parameter

to describe the oscillatory activity (van Ede et al. 2018).

The measurement of parameters derived from describing

brain activity as a succession of bursts requires to identify

what characteristics must have a burst to be considered a

genuine oscillatory burst. The method most used is to

detect an amplitude threshold in the envelope of the

oscillatory activity, however, different thresholds have

been used as 2 standard deviations on the mean (Lundqvist

et al. 2016); 6 times the median (Shin et al. 2017); and the

98th percentile (Sherman et al. 2016). And in general, there

is not a particular criterion to define the threshold level and

it must follow a data-driven approach, although certainly, a

higher threshold would identify a lower number of indi-

vidual oscillatory events than low amplitude thresholds.

Furthermore, it has been suggested that it is necessary to

include a few cycles of oscillatory activity to consider a

given oscillatory burst as a true oscillation and not a

transient response. (Hughes et al. 2012). More sophisti-

cated models to extract the presence of an oscillation burst

based on a hidden Markov model have shown a great

coincidence with the thresholding approach (Quinn et al.

2019; Seedat et al. 2020); and an approach based on cycle-

by-cycle approach have also been proposed (Voytek et al.,

2019). These latter two approaches emphasize the need of

determining periods in which oscillations are present con-

cerning those in which are not present and are an artifact of

the filtering and Fourier procedures to allocate energy in

each frequency at any time. In the same vein, it has been

suggested that methods derived from Fourier and Hilbert

transform are not appropriate for analyzing oscillatory

bursts because they always would assign a certain ampli-

tude to oscillations at any time (Bartz et al. 2019; Cole and

Voytek 2019). However, the view of low amplitude con-

stant oscillatory activity with the presence of some high

amplitude short-lived bursts of oscillatory activity can be

obtained with Fourier methods, and then be reconciled with

methods suited for extracting high amplitude short-lived

oscillatory bursts obtained by stringent thresholding. As it

can be deduced from the present paragraph the method-

ological approaches to define the extent and parameters to

define a burst of brain oscillations are diverse, although all

these differences approaches suggest the need for a char-

acterization of oscillatory activities at different frequencies

to correctly characterize brain dynamics. In the same vein,

the approach followed in the present report is more related

to an energetic approach trying to explain the temporal

distribution of energy of oscillatory bursts, as obtained

from Fourier and Hilbert methods, than extracting con-

spicuous oscillatory bursts from the background EEG. The

latter having a higher potential for transmitting information

across the brain.

It has been proposed that bursts of oscillatory activity

can be accounted by four different scenarios, (i) sustained

rhythmic activity, (ii) amplitude modulated rhythmic

activity due to instantaneous inputs and excitation-inhibi-

tion balance, (iii) oscillatory bursts generated in a rather

stochastic pattern without underlying continuous rhythmic

activity, and (iv) a certain amplitude threshold must be

crossed in the underlying rhythmic activity to produce a

measurable burst (van Ede et al. 2018). A recent interesting

result (Neymotin et al. 2020) suggests, by computing the

squared coefficient of variation and fano factor of the

number of oscillatory events in predefined time windows of

certain durations in a resting state condition, that the

presence of oscillatory bursts occur in a rather rhythmic

pattern.

The amplitude modulated continuous oscillatory activity

is considered as a standard model by van Ede et al. (2018),

while the presence of a threshold would implicate some

type of cooperative phenomena with a certain resemblance

to the action potentials in terms of activation-deactivation

when compared to the process of depolarization-repolar-

ization of the action potential. An alternative view is the

presence of clearly defined short-lived oscillatory burst

(Sherman et al. 2016). Anyway, the selection of a threshold

in amplitude or number of cycles imposes a dependence on

the chosen criteria to define the limits of an oscillatory
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burst. Therefore, the dependence of any extracted param-

eter obtained to quantify bursts oscillations must take into

account the constraints imposed by the methodological

criteria selected to extract bursts oscillations from back-

ground EEG. An approach searching for oscillations of

high amplitude, and not considering oscillatory activity as

a continuous would not explain the total energy included in

the EEG, which is the approach followed in the present

report. Both approaches are complementary, (i) the method

followed here permits to consider all oscillatory bursts

present in the EEG and explains the whole energy of the

EEG spectrum, and (ii) methods that would select the more

conspicuous oscillatory bursts which would be those with

higher impact in brain information processing.

The objective of the present report is to define the sta-

tistical characteristics of duration and peak amplitudes of

bursts oscillations during resting state in humans. The

present approach would consider a minimum number of

cycles and amplitude to consider an oscillation burst as

independent from others. But no single period would be

considered as free of oscillatory activity (Shin et al. 2017;

van Ede et al. 2018; Sherman et al. 2016) and a burst would

start and would end as soon as a change in the amplitude

trend is detected. The reconstruction of the non-filtered

signal from the filtered signals would permit to give con-

sistency to the presence of true oscillations, no matter if

they have periods of low amplitude. As the present report is

exploratory no previous hypothesis can be made about the

possible duration of oscillatory bursts at different fre-

quencies, although a positive relationship is expected

between the duration and the amplitude of the oscillatory

bursts.

The construction of histograms of peak amplitude would

permit to observe if bimodal distributions, compatible with

a thresholding mechanism, or unimodal more compatible

with a continuous modulation of oscillatory burst ampli-

tudes are present. The Power Spectral Density (PSD) of the

envelope of oscillations would permit to define the fre-

quency content of the amplitude modulation of brain

oscillations forming oscillatory bursts. The present

macroscopic approach must be considered complementary

of microscopic approaches using intracerebral electrodes

and would reveal oscillatory brain dynamics at a macro-

scopic level. Therefore, the specific objectives of the pre-

sent report are, (i) to describe the statistical properties of

oscillatory burst durations and amplitudes in a broad fre-

quency range (1–99 Hz), and (ii) to analyze the possible

interdependence between these two parameters.

Methods

Participants

A sample of 5 subjects (1 male of 18 years, and 4 females

of 18,19,22, and 25 years) was selected from a recorded

population of 40 adult subjects. The criterion for inclusion

in the present analysis was to have no rejection of any

period in the EEG due to artifacts. This inclusion criterion

was imposed to permit to have an EEG recording of 180 s

with no artifact contamination. With a continuous record-

ing without artifacts, it would be possible to estimate the

duration of a high number of burst oscillations, including

those of very low frequencies that necessarily would have

long durations. Experiments were conducted with the

informed and written consent of each participant, following

the Helsinki Protocol. The study was approved by the

Bioethical Committee of the Junta de Andalucı́a.

Experimental session

The EEG resting-state activity, also termed as non-task-

related activity, was recorded for 3 min in open eyes

condition. The subjects were asked to blink as little as

possible while looking at the screen. Thirty-two electrodes

installed on an electrode cap (ELECTROCAP) permitted to

register the EEG employing an analog–digital acquisition

system (ANT amplifiers, The Netherlands) (electrodes:

Fp1, Fpz, Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6,

M1, T7, C3, Cz, C4, T8, M2, CP5, CP1, CP2, CP6, P7, P3,

Pz, P4, P8, POz, O1, Oz, O2). Two electrodes situated on

the outer edge of each eye and two electrodes located

above and below the left eye permitted to record the hor-

izontal and vertical eye movements, respectively. The

recordings were made with an average reference and were

re-referenced offline to the average mastoid (M1 ? M2)/2.

Impedance was maintained below 10 kilo-ohms during the

EEG recording. Amplification gain was 20 K. The

recordings were made in direct current (DC) mode at

512 Hz as the sampling rate.

Data analysis preprocessing

EEG recordings were preprocessed using the EEGLAB

software package (Delorme & Makeig 2004). Different

types of artifacts (eye movements, blinks, muscle artifacts,

and the interference from the alternating current electric

line contributions) were eliminated by identifying and

removing the independent components (ICAs) related to

those artifacts and then reconstructing the EEG signals.

Two-second epochs were created and those in which the

EEG exceeded ± 120 lV on any channel were discarded.
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As indicated before only 5 of the 40 recorded subjects

presented all trials free of artifacts. This protocol permitted

to keep 5 subjects in which no trials were rejected over the

90 recorded trials. Then the trials of these 5 subjects were

concatenated to have a continuous recording of 180 s. The

pipeline analysis displayed in Fig. 1 was applied to the

180 s concatenated EEG for all the analyzed frequencies.

The raw EEG data of these five subjects can be found in

https://github.com/breangrui/raw-data-EEG-oscillations.

Extraction and analysis of oscillatory bursts

The characterization and analysis of oscillatory bursts were

computed using fieldtrip (Oostenveld et al. 2011) and

Matlab scripts (Matlab R2020b). The present approach to

extract oscillations was based on the hypothesis that

oscillations were continuously present in the EEG although

at very different amplitudes, which corresponds to the

hypothesis (ii) described in the introduction section (van

Ede et al. 2018). This approach can be physiologically

valid taking into account that extracranial electrodes record

brain areas of a few squared centimeters and then the EEG

signal corresponds to a multinetwork macroscopic signal.

This macroscopic approach cannot discard the possibility

that at the microscopic level oscillatory bursts would have

a lower duration than macroscopic bursts oscillation.

However, if applying the continuous oscillation model at a

macroscopic level, a relatively organized oscillatory pat-

tern is obtained in the EEG, then the validity of the pres-

ence of oscillatory bursts at macroscopic levels would be

substantiated. As an initial approach to validate the pres-

ence of continuous macroscopic oscillatory activity in the

Fig. 1 Processing pipeline. The

raw EEG was filtered in

different frequency ranges of

2 Hz, from 1–3 Hz to 97–-

99 Hz. The envelope of the

filtered signal was obtained

employing the analytic Hilbert

transform. The time derivative

of the amplitude envelope

obtained with the Hilbert

transform was also obtained.

Peaks and troughs of the

envelope were found (see

rectangles). The circles

represent a peak and through

that were not extracted because

of low prominence. Finally, the

parameters of amplitude and

duration of the amplitude

envelope and the peak

amplitude of the time derivative

of the amplitude envelope

(TDPA) were obtained for each

oscillatory burst at any

frequency range and electrode
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EEG, the band-pass filtered EEG would be inspected

(Figs. 1 and 2).

The following pipeline (Fig. 1) was used to analyze the

data. Data were bandpass filtered in 32 steps of 2 Hz wide

bandpass frequency ranges (1–3 Hz, 4–6 Hz,

7–9 Hz………91–93 Hz, 94–96 Hz, and 97–99 Hz; the

49–51 Hz range was not analyzed to avoid AC line

artifacts). The fieldtrip function ft_preproc_bandpassfilter

using an FIR filter (Matlab firl function), zero-phase for-

ward, and reverse filter was used using a 3000th order.

Then the analytic Hilbert transform was applied to the

filtered data to obtain the phase and the envelope amplitude

of the filtered data, using the fieldtrip function ft_pre-

proc_hilbert. The time derivative of the amplitude

Fig. 2 Effect of the number of cycles and prominence parameters for

defining the extent of oscillatory bursts. The location of peaks and

troughs of the envelope of the filtered signal was computed varying

the parameters number of cycles and prominence. Arrows indicate the

temporal limits of the extracted oscillatory bursts. a Filtered

oscillations and envelope of oscillatory bursts obtained by the Hilbert

transform. b Oscillatory bursts obtained applying a minimum of 3

cycles and prominence of 0.5 *SD as selection parameters. c Applying
3 cycles and no prominence as parameters. d 1 cycle and 0.5*SD

prominence as parameters. e Applying 1 cycle and no prominence
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envelope was computed applying the diff function of

Matlab using a time interval of 2 ms. In fact, this function

computes the derivative by subtracting two adjacent

recorded points and dividing by the time interval between

them.

Peaks and troughs of the amplitude envelope were

obtained, imposing two conditions: (i) a minimum number

of three cycles for an oscillatory burst to be considered an

independent burst; and (ii) an amplitude prominence of the

peak amplitude of the envelope higher than 0.5*SD (SD:

Standard deviation of the envelope of the analyzed fre-

quency). The prominence is a parameter that provides an

amplitude measurement relative to the adjacent peaks. The

use of prominence permits to eliminate fluctuations lower

than 0.5*SD in amplitude relative to the encircling peaks,

and not as an absolute measurement of the peak amplitude.

For instance, the points labeled by circles in Fig. 1 would

not be considered as an independent oscillatory burst

because of the small prominence with the peak situated at

its left. Normalizing the threshold by the SD of each fre-

quency and subject permits us to take into account that

low-frequency oscillations present higher amplitude than

higher frequencies, but also the possible differences in

amplitude in different subjects. To validate that the chosen

parameters of a minimum of 3 cycles and prominence of

0.5*SD are good parameters to extract oscillations bursts,

other thresholding and number of cycles parameters were

visually inspected. Figure 2 shows a comparison of the

oscillation bursts extracted with 0.5*SD prominence and

no prominence, and 3 cycles and no cycles, as threshold

parameters to be considered as an oscillatory burst.

Although the procedure is somehow qualitative the

parameters of 3 cycles and 0.5*SD prominence were

accepted as optimal to continue the extraction and analysis

of oscillatory bursts. The selection of three cycles was

imposed to deal with true oscillations and not with phasic

responses in the bandpass filtered frequencies.

The following parameters from the oscillations bursts

were obtained for each range of frequency, electrode, and

subject: duration and peak amplitude of the amplitude

envelope of oscillatory bursts, and the peak of the ampli-

tude envelope time derivative (Fig. 1). The frequency

histograms of the oscillatory bursts duration and peak

amplitudes of the envelope were computed for each sub-

ject, electrode, and frequency range. The mode of the

histograms of burst oscillatory duration and amplitude

were computed and represented as histograms of the

modes. The topography of the oscillatory bursts for all the

analyzed frequency ranges was obtained by displaying the

mean value of the oscillations envelope across the 180 ms

recorded in each electrode, using the topoplot function of

EEGLAB.

The Spearman correlation of amplitude vs. duration of

the oscillatory bursts was computed independently for each

subject, electrode, and frequency, and the P-values were

adjusted using the false discovery rate (FDR) of Benjamini

and Hochberg (1995). The FDR method was computed

using the function fdr_bh function from the Mass Uni-

variate ERP Toolbox (Groppe et al. 2011). Furthermore,

the Spearman partial correlation of amplitude and duration

of the oscillatory bursts, controlling for the peak amplitude

of the amplitude envelope time derivative, was computed.

Given that the partial correlation presented better correla-

tions than the correlation of peak amplitude vs. duration,

the two following linear models were fitted to predict the

duration of the oscillatory burst from the amplitude

envelope, and the best model was selected through the

Akaike Information Criterion (AIC) (Akaike 1974), which

weights the goodness of fit taken in account the number of

estimated parameters, two for model 1 and three for model

2.

Model 1: OBD = b0 ? (b1 * OBEPA).

Model 2: OBD = b0 ? (b1 * OBEPA) ? [(b2 *

PA(dOBEA/dt)].

OBD: Oscillatory Burst Duration.

OBEPA: Oscillatory Burst Envelope Peak Amplitude.

PA(dOBEA/dt) = Peak Amplitude of the Amplitude

Envelope Time Derivative of the Oscillatory Bursts.

The AIC of model 1 was subtracted from the AIC of

model 2. Negative values of this difference would indicate

the best goodness of fit of model 2 concerning model 1.

Power spectral density

The Power Spectral Density (PSD) of the EEG envelope

obtained from the Hilbert transform was obtained inde-

pendently for the envelope of each of the frequency ranges

considered. PSD was obtained using the Matlab function

plomb. The obtained PSD in the 1–3 Hz range were aver-

aged across subjects and electrodes. The PSD of different

frequency ranges between 4 and 6 Hz and 97 and 99 Hz

were obtained independently and then averaged across

subjects, electrodes, and frequency ranges. The indepen-

dent computation of PSD in the 1–3 Hz and 4–99 Hz fre-

quency ranges was motivated by the different bursts

oscillation duration obtained in these frequency ranges.

Sanity Check of EEG reconstruction and filters

Making an effort to show that the used filters are operating

are expected, we have reconstructed the EEG as the alge-

braic sum of all the 33 frequency ranges in which the EEG

was filtered (Fig. 3, left). The reconstructed EEG was

modulated in amplitude with the slope and intercept of the

regression between the reconstructed EEG and the raw
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EEG. If amplitude artifacts are included in the filtered EEG

a gross difference should be obtained between the recon-

structed EEG and the original EEG. Rather than using the

original EEG, the reconstructed EEG would be compared

with the bandpass filtered EEG between 1 and 99 Hz,

which corresponds to the frequency range of the 32 fre-

quency ranges used for obtaining the narrow frequency

EEG bands. The Spearman correlation of the reconstructed

EEG from narrow band filtered signals and the 1–99 band-

pass filtered EEG would permit checking the reliability of

the filtering procedure to assign power to the filtered EEG

signal (Fig. 3, left side).

Furthermore, and in order to check that filters operated

correctly, given the high number of artifacts that can arise

when misused (Cheveigné and Nelken, 2019), the recon-

structed EEG from the filtered signal was filtered with the

filters used with the original recorded EEG. Then the

correlation between the filtered signals from reconstructed

EEG (in which the amplitude modulated sinusoidal signals

conforming to the reconstructed EEG are known) and the

filtered original EEG recorded signals were obtained for all

electrodes and frequency ranges (Fig. 3, right side). If fil-

ters operate correctly the correlations should be very high.

A total of 960 correlations are obtained by subject (30

electrodes for 32 frequency ranges).

Results

Figure 2a shows the filtered EEG in different frequency

ranges with the overlapping amplitude envelope obtained

by applying the Hilbert transform. The visual observation

of the filtered EEG supported the presence of continuous

oscillatory activity. Oscillatory bursts show a highly vari-

able amplitude and duration, suggesting the possibility of a

macroscopic continuous oscillatory activity modulated in

amplitude. Figure 2b–e show the detection of troughs

delimitating oscillatory bursts using different values for the

number of cycles and prominence. The selection of the

prominence parameter 0.5*SD seemed to be critical to

avoid small-amplitude rebounds in the envelope to be

defined as independent oscillatory bursts. The need for 3

cycles to define an oscillatory burst is more motivated by a

theoretical criterion of not confusing phasic signals with

oscillatory signals.

Figure 4a shows a few examples of reconstructed EEG

from the algebraic sum of the EEG filtered signals and of

the raw EEG. Figure 4a (lower right) shows the histograms

of the Spearman correlation coefficients between the

reconstructed EEG and the raw EEG for all the subjects

and electrodes collapsed. Most correlation coefficients

showed a high correspondence between reconstructed and

raw EEG. Figure 4b shows the Spearman correlation

Fig. 3 Filters operation

checking. The original EEG

(above) is correlated with the

reconstructed EEG obtained

from the algebraic sum of the

bank of filtered signals obtained

by the filtering process (left

side). The filtered signals

obtained from the raw EEG are

correlated with the

corresponding filtered signals

obtained from filtering the

reconstructed EEG (right side)
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matrix of the EEG filtered signal vs. reconstructed EEG

filtered signal for three subjects. The correlation between

the filtered signals obtained from the reconstructed EEG

and the filtered signals obtained from the original EEG

were in the range 0.98–1 (procedure described in Fig. 3b).

Therefore, the operation of the used filters could be con-

sidered satisfactory for the purposes of the present report.

Figure 5 shows the histograms of bursts oscillation

duration in three subjects for different frequencies. The

duration of the oscillatory bursts was in the range of hun-

dreds of ms to a few seconds. Figure 6 shows the his-

tograms of the modes of the burst oscillations duration

histograms for different frequency ranges in three subjects

and the averaging of the five subjects. The results con-

firmed a very narrow distribution of the burst oscillation

duration modes for the frequency ranges between 4 and

99 Hz, with most modes distributed in the interval of 0.8 s

and 0.9 s. For the frequency range of 1-3 Hz, the his-

tograms of the modes of the oscillatory burst durations

showed longer durations, with most values being in the

interval 1.4 s to 1.5 s. The latter results are clearer when

the averaging across subjects, frequencies, and electrodes

of the duration histogram modes are observed (Fig. 6, right

side). The ANOVA of the bursts oscillation mean duration

(within subject factors: frequency ranges and electrodes)

showed that the mean duration of 1–3 Hz bursts was longer

Fig. 4 Filters operation

checking results. a EEG

reconstruction from filtered

EEG. The figure shows three

examples of reconstruction of

the EEG from the algebraic sum

of the filtered signal in

frequency ranges from 1–3 Hz

to 97–99 Hz. These

reconstructions show a good

fitting between the raw signal

(filtered in the bandpass

1-99 Hz) and the reconstructed

signal. In 4A (below on the right

side), the figure displays the

histogram of the Spearman

correlation between the raw and

reconstructed signal for the 30

electrodes and 5 subjects. Please

notice the high values of

Spearman correlation

coefficients. b Correlation

matrices of filtered signals from

reconstructed EEG vs. the

signals obtained from filtering

the original EEG. The

correlations are computed for

the 30 electrodes and the 32

frequency ranges considered for

three subjects. Frequencies

49–51 were eliminated from all

matrices to avoid 50 Hz AC

electrical noise
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than the mean durations of 4-99 Hz bursts

(F[1,4] = 26,546; p\ 0.001; mean duration1-3 Hz = 2 s,

SD = 0.022; mean duration 4-99 Hz = 1.13 s, SD = 0.020).

Figure 7 shows the histograms of the peak amplitude of

the oscillation bursts envelope with the histograms for the

different electrodes overlaid. The peak amplitudes were not

so homogenous as durations and reflected a high variability

in amplitudes across electrodes and frequencies, with a

clear decrease of amplitude as frequency increases. To

show that the histograms of peak amplitudes were uni-

modal, the histogram of peak amplitudes in several fre-

quencies and electrodes for a single subject are presented in

Fig. 8. The unimodality was common to the five subjects

across frequencies and electrodes.

Figure 9 shows the topographies of the mean value of

the oscillatory burst amplitude envelope across the whole

recording time. The delta oscillations (1–3 Hz) showed an

anterior–posterior distribution, theta (4–6 Hz) presented a

fronto-central topography, alpha (10–12 Hz) was mainly

posterior, and beta (16–30 Hz) was frontal; finally, gamma

(31–99 Hz) presented a posterior-anterior distribution.

Transitional topographies appear around alpha frequency

(7–9 Hz and 13–15 Hz).

Figure 10a shows some examples of burst oscillation

durations vs peak amplitudes in different frequencies and

Fig. 5 Histograms of oscillatory bursts duration. The figure shows the

histograms of the duration of oscillatory bursts during the 3 min’

recordings in different subjects and frequency ranges. The histograms

for the 30 electrodes are overlying in the same figure. Notice that

oscillatory burst durations are in the range of a few seconds

Fig. 6 Histograms of the modes of the oscillatory bursts duration

histograms. These histograms are displayed for three subjects and the

average of all subjects. Please notice the high homogeneity of

oscillatory burst mode durations in the collapse of the modes obtained

in the different frequency ranges between 4 and 99 Hz. The modes for

the frequency range of 1–3.99 Hz presented higher values
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Fig. 7 Histograms of oscillatory bursts peak amplitudes. The figure shows the histograms of peak amplitudes of oscillatory bursts during the

3 min’ recordings in different subjects and frequency ranges. The histograms for the 30 electrodes are overlying in the same figure

Fig. 8 Histograms of oscillatory bursts peak amplitudes details. The histograms of peak amplitudes for the frequencies and electrodes indicated

in the figure are represented for a single subject. Please notice the unimodal character of the histograms
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subjects for the Cz electrode. The graphs show a positive

relationship between these two parameters. Figure 10b

shows the Spearman correlation coefficient matrices of

burst oscillation durations vs. peak amplitudes for three

subjects with applied FDR correction. Most of the duration

vs. amplitude correlations were significant, although for the

low-frequency range of burst oscillations the number of

significant correlations was smaller. Figure 10c shows the

Fig. 9 Oscillatory bursts

topography. The topographies

were obtained as the mean value

of the oscillatory bursts

envelopes across the 180 s of

recorded EEG. The frequencies

used for each topography are

indicated
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partial correlation matrices of the peak amplitude vs.

duration (controlling by the peak amplitude of the ampli-

tude envelope time derivative). The correlation values were

increased for 10B, suggesting that indeed the peak of the

amplitude envelope time derivative is also a predictor for

the burst oscillation duration. The latter results motivated

the statistical comparison of the two models described in

the Methods section for predicting the duration of oscilla-

tory bursts. The pattern of correlations for the two subjects

not displayed was very similar to those displayed in

Fig. 10.

Figure 11a shows the AIC in model 1 subtracted from

AIC in model 2. For most electrodes and frequencies, the

AIC differences indicate that model 2 presented the best

goodness of fit than model 1 taking into account the

number of estimated parameters. Figure 11b and c show

the absolute values of the slopes for the first and second

terms of model 2, respectively. Figure 11d and e show the

signs of these two slopes, indicating when these terms were

non-significant after applying the FDR correction. Most

frequencies and electrodes presented a positive slope for

the first term of model 2 (peak amplitude of bursts oscil-

lation envelope) and a negative slope for the second term

(the peak amplitude of the oscillatory bursts amplitude

envelope time derivative). These results suggest some sort

of negative feedback for fast-developing oscillations. For

the low-frequency components (1–3 Hz) the statistical

significance of the terms of model 2 was not significant for

a higher number of electrodes than in the 4–99 Hz range.

Fig. 10 Bursts oscillation duration vs amplitude correlations. a The

relationship between duration and amplitude for three subjects in four

different frequency ranges is represented. b Spearman’s correlation

matrices of the amplitude vs. duration for three subjects. c Spearman’s

partial correlation matrices of the amplitude vs. duration (controlling

by the peak amplitude of the amplitude envelope time derivative) are

represented for three different subjects for all the considered

frequency ranges and electrodes. The green color represents those

correlations that were not significant after the adjustment by false

discovery rate. Frequencies 49–51 have been eliminated from all

matrices to avoid 50 Hz AC electrical noise
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Figure 12 shows the PSD of the amplitude envelope

collapsed across electrodes in three subjects and the aver-

age of the five subjects. The envelope of the oscillatory

bursts of the frequency range 1–3 Hz was analyzed

independently from the rest of the frequency ranges

(4–99 Hz). The PSD of the latter range was collapsed

across electrodes and frequencies given their more

homogenous behavior. In both cases, a decaying 1/f

Fig. 11 Assessment of model 1 and model 2. a Models difference of

Akaike Information criteria (AIC model2 – AIC model 1). b Slopes of

the peak amplitude of the oscillatory burst envelope term in model 2.

c Slopes of the Peak Amplitude of the envelope amplitude time

derivative term in model 2. d Signs of the slope matrices displayed in

10B. e Signs of the slopematrices displayed in 10C. The non-significant

terms after applying the False Discovery Rate method are labeled in

green color ind and e. Frequencies 49–51 have been eliminated fromall

matrices to avoid 50 Hz AC electrical noise. The results are presented

for the five subjects, 30 electrodes, and 32 frequency ranges

Fig. 12 Power spectral density of the oscillatory bursts envelope.

Above: The Power Spectral Density (PSD) of the burst oscillations

amplitude envelope of the 1–3 Hz range collapsed across electrodes

are represented for three subjects. The averaging of the five subjects is

displayed in the right part of the figure. Below: the collapse across

electrodes of the PSD in the frequency ranges from 4–6 Hz to

97–99 Hz are displayed for three subjects. The averaging across

frequencies and electrodes is represented on the right side. Please

notice the low frequency content of the oscillatory bursts amplitude

envelope, the 1/f decaying of the PSD, and the absence of defined

peaks
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spectral power can be observed with all the power con-

centrated in the range of 0–2 Hz, indicating the low-fre-

quency oscillatory characteristics of the amplitude

envelope of oscillatory activity in the range of 1–99 Hz,

and the absence of defined peaks suggesting the absence of

a rhythmic oscillatory pattern.

Figure 13 shows the statistical properties of the oscil-

latory bursts in the alpha range (10–12 Hz), showing the

same typical characteristics of duration in the range of few

seconds as the other considered frequencies (Fig. 13a),

modes of duration histograms around 1 s (Fig. 13b), uni-

modal histograms for peak amplitude of oscillatory bursts

(Fig. 13c), and the detail of the peak amplitude histograms

for the electrode Oz displaying a broad amplitude distri-

bution and unimodality (Fig. 13d), indicating that peak

amplitude of oscillatory bursts in the alpha range is a

continuous variable in a broad range of amplitudes. The

correlations between duration and peak amplitude of

oscillatory bursts, the correlations between duration and

peak amplitude of oscillatory bursts (controlling for the

peak amplitude of the time derivative of oscillatory bursts

amplitude), and the demonstration of the best fitting of

model 2 with respect to model 1 are displayed for the alpha

rhythm in the fourth column of Figs. 10b–c and 11a–e,

respectively. All these results for the alpha frequency are

quite similar to those obtained for the other analyzed fre-

quencies in the range 4–99 Hz.

Discussion

The present report confirms the presence of oscillatory

bursts with durations from hundreds of milliseconds to a

few seconds in frequencies ranging from 1 to 99 Hz, with

0.8–0.9 s as the most frequent duration for oscillatory

bursts. The amplitude envelope of the oscillations showed

peaks amplitude with unimodal distributions suggesting a

continuous activation level in the networks generating the

macroscopic oscillatory bursts. Peak Amplitude and dura-

tion of oscillatory bursts presented positive correlations

that were increased when controlling by the peak amplitude

of the time derivative of the amplitude envelope. Then, a

linear model to predict the duration of the oscillatory burst

by the amplitude and by the time derivative of amplitude

was confirmed. The latter results suggested that the dura-

tion of oscillatory bursts as recorded in the extracranial

EEG are negatively modulated by the envelope amplitude

time derivative, limiting the duration of oscillatory bursts

rapidly developing. All these results were present, although

less clear for low-frequency oscillations (1–3 Hz). The

power of the amplitude envelope of oscillatory bursts was

concentrated in a very narrow low frequency around

0–2 Hz. The present results suggest that a structured

modulation of the amplitude of oscillatory burst occurs in

the neural networks supporting human EEG.

The present analysis showed the presence of amplitude

modulation of oscillatory activity in the macroscopic

human EEG in a broad frequency range with durations

relatively long, in the range of hundreds of milliseconds up

to a few seconds. This result is compatible with the view of

continuous oscillatory activity modulated by amplitude,

expressed by van Ede et al. (2018), in one of the possible

scenarios underlying the oscillatory bursts generator. This

possibility is different from the idea of short-lived bursts of

oscillatory activity which has been shown in different

experimental intracranial recording settings. For instance,

the conclusion that beta oscillations of long duration are a

by-product of single-trial averaging rather than a genuine

Fig. 13 Statistical properties of

alpha oscillatory bursts.

a Histograms of oscillatory

bursts duration of the 30

recorded electrodes.

b Histograms of the modes of

the oscillatory bursts duration

histograms of all the electrodes.

c Histograms of oscillatory

bursts peak amplitudes of the 30

recorded electrodes.

d Histograms of oscillatory

bursts peak amplitudes for the

electrode Oz
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long-duration beta oscillatory burst has been drawn. Beta

bursts which are short-lived would produce by averaging

across trials long-duration beta burst (Feingold et al. 2015).

Sherman et al. (2016) and Shin et al. (2017) have shown

that the beta oscillations of long durations are due to

averaging of short-lived beta bursts, in both mouse and

human MEG. Similarly, during Working Memory tasks

non-periodic gamma bursts of around 100 ms occur during

the encoding and decoding phases of WM tasks, and only

trial averaging produces the impression of long durations

of gamma bursts (Lundqvist et al. 2016). This controversy

can be overcome if the macroscopic continuous oscillatory

activity modulated in amplitude, in the duration range of

few seconds, as obtained in the present report, is consid-

ered as the algebraic sum of a myriad of microscopic short-

lived microscopic events in the range of the hundreds of

milliseconds when not very strict amplitude criteria are

used to define an oscillatory burst. However, if this is the

case, the highly structured pattern of macroscopic oscilla-

tory activities obtained in the present report would imply

that microscopic neural oscillations must be chained

somehow to produce the organized pattern observed at the

macroscopic scale. The obtained topographies support that

the energy assigned by the Fourier analysis to each fre-

quency range corresponds to the traditional brain rhythms,

given that the spatial distribution of the envelopes of the

oscillatory bursts is quite similar to previous results for

brain rhythms topographies (Niedermeyer and Lopes da

Silva 1999; Rodrı́guez-Martı́nez et al. 2017). But also, that

the obtained oscillatory burst are genuine oscillations and

not methodological artifacts.

The unimodal distribution of peak amplitudes suggests

that there are not very defined thresholds for generating an

oscillatory burst, at least from the macroscopic point of

view. If a fixed threshold is needed to generate an oscil-

latory burst a bimodal distribution should be expected in

peak amplitude distributions, one corresponding to sub-

threshold and another corresponding to suprathreshold

oscillations that would generate a cooperative phenomenon

somehow similar to an action potential, but at the network

dynamics level. However, as indicated before, it is always

possible that microscopic networks could have a defined

threshold to fire an oscillatory burst, but at the macroscopic

averaging it could be perceived as a continuous of peak

amplitude values.

A significant relationship is found for the amplitude vs.

duration relationship for most electrodes and frequencies.

This relationship is also described by Feingold et al. (2015)

for beta bursts. The underlying explanation would be in a

limited capacity of recurrent networks to increase the level

of activity, and then oscillatory bursts to achieve high

amplitude would need long developing times. An inter-

esting point obtained from histogram durations is that the

mode of oscillatory burst durations was very constant for

all electrodes and frequencies, around 0.8–0.9 s for most

frequencies, and a bit longer (1.4 s) for the 1–3 Hz range.

This result suggests relatively fixed internal dynamics for

oscillatory burst generators, and particularly for the igni-

tion of inhibitory networks that would limit the duration of

oscillatory bursts. As indicated before, this result is not

contradictory at a macroscopic scale with much shorter

durations of oscillatory bursts at a microscopic scale

(Feingold et al. 2015; Lundqvist et al. 2016).

A positive feedback loop can be proposed for the

increase in the amplitude of oscillatory bursts, while neg-

ative feedback would explain the decaying phase. These

two phases are represented in model 2 in which the dura-

tion of the oscillatory bursts is predicted by a combination

of a positive peak amplitude term and a negative term of

the peak amplitude of the amplitude envelope time

derivative. The first term would be embedded in an exci-

tatory recurrent network, while the second term would be

embedded in an inhibitory recurrent network, both with

temporal dynamics in the range of few seconds. Fast

developing oscillations would generate high negative

feedback loops to limit the duration of the developing

oscillatory bursts. Therefore, rapid changes in the ampli-

tude of oscillatory bursts would increase dramatically the

activity of inhibitory networks limiting the activity of

excitatory projections. The excitatory-inhibitory mecha-

nism proposed for the amplitude envelope modulation

would be completely similar to that proposed for the gen-

eration of oscillatory activity based on a combination of

excitatory AMPA and inhibitory GABA activity (reviewed

in Jensen et al. 2019). In the so-called pyramidal-in-

terneuronal network gamma model (PING) for generation

of gamma and beta rhythms, recurrent inhibitory GABA

activity from interneurons would shape the oscillatory

activity in local circuits, while pyramidal cells would

excite them through AMPA receptors (Whittington et al.

2000; Tiesinga and Sejnowski 2009). For slower frequency

rhythms long distance excitatory-inhibitory septo-hip-

pocampal (Theta rhythm) and thalamo-cortical (alpha

rhythm) interactions are needed. The oscillatory bursts

behavior obtained in the present report suggests that a

pattern of excitatory-inhibitory activity must be sculpturing

the oscillatory bursts of different frequencies. Therefore,

the activation-inhibition mechanism would be operating at

different time scales. In the range of a few hundred or

tens milliseconds for generating the different brain

rhythms, and in the scale of 1 or few seconds for the

amplitude modulation of brain rhythms.

One striking characteristic of the present analysis is the

different results obtained by oscillations in the delta range

concerning those in the frequency ranges from theta to

gamma for a variety of parameters: the mode of histograms
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of oscillatory bursts duration and a lower statistical sig-

nificance for the modeling of oscillatory durations by

amplitude and the time derivative of envelope amplitude.

The longer duration of oscillatory bursts in the low-fre-

quency range is completely justified by the methodological

limitation imposed of a minimum number of cycles to

consider the extraction of a genuine oscillatory burst. But

the lower statistical significance of the duration prediction

by amplitude and its time derivative should be due to some

particular dynamics of these oscillatory frequencies, which

may be linked to the longer duration of oscillatory bursts

making that activation and inhibition loops would have a

lower possibility to interact to control the network activity.

The Low-frequency EEG oscillations (\ 0.5 Hz) and

the gamma power have been related to the low-frequency

oscillations of functional magnetic resonance during

(fMRI) resting-state (He et al. 2008). De Pasquale et al.

(2010) proposed that the best correlations of power of the

magnetoencephalographic signal at the source level with

fMRI during resting state occurred at theta, alpha, and beta

bands. The low frequency of the oscillation envelopes, in

the range of 0–2 Hz, but concentrating most of the energy

in the very-low-frequency range, as described in the pre-

sent report, supports the concept that at least part of the

low-frequency oscillations of fMRI during resting state

would be related to the amplitude modulation of frequency

oscillations in a broad frequency range. The correlation of

fMRI and EEG envelopes of broad frequency bands should

be computed to test such a possible relationship. On the

other hand, the absence of defined peaks in the PSD of the

envelope amplitudes suggests that oscillatory bursts are

relatively random and do not present a defined periodic-

ity during resting state. The latter results are in agreement

with the obtained fano factor higher or equal to one

obtained for inter-event beta intervals (Shin et al. 2017),

although other authors have reported a fano factor lower

than 1 suggesting a more rhythmical behavior for oscilla-

tory events (Neymotin et al. 2020).

From a functional point of view, the presence of

envelopes for oscillatory activity in the range of seconds

would permit to establish a temporal framework with

enough duration to permit the processing of cognitive

tasks. In this sense, Pöppel (Schleidt et al. 1987) initially

based on transcultural ethological studies of the duration of

purposive acts, has proposed a more general framework in

which cognitive processes occur in a temporal extent of a

few seconds. Extensive evidence in the duration of per-

ceptual, motor, and cognitive processes tends to support

such a conclusion (Pöppel 1987; Gómez et al. 1995).

However, no compelling physiological evidence has been

proposed to support such a claim. The presence of oscil-

latory envelopes in the range of few seconds obtained in

the present report would support the idea of neurophysio-

logical integrative processes in such a temporal range.

Two possible limitations appear in the present report:

(i) As the methodological constraint imposed of very long

recording periods without artifact would potentially bias

the selection of subjects to high aroused individuals, the

present results should be replicated controlling for situa-

tional stress and in a broader subjects sample; and (ii), the

EEG has been described as the combination of periodic and

aperiodic components (broadband offset and exponent)

(Donoghue et al. 2020). The present report did not consider

these different components. Therefore, the amplitude and

duration parameters of oscillatory bursts would be modified

by these aperiodic components in the present analysis. A

complete statistical description of the oscillatory bursts

behavior would require a trial-by-trial extraction of the

aperiodic components. As the present analysis has been

computed on spontaneous EEG data, the periodic and

aperiodic would sum up giving a macroscopic picture of

oscillatory bursts independent of the possible different

origins of amplitude modulation.

Conclusions

The present report shows a continuous oscillatory activity

modulated by amplitude in a broad frequency range,

including the alpha rhythm. The temporal span of the

amplitude modulation is in the order of hundreds of mil-

liseconds to a few seconds compatible with previous ideas

of this temporal framework for integrative motor, sensory

and cognitive processes. The results are compatible with a

continuous modulation of the amplitude of oscillatory

activity showing negative feedback for rapidly developing

oscillatory bursts.
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