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Abstract

Acute hemorrhagic leukoencephalitis (AHL) is a fulminant demyelinating disease of unknown etiology. Most cases
are fatal within one week from onset. AHL pathology varies with the acuteness of disease. Hemorrhages, vessel
fibrinoid necrosis, perivascular fibrin exudation, edema and neutrophilic inflammation are early features, while
perivascular demyelination, microglial foci and myelin-laden macrophages appear later. Reactive astrocytosis is not
present in early hemorrhagic non-demyelinated lesions, but is seen in older lesions. This case report presents the
pathology of an AHL case with fulminant course and fatal outcome within 48 hours from presentation. Severe
hemorrhages, edema and neutrophilic inflammation in the absence of circumscribed perivascular demyelination
affected the temporal neocortex and white matter, hippocampus, cerebellar cortex and white matter, optic chiasm,
mammillary bodies, brainstem, cranial nerve roots and leptomeninges. Perivascular end-feet and parenchymal processes
of astrocytes exhibited impressive swelling in haemorrhagic but non-demyelinated white matter regions. Astrocytes were
dystrophic and displayed degenerating processes. Astrocytic swellings and remnants were immunoreactive for
aquaporin-4, aquaporin-1 and glial fibrillary acidic protein. These morphological changes of astrocytes consistent
with injury were also observed in haemorrhagic and normal appearing cortex. Our findings reinforce that perivascular
demyelination is not present early in AHL. This is the first study that highlights the early and widespread astrocytic
injury in the absence of demyelination in AHL, suggesting that, similarly to neuromyelitis optica and central pontine
myelinolysis, demyelination in AHL is secondary to astrocyte injury.
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Introduction
Acute hemorrhagic leukoencephalitis (AHL), or Hurst’s
disease, is a fulminant demyelinating disease of unknown
etiology with fatal outcome within one week from onset
due to severe cerebral edema and herniation [1,2]. Histo-
pathologically, AHL is characterized by the presence of
perivascular haemorrhagic demyelinating lesions with
prominent edema, axonal injury and predominantly
neutrophilic parenchymal and meningeal inflammatory
infiltrates [1,2]. Based on the pathological similarities

between acute disseminated encephalomyelitis (ADEM)
and AHL, AHL is now considered a hyperacute variant of
ADEM [3]. In many cases, both AHL and ADEM occur
within 2 to 4 weeks of a premonitory infection, most com-
monly a viral upper respiratory infection, although the
prerequisite of an antecedent infection is neither specific
nor sensitive for their diagnosis [1,4,5].
The pathological features of AHL differ between acute

and late disease stages [6,7]. Severe hemorrhages, fibrin
impregnation of blood vessel walls and perivascular
fibrin exudation, edema and predominantly neutrophilic
inflammation are characteristic for the early AHL stages
seen in patients with fulminant disease and fatal course
within 2 days. Perivascular demyelination, perivascular
microglial foci and myelin-laden macrophages appear
later in the disease evolution as seen in patients with a
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longer disease course. Similarly, hypertrophic reactive
astrocytes are not seen in early hemorrhagic non-
demyelinated lesions, but may become apparent in older
AHL lesions [7,8]. Herein, we describe the pathology of a
case of AHL with a fulminant and fatal course, and pro-
vide histopathological evidence that damage to astrocytes
is an early event that precedes demyelination in AHL.

Consent
This study was approved by the University of Saskatchewan
Biomedical Research Ethics Board (Bio-REB # 11–217).
The Bio-REB issued a waiver of the requirement of consent
for the examination of retrospective archival pathological
material when patient or next of kin contact was not
possible due to unavailable medical records and contact
information (this is a 12 year old case). All samples were
deidentified. Bio-REB considered the requirements of
section 29 under the Health Information Protection Act
(HIPA) and was satisfied that this study meets the privacy
considerations outlined therein.

Case report
A 39 year old male patient presented to the ER department
for new-onset seizures and severe headache preceded by
three days of flu-like symptoms. A CT head was performed
but revealed no abnormalities. The patient was prescribed
sedatives and discharged home. The next day the patient
became lethargic and slow to answer questions. Subse-
quently his level of consciousness deteriorated rapidly and
he was found unconscious when Emergency Medical
Services arrived. He was treated on site for narrow
complex tachycardia (160/min) without any benefit
and then transported to the ER. Neurological examination
revealed deep coma (Glasgow Coma Scale 3/15) with
pinpoint pupils. His general examination was remarkable
for tachycardia (160/min), hypertension (214/116) and few
respiratory crackles. He was intubated for airway protec-
tion. A CT scan revealed mild dilation of the ventricular
temporal horns and poor grey – white matter differenti-
ation. A chest X-ray was suggestive of pulmonary edema.
An ECG revealed atrial flutter with 2:1 block that
responded to amiodarone infusion. CBC showed 17.5X109

white blood cells/L (differential not available), normal
haemoglobin and platelet counts. Drug screen and blood
cultures were negative. CSF examination revealed bloody
fluid, with increased protein (4.66 g/l) and 365 cells/μl
with 75% lymphocytes and 25% polymorphonuclear
leukocytes. CSF Gram stain and cultures were negative.
The patient was admitted to ICU where he reverted to

narrow complex tachycardia and became hypotensive.
He received DC shocks multiple times and the amiodarone
bolus was repeated. The patient reverted to sinus rhythm,
but remained hypotensive, and IV fluids and vasopressors
were administered. He continued to deteriorate, went into

a ventricular rhythm and was noted to have fixed dilated
pupils. Despite cardiovascular support, he became asystolic
and cardiopulmonary resuscitation proved unsuccessful.
The patient was pronounced dead 3 hours after admission.

Pathology
At autopsy, the brain was markedly swollen and weighed
1650 g. Gross examination revealed moderate cortical
gyral flattening, and bilateral uncal and cerebellar tonsil
herniation. Diffuse, spotty haemorrhages were noted in
the temporal lobes, cerebellar hemispheres and brainstem.
The large intracranial arteries at the base of the brain were
normal in calibre and distribution, and showed no patho-
logical changes. There was no evidence of aneurysm and
no free blood in the cranial cavity. The spinal cord was
unremarkable both grossly and microscopically.
Brain tissue was fixed in 10–15% formalin and embedded

in paraffin. Sections, 5 μm thick, were stained with haema-
toxylin and eosin (HE) for morphological evaluation and
Luxol-fast blue- haematoxylin and eosin (LFB/HE) to dem-
onstrate myelin. Immunohistochemistry was performed
using an avidin–biotin technique without modification [9].
Antigen retrieval was performed as previously described.
Tissues were exposed (16 hrs, at 4°C), to primary antibodies
specific for: aquaporin-1 (AQP1; rabbit polyclonal 1:500;
Santa Cruz, USA), aquaporin-4 (AQP4; affinity-purified
rabbit polyclonal 1:250; Sigma-Aldrich, USA), glial fibrillary
acidic protein (GFAP, mouse monoclonal 1:4000; Dako,
Denmark), myelin proteolipid protein (PLP, rabbit poly-
clonal 1:500; Serotec, Oxford, USA), myelin oligodendro-
cyte glycoprotein (MOG, rabbit monoclonal 1:1000;
Abcam, USA), myelin-associated glycoprotein (MAG,
rabbit monoclonal 1:500; Sigma, USA), T lymphocytes
(CD3, rat monoclonal 1:400; Serotec, USA), cytotoxic T
lymphocytes (CD8, mouse monoclonal 1:50; Dako,
Denmark), macrophages/microglial cells (CD68, mouse
monoclonal 1:1000; Dako, Denmark), human immuno-
globulin G (IgG, rabbit monoclonal 1:500; Epitomics,
USA), herpes simplex virus 1 and 2 (HSV 1&2, rabbit
polyclonal 10 mg/ml; Biocare Medical, USA) and cyto-
megalovirus (CMV, mouse monoclonal, 10 mg/ml; Biocare
Medical, USA). Primary antibodies were omitted in con-
trol staining. In situ hybridization was performed using
fluorescein-labeled oligonucleotide probes specific for
Epstein-Barr Virus-Encoded RNA (EBER; Ventana
Medical Systems, USA).
Microscopically, perivascular haemorrhages, involving

small veins and venules preferentially, were present and
abundant in the leptomeninges (Figure 1a), neocortex and
subcortical white matter of the temporal lobes (Figure 1b),
hippocampus, cerebellar cortex and white matter (Figure 1c),
optic chiasm, mammillary bodies, throughout the brainstem
(Figure 1d, f-g) and in the cranial nerve roots (Figure 1e).
Within the medulla, hemorrhages involved the floor of
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the fourth ventricle bilaterally, while the inferior olivary
nucleus, olivocerebellar fibers, amiculum olivae and
the pyramids were affected unilaterally (Figure 1d).
Ball and ring haemorrhages affected grey and white
matter indiscriminately throughout the nervous system

both supra- and infratentorially (Figure 1f,g). In many
instances, involved vessels showed evidence of fibrinoid
necrosis and fibrin exudation (Figure 1h). Occasionally
the vessel lumen was occluded by fibrin or platelet
thrombi. Moderate and marked inflammatory infiltrates

Figure 1 Neuropathology of AHL. Haemorrhages are present in the (a) leptomeninges (HE, scale bar = 500 μm), (b) temporal lobe (HE, scale
bar = 1600 μm), (c) cerebellum (HE, scale bar = 200 μm), (d) medullary olive (LFB/HE, scale bar = 500 μm) and (e) vagus nerve root (LFB/HE, scale
bar = 100 μm). (f) Ball (LFB/HE, scale bar = 100 μm) and (g) ring haemorrhages (LFB/HE, scale bar = 100 μm) affect the pontine white and gray
matter, respectively. (h) An involved blood vessel shows evidence of fibrinoid necrosis and fibrin exudation (HE, scale bar = 50 μm). (i)
Perivascular inflammatory infiltrates consist mainly of neutrophils (HE, scale bar = 33 μm). (j) Parenchymal microglial foci are confined to
haemorrhagic areas [CD68/LFB/Nuclear Fast Red (NFR), scale bar = 100 μm]. (k) Myelin pallor is present in the cerebellar white matter and
seems to be due to spreading of the myelin sheaths because of edema and diffusion of an eosinophilic fibrin-like substance conferring the white
matter a sieve-like appearance (LFB/HE, scale bar = 100 μm). (l) High magnification visualization of the myelinated fibers reveals vacuolation and
decompaction of myelin (arrow heads); rare apoptotic oligodendrocytes are present (arrow) (LFB/HE, scale bar = 33 μm).
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were present perivascularly, within the vessel walls and
parenchymally. They consisted mainly of neutrophils
(Figure 1i). Mild and moderate perivascular and parenchy-
mal invasion with monocyte and T-lymphocyte, predom-
inantly cytotoxic T-cells, was also present. Perivascular
microglial foci were rare. Parenchymal microglial nodules
were present but restricted to hemorrhagic areas (Figure 1j).
There was no evidence of perivascular immunoglobulin
deposition. Neither reactive astrocytosis nor neuronal eo-
sinophilia were present.
Apart from the presence of hemorrhages, edema with

tissue vacoulation was the most prominent neuropatho-
logical feature observed both at gross examination and
microscopically. Myelin was well preserved and perivascu-
lar demyelination not present. Myelin pallor was present
in the inferior olive and cerebellar white matter and
appeared to be due to spreading of the myelin sheaths
because of edema and diffusion of an eosinophilic
fibrin-like substance similar to the perivascular fibrin
exudates conferring the white matter a sieve-like appear-
ance (Figure 1k,l). Higher magnification of the myelinated
fibers in these areas of myelin rarefaction revealed vacuol-
ation and decompaction of myelin (Figure 1l, arrowheads).
Rare apoptotic oligodendrocytes were present (Figure 1l,
arrow).
Astrocytes in these non-demyelinated white matter

regions (Figure 2a,c) affected by hemorrhages and perivas-
cular fibrin exudates (Figure 2b) displayed morphological
changes consistent with injury (Figure 2d-l). Perivascular
astrocyte end-feet and parenchymal astrocyte processes
exhibited impressive swelling (Figure 2d-i). Astrocytes
were dystrophic and displayed “beaded” processes consist-
ent with degeneration (Figure 2j-l). Both the astrocytic
swellings and the dot-like astrocytic remnants were im-
munoreactive for AQP4, AQP1 and GFAP (Figure 2d-l).
Despite the presence of meningeal hemorrhage and in-

flammation often extending in the Virchow–Robin spaces
(Figure 3d), tissue vacuolation, parenchymal hemorrhages
and neutrophilic infiltrates, the myelin in the temporal
cortex was preserved (Figure 3e). However, protoplasmic
astrocytes exhibited both swelling and degeneration of
their processes and perivascular end-feet (Figure 3a-c),
and the severity of these changes decreased from the pia
toward the white matter. Vacuolation of protoplasmic
astrocytic processes (Figure 3f) and perivascular end-feet
(Figure 3g), as well as GFAP-positive astrocytic swellings
(Figure 3h) were also present in the frontal cortex in the
presence of meningeal inflammation, but in the absence
of either perivascular or parenchymal brain tissue inflam-
matory infiltrates, or vasculopathy. Astrocytes in the
parietal and occipital cortex displayed normal morphology
(Figure 3i-k).
Tissue stains for microorganisms, including HSV, EBV,

CMV and fungi were negative. No viruses were isolated

in the CSF collected at necropsy and the cryptococcal
antigen test was negative.
Microscopic examination of the myocardium of the left

ventricle and posterior wall of the right ventricle revealed
the presence of polymorphonuclears, predominantly peri-
vascularly. There was no evidence of necrosis, fibrosis or
damage to the vessel wall, and no evidence of damage to
the myocytes. Sections of the lungs revealed pulmonary
edema, and there was acute congestion of the liver. Exam-
ination of other organs and tissues reveled no pathological
changes.

Discussion
While haemorrhagic perivascular demyelination is con-
sidered the histopathologic hallmark of AHL, previous
studies have shown that the pathology of AHL varies
with the acuteness of the disease [6,7]. The predominance
and severity of haemorrhages and edema, and the prepon-
derance of neutrophils in inflammatory infiltrates we have
found in this case coupled with the absence of frank
perivascular demyelination, the absence of macrophages
and the rarity of perivascular microglial infiltrates are
acute histopathological features consistent with the short
interval between onset and death in AHL [6], and similar
to what is observed in AHL experimental models [10].
In cases with a longer course, increasing proportions of
macrophages and microglia are found in the inflammatory
infiltrates, and perivascular demyelination may become
obvious [6]. Our findings corroborated with previously
published studies reinforce the concept that disease stage
influences AHL pathology: circumscribed perivascular
demyelination is not present in fulminant cases with fatal
outcome within 1 to 2 days from onset.
This is the first study that highlights the early and

widespread injury of astrocytes in AHL. We show that
both protoplasmic and fibrous astrocytes exhibit swelling
of their end-feet and degeneration of their processes and
cell bodies in the absence of demyelination and consider-
able oligodendrocyte injury, suggesting that astrocytes may
be an early initial target in AHL and that demyelination is
secondary. These findings may also explain the absence of
reactive astrocytosis seen in this case, and other reported
acute AHL cases [8]. While we show that astrocytes are
the first nervous cells affected in AHL, it is possible that
primary vasculopathy with secondary tissue destruction-
related neutrophil infiltration and vasogenic edema causes
astrocytic injury.
However, we also found astrocytes with swollen pro-

cesses and perivascular end-feet in cortical regions
without hemorrhages, brain tissue inflammation or vascular
changes. This reinforces the early astrocytic disturb-
ance in AHL that may be independent of the presence
of vascuolpathy, and raises interesting questions regarding
the chronology of lesion development. Morphological
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changes of astrocytes similar to those described here have
been reported in cytotoxic edema associated with hypona-
tremia, ischemia, brain trauma and hepatic encephalop-
athy [11-14]. Furthermore, imaging studies have shown
that decreased apparent diffusion coefficient consistent

with cytotoxic edema is present in AHL before the blood–
brain barrier (BBB) is altered [15,16]. All these findings
show an important early role for cytotoxic edema in AHL
and suggest that hypoxic, osmotic or toxic stress may
drive the pathogenesis of this idiopathic disorder and/or

Figure 2 Astrocytes in the affected white matter show morphological changes consistent with injury in the absence of demyelination.
(a) Myelin is preserved in white matter regions affected by haemorrhages (PLP, scale bar = 50 μm). (b) White matter blood vessel shows
perivascular fibrin exudation (also note the absence of axonal swellings consistent with absence of axonal injury) (HE, scale bar = 50 μm), but
(c) perivascular myelin is preserved (PLP, scale bar = 50 μm). (d-f) Perivascular astrocyte end-feet exhibit impressive swelling: astrocytic swellings
are immunoreactive for (d) AQP4 (AQP4, scale bar = 50 μm), (e) AQP1 (AQP1, scale bar = 50 μm) and (f) GFAP (scale bar = 50 μm). (g-i) Parenchymal
astrocyte processes exhibit impressive swelling: astrocytic swellings are immunoreactive for (g) AQP4 (AQP4, scale bar = 50 μm), (h) AQP1 (AQP1, scale
bar = 50 μm) and (i) GFAP (scale bar = 50 μm). (j-l) Astrocytes are dystrophic and have “beaded” processes consistent with degeneration: the dot-like
astrocytic remnants are immunoreactive for (j) AQP4 (AQP4, scale bar = 33 μm), (k) AQP1 (AQP1, scale bar = 33 μm) and (l) GFAP (scale bar = 33 μm).

Robinson et al. Acta Neuropathologica Communications 2014, 2:52 Page 5 of 8
http://www.actaneurocomms.org/content/2/1/52



render these central nervous system (CNS) regions more
susceptible to BBB damage, free entry of blood toxins or
autoantibodies, and development of lesions [17].
Meningeal inflammation is a constant pathological

finding in ADEM and AHL [1,6-8], and is the earliest

histopathological feature observed in experimental allergic
encephalomyelitis (EAE) and hyperacute EAE [10,18], pre-
ceding the appearance of parenchymal inflammation and
demyelination. Furthermore, we show that the upper cor-
tical layers located in close proximity to the haemorrhagic

Figure 3 Astrocytes in the affected and non-affected cortices are injured. (a-b) Astrocyte swellings are immunoreactive for (a) AQP4 (AQP4,
scale bar = 50 μm)) and (b) AQP1 (AQP1, scale bar = 33 μm). (c) Degenerated astrocyte processes are immunoreactive for GFAP (GFAP, scale
bar = 33 μm). (d) Meningeal haemorrhages and inflammation extend into the perivascular spaces and upper cortical layers (HE, scale bar = 200 μm);
inset shows neutrophils infiltrating into the molecular layer of the cortex (HE, scale bar = 8.75 μm). (e) Cortical myelin is preserved in regions affected
by haemorrhage (PLP, scale bar = 100 μm). (f-g) Astrocytes in the frontal cortex which does not show haemorrhages or vascular changes have (f)
swollen processes (AQP4, scale bar = 33 μm) and (g) swollen perivascular end-feet (AQP4, scale bar = 50 μm). (h) Astrocyte swellings in the frontal
cortex also display GFAP immunoreactive swellings (GFAP, scale bar = 33 μm). (i-k) Normal morphology of astrocytes in the occipital cortex of this case:
(i) parenchymal astrocytes (AQP4, scale bar = 33 μm); (j) perivascular astrocytes (AQP4, scale bar = 50 μm); and (k) astrocytic fibers (GFAP,
scale bar = 33 μm).
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and inflamed leptomeninges exhibit severe astrocytic frag-
mentation, while the further located deep cortical layers only
show astrocyte swelling. It is therefore plausible that the
cytotoxic swelling of astrocytes with or without breakdown
of BBB may be caused by toxic products released by neutro-
phils and other inflammatory cells that have infiltrated the
subarachnoid space [19], and suggest a potential beneficial
role for neutrophil-depletion therapies in AHL [19,20].
Both neuromyelitis optica (NMO) and central pontine

myelinolysis (CPM) are primary astrocytopathies with sec-
ondary demyelination [21-23]. NMO is an autoimmune
inflammatory astrocytopathy caused by anti-AQP4 comple-
ment-activating IgG autoantibodies [24,25], while astrocytic
injury in CPM is a consequence of the osmotic stress [22].
Early lesions in both NMO and a subgroup of CPM pa-
tients are characterized by astrocytic damage, and loss of
AQP4 in NMO and of both AQP4 and AQP1 in CPM
[22,23]. The BBB is altered in both NMO (required for the
entry of the pathogenic autoantibodies into the CNS) and
CPM (caused by endothelial shrinkage due to the rapid
correction of chronic hypotonicity with a hyperosmolar
solution). Loss of AQP4 in NMO is caused by its internal-
ization by astrocytes or by complement-mediated destruc-
tion of astrocytes following binding of NMO-IgG to
AQP4 [26], while loss of AQP4 and AQP1 in CPM may
represent a protective mechanism whereby astrocytes re-
strict water loss to prevent apoptosis [22]. The disruption
of the BBB coupled with the inability of astrocytes to ei-
ther buffer or eliminate the excess water in NMO and
CPM causes vasogenic edema and increased osmolarity of
the CNS extracellular space and may trigger and/or ex-
acerbate the intramyelinic edema, oligodendrocyte apop-
tosis and secondary demyelination. Early AHL lesions
exhibit preservation of AQP4 and AQP1. Aquaporins rep-
resent the rate-limiting step for water flow from the vas-
cular compartment into the CNS [27]. Therefore, the
preservation of AQP1 and AQP4 allows astrocytes to ini-
tially buffer the water that flows from the blood into the
CNS through an intact BBB likely due to hypoosmolality
or hypoxic energy failure that causes cytotoxic edema
[27]. However, in the presence of a persisting insult, the
compensatory mechanisms ultimately fail and the swollen
astrocytes die [28].
In conclusion, we present a case of AHL with rapid

progression and fatal outcome within less than 48 hours
from onset, whose neuropathologic picture is dominated
by the widespread swelling and degeneration of astrocytes
in the absence of demyelination, suggesting that, similarly
to NMO and CPM, demyelination in AHL is secondary to
astrocyte injury.
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