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Il-1r1 drives leukemogenesis induced by Tet2 loss
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Loss of the ten-eleven translocation methylcytosine dioxygenase 2
(Tet2) gene, which is commonly mutated in hematological
malignancies, dysregulates inflammatory pathways, including the
interleukin-1 (IL-1) pathway [1–3]. Roles for IL-1 signaling have
been reported in terminally differentiated hematopoietic cells and
in non-cell autonomous contexts [3, 4]. However, our group
demonstrated that inhibition of inflammatory pathways can
suppress clonal hematopoiesis (CH), indicating potential direct
roles for hematopoietic stem and progenitor cells (HSPCs) in
inflammation [5]. As TET2 mutations are often present in HSPCs
and provide these cells with a competitive advantage, dysregula-
tion of the IL-1 pathway in HSPCs may contribute to leukemogen-
esis and may catalyze the progression of preleukemic states to
malignancy [6].
Mutations in the TET2 gene are detected in a variety of myeloid

malignancies, including acute myeloid leukemia (AML) [6].
Similarly, Tet2−/− transgenic mice and recipient mice transplanted
with Tet2−/− bone marrow (BM) exhibit splenomegaly, mono-
cytosis, extramedullary hematopoiesis, and expansion of the
Lin-;Sca1+;c-Kit+ (LSK) population [7]. Acute and chronic IL-1
exposure expands myeloid cells at the expense of lymphoid cells;
however, chronic exposure ultimately depletes the ability of
hematopoietic stem cells (HSCs) to self-renew [8]. While previous
studies have investigated the exogenous effects of IL-1α and IL-1β
on hematopoiesis and on mature hematopoietic cells, IL-1R1, the
primary of ten IL-1 receptors, binds to multiple proteins, including
IL-1α, IL-1β, IL-1 receptor antagonist, IL-38, and its co-receptor IL-1
receptor accessory protein, underscoring that the full spectrum of
the consequences of IL-1R1-dependent signaling in HSPCs is not
yet known [9].
Based on these findings, we hypothesized that loss of the Il-1r1

gene would rescue the hematological abnormalities associated
with Tet2 deficiency at the HSPC level. Both Il-1r1 and Tet2 are
expressed in multiple hematopoietic cell types, including high
expression in HSPCs (Supplementary Fig. 3A, B) [10]. To determine
whether loss of Il-1r1 can ameliorate malignancy, we generated
Tet2−/−;Il-1r1−/− mice and analyzed peripheral blood (PB) counts
in a large cohort. The frequencies of myeloid cells were elevated in
Tet2−/− mice; however, these cell types were restored to wild-type

(WT) levels in Tet2−/−;Il-1r1−/− mice (Fig. 1A). In addition to an
increase in myeloid cells, lymphocyte frequency was reduced in
Tet2−/− mice, demonstrating a myeloid shift at the expense of
lymphocytes (Fig. 1A). Higher red cell distribution width (RDW-CV)
was recently reported as a measure of pro-inflammatory states
and correlated with an increased risk of AML in humans [11].
Consistent with a pro-inflammatory state due to Tet2 loss, RDW-CV
was increased in Tet2−/− mice and was relieved by inactivation of
Il-1r1 (Fig. 1B). In representative mice from this larger cohort,
Tet2−/− mice had larger spleen sizes and weights, which were
corrected by loss of Il-1r1 (Fig. 1C and Supplementary Fig. 1A).
These mice showed similar alleviations of elevated myeloid
frequencies and suppressed lymphocyte frequencies, supporting
a role for Il-1r1 at the stem-cell level (Supplementary Fig. 1B–D). To
examine this possibility, the levels of HSPCs were measured by
flow cytometry. Elevated levels of LSKs, long-term HSCs (LT-HSCs),
short-term HSCs (ST-HSCs), multipotent progenitor (MPP) pools 2,
3/4, 3, and 4, and common myeloid progenitors (CMPs) were
detected in Tet2−/− mice, and these increases were rescued in
Tet2−/−;Il-1r1−/− mice, suggesting that loss of Il-1r1 rescues the
expansion of HSPCs associated with Tet2 deficiency (Fig. 1D;
Supplementary Fig. 1E–K). Comparable to other progenitor
populations, Lin-;Sca1+ cells, which represent a subset of
lymphoid progenitors that differ from common lymphoid
progenitors (CLPs), were also increased in Tet2−/− mice (Fig. 1D)
[12]. However, Lin-;CD127+ progenitors within this Lin-;Sca1+

population were suppressed, indicating the presence of a block in
lymphopoiesis at this stage (Fig. 1D). The increases in LSKs, LT-
HSCs, ST-HSCs, and MPPs may represent a compensatory response
to this blockage. Il-1r1 inactivation relieved inhibition of
Lin-;CD127+ cells and normalized the levels of mature lymphoid
cell types (Fig. 1D). These findings show that Il-1r1 loss can rescue
Tet2-associated HSPC abnormalities. Together, they support roles
for IL-1R-dependent signaling at the level of HSPCs, in the
correction of myeloid disease, in the modulation of the pro-
inflammatory state associated with Tet2 deficiency, and in the
balance of myeloid and lymphoid cell types.
To investigate whether Il-1r1 deficiency rescues Tet2-associated

hematological malignancies in a cell autonomous manner, we
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performed a competitive transplantation of BM containing HSPCs
from C57 (CD45.2), Boy/J (CD45.1), Tet2−/− (CD45.2), Il-1r1−/−

(CD45.2), and Tet2−/−;Il-1r1−/− (CD45.2) donor mice into CD45.1-
and CD45.2-expressing F1 recipient mice and evaluated the effects
of Il-1r1 loss on engraftment and on Tet2−/− HSPCs and mature
hematopoietic cell types (Supplementary Fig. 2A). Inactivation of Il-
1r1 reduced the increased engraftment of CD45.2-expressing cells
and the high numbers and frequencies of white blood cells (WBC)
and myeloid cells detected in mice transplanted with Tet2−/− BM
(Fig. 2A; Supplementary Figs. 2B–G and 4A, B). Similar corrections of
myeloid cells were observed in PB smears and Gr-1+ myeloid cells
(Fig. 2A, B). As in the transgenic mice, loss of Il-1r1 corrected spleen
sizes and weights (Fig. 2C; Supplementary Fig. 2H). Consistent with
relief of lymphocyte suppression, an increased lymphocyte
frequency and elevated percentages of CD4+ T cells, CD8+

T cells, natural killer (NK) cells, and plasmacytoid dendritic cells
(pDCs), all cells of lymphoid origin, were detected in mice
transplanted with Tet2−/−;Il-1r1−/− BM, demonstrating that loss of
Il-1r1 at the HSPC level can restore the levels of multiple lymphoid
cell types (Supplementary Fig. 4C–N). Similar to the transgenic mice,
increased levels of LSK, MPP2, and MPP3/4 cells associated with
Tet2 deficiency were rescued in mice transplanted with Tet2−/−;Il-
1r1−/− BM, corroborating a role for Il-1r1 in the regulation of cell
populations that contain leukemia-initiating cells (Supplementary
Fig. 3C–E). In addition, in mice transplanted with Tet2−/− BM, Lin-;c-
Kit+ cells were reduced, while Lin-;Sca1+ cells were significantly
elevated (Supplementary Fig. 3F, G). These changes were reversed

in mice transplanted with Tet2−/−;Il-1r1−/− BM, further supporting
profound shifts in myeloid and lymphoid populations (Supplemen-
tary Fig. 3F, G). Collectively, these findings suggest that Il-1r1 loss
abrogates hematological malignancy and corrects disruption of the
myeloid-lymphoid balance via cell autonomous mechanisms in
HSPCs.
To investigate whether inactivation of IL-1 signaling in BM cells

alleviates systemic inflammation associated with Tet2 deficiency,
serum cytokine levels were measured. Consistent with previous
studies, loss of Tet2 led to increases in multiple cytokines and
chemokines, including tumor necrosis factor α (TNFα) and the
interferon-γ (IFN-γ)-inducible genes IFN-γ-induced protein 10 (IP-
10/CXCL10) and monokine induced by IFN-γ (MIG/CXCL9)
(Supplementary Fig. 5A–C) [1, 2]. These cytokines and chemokines
were restored to WT levels in mice transplanted with Tet2−/−;Il-
1r1−/− BM (Supplementary Fig. 5A–C). TNFα promotes the
expansion of Tet2−/− cells in vitro, indicating a non-cell
autonomous role [2]. However, we demonstrated that TNFα levels
were also elevated in mice transplanted with Tet2−/− BM and that
this increase was rescued by Il-1r1 loss in a cell autonomous
manner. TNFα and IFNγ can control the levels of Lin-;Sca1+ cells
and Sca1 expression and can promote myeloid expansion and
regeneration, providing opportunities for antagonistic regulation
of lymphoid and myeloid populations [13–15]. Together, these
results support roles for IL-1 signaling in HSPCs in modulating the
myeloid-lymphoid balance and in determining the pro-
inflammatory status of Tet2−/− mature hematopoietic cells. Based

Fig. 1 Tet2−/−;Il-1r1−/− mice demonstrated a correction of myeloid cell elevation, lymphocyte suppression, RDW-CV, spleen size, and
HSPC levels. A, B Means for neutrophil, monocyte, and lymphocyte frequencies and RDW-CV are displayed for a large cohort of mice over a
range of ages. n= 17–38 per group. C Gross photographs of spleens for representative mice are presented. D Mean frequencies for LSK,
Lin−;Sca1+, and Lin−;CD127+ cells are shown for representative mice. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001. Error bars represent
standard deviation. n= 4−5 per group.
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on these findings, we propose a mechanism by which loss of Tet2
leads to a pro-inflammatory state that is characterized by high
levels of TNFα and IFN-γ and that causes a myeloid bias at the
expense of lymphoid cells (Supplementary Fig. 2I). This shift was
evidenced by the elevation of CMPs and the suppression of
Lin-;CD127+ lymphoid progenitors in Tet2-deficient contexts. The
loss of IL-1R1-dependent signaling rescued these disruptions in
normal hematopoiesis, abrogating myeloid disease and bolstering
its potential as a therapeutic target (Supplementary Fig. 2J).
To determine the clinical relevance of IL-1R1 expression in

patients with myeloid malignancies, we examined two publically-
available datasets for IL-1R1 expression levels and correlated these
levels with survival. Both pediatric and adult AML patients with
higher levels of IL-1R1 expression exhibited decreased survival,
suggesting a role for IL-1R1 in AML pathogenesis (Supplementary
Fig. 6A, B). To evaluate whether the effects of IL-1R1 on survival are
specific to distinct AML subtypes, survival was analyzed in the
context of high and low IL-1R1 expression in ten adult AML
subtypes. High expression of IL-1R1 conferred reduced survival in

subtypes containing mutations in the CBFB-MYH11, NPM1, or p53C
genes (Supplementary Fig. 7A–K). IL-1 signaling has been implicated
in the expansion of CD34+ human AML cells, further supporting its
clinical relevance [4]. These results underscore the potential
therapeutic implications of IL-1R-dependent signaling in myeloid
malignancies and suggest that patient stratification may be needed.
In summary, we have shown that loss of Il-1r1 in Tet2−/− HSPCs

rescued several abnormalities associated with Tet2 deficiency,
including the elevation of LSK cells, the pro-inflammatory state,
and the myeloid-lymphoid imbalance. Furthermore, high expres-
sion of IL-1R1 had a clinically significant impact on AML survival.
Collectively, these findings underscore a potential therapeutic role
for IL-1 signaling in the myeloid aspects of hematological
malignancies and preleukemic conditions at the stem-cell level.

DATA AVAILABILITY
The IL-1R1 expression data are publically available. Other data generated in this study
are available from the corresponding author on reasonable request.

Fig. 2 Recipients of Tet2−/−;Il-1r1−/− BM exhibited rescue of increased levels of myeloid cells and spleen size. A Mean absolute counts of
neutrophils, monocytes, and eosinophils and the frequency of Gr-1+ myeloid cells at six-months post-transplant. B Photographs of
representative blood smears are shown and were acquired at 20X magnification. The scale bar denotes 20 μm. C Gross photographs of spleens
are presented. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001. Error bars represent standard deviation. n= 4–5 per group.
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