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A safety net for the artificial pancreas
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OBJECTIVE — The purpose of this study was to develop an advanced algorithm that detects
pending hypoglycemia and then suspends basal insulin delivery. This approach can provide a
solution to the problem of nocturnal hypoglycemia, a major concern of patients with diabetes.

RESEARCH DESIGN AND METHODS — This real-time hypoglycemia prediction al-
gorithm (HPA) combines five individual algorithms, all based on continuous glucose monitoring
1-min data. A predictive alarm is issued by a voting algorithm when a hypoglycemic event is
predicted to occur in the next 35 min. The HPA system was developed using data derived from
21 Navigator studies that assessed Navigator function over 24 h in children with type 1 diabetes.
We confirmed the function of the HPA using a separate dataset from 22 admissions of type 1
diabetic subjects. During these admissions, hypoglycemia was induced by gradual increases in
the basal insulin infusion rate up to 180% from the subject’s own baseline infusion rate.

RESULTS — Using a prediction horizon of 35 min, a glucose threshold of 80 mg/dl, and a
voting threshold of three of five algorithms to predict hypoglycemia (defined as a FreeStyle
plasma glucose readings <60 mg/dl), the HPA predicted 91% of the hypoglycemic events. When
four of five algorithms were required to be positive, then 82% of the events were predicted.

CONCLUSIONS — The HPA will enable automated insulin-pump suspension in response
to a pending event that has been detected prior to severe immediate complications.
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he Diabetes Control and Complica-
tions Trial (DCCT) proved that glu-
cose control in the closer-to-normal
range (tight glycemic control) reduced
the likelihood of eye, kidney, nerve, and

olescent portion of the DCCT, the risk for
severe hypoglycemia was even greater,
with one episode every 1.17 years (85.7
per 100 patient-years) (2). One report in
children found 75% of severe lows to oc-

cardiovascular complications of diabetes
(1,2). Unfortunately, the DCCT also
showed that the incidence of severe hypo-
glycemia was three times higher in the
intensively treated group compared with
the standard treatment group (1). In the
DCCT, 55% of the severe lows occurred
during sleep hours (1). Further, in the ad-

cur during the nighttime hours (3). The
high frequency and duration of nocturnal
hypoglycemia has been confirmed in clin-
ical research center (CRC) studies, in
which frequent laboratory reference glu-
cose values were obtained. For example,
in a DirecNet study of exercise-induced
nocturnal hypoglycemia, children who
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did not exercise had a 28% incidence of
nocturnal hypoglycemia (glucose <60
mg/dl), and those who exercised had a
48% incidence of nocturnal hypoglyce-
mia (4). In a recent study (5) of bedtime
snacks and nocturnal hypoglycemia, on
nights when adult subjects did not have a
snack, 57% became hypoglycemic (<70
mg/dl), with an average duration of hypo-
glycemia of over 2.5 h. In this study, the
duration of hypoglycemia was as long as
8.75 h.

Real-time continuous glucose moni-
toring (CGM) is becoming available with
the Food and Drug Administration (FDA)
approval of the MiniMed Guardian, the
DexCom STS, and the Abbott Navigator.
One of the major perceived benefits of re-
al-time glucose monitoring is the ability of
these devices to have alarms for hypogly-
cemia. For a real-time alarm to be effec-
tive, it must awaken a sleeping subject.
The first FDA-approved real-time glucose
monitor was the GlucoWatch™. To de-
termine whether the alarm function on
the GlucoWatch was effective in awaken-
ing children while they were sleeping, an
infrared camera was used to videotape
them throughout the night in the CRCs.
During this admission, reference glucose
values were obtained every half hour to
document hypoglycemia. In this study,
71% of youths wearing the watch did not
respond to nighttime alarms (6), placing
these patients at a risk for nocturnal hy-
poglycemia despite wearing a real-time
continuous glucose sensor. One possible
correction of this problem would be to
have the sensor send a signal to the pump
so that it will stop infusing insulin when
pending or real hypoglycemia has been
reached and the patient has not re-
sponded to alarms. This is the primary
focus of the hypoglycemia prediction
algorithm.

Previous studies (7-9) have shown
that when insulin infusion is stopped for
2 h or when an infusion set is discon-
nected for up to 30 min (7), there is es-
sentially no risk of the patient developing
significant ketones or acidosis. Three pre-
vious studies (8—10) have demonstrated
that turning off an insulin pump for 2 h
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did not result in diabetic ketoacidosis
(DKA). In all three studies, blood B-hy-
droxybutyrate concentrations were deter-
mined using both a meter (Precision
Xtra™) and the hospital laboratory. In
two of the studies (9,10), the continuous
subcutaneous insulin infusion pumps
were purposely turned off for periods of 4
and 5 h, with a gradual increase in 3-hy-
droxybutyratek concentrations after 2 h
to the upper normal range. No cases of
DKA occurred in these studies.

RESEARCH DESIGN AND
METHODS — The hypoglycemia pre-
diction algorithm (HPA) was developed
using data derived from 21 Navigator
studies, which assessed Navigator func-
tion over 24 h in children with type 1
diabetes, aged 3-18 years, conducted in
clinical research centers (CRCs) (11).
Then the HPA functionality was con-
firmed using a separate dataset from 22
CRC admissions of type 1 diabetic sub-
jects with a mean age of 20 years (range
6-38). In this study, hypoglycemia was
induced by gradual increases in the basal
insulin infusion rate by a mean of 180%,
18 of 22 subjects (82%) reached a glucose
value of =60 mg/dl (12,13). Promising
results were reported by Buckingham et
al. (12), where when two different algo-
rithms were used 60% of the pending hy-
poglycemic events were predicted and
prevented.

CGM data were introduced to the
HPA as if it were a real-time measure-
ment; the different algorithms analyzed
the data and an alarm was produced if a
quorum was reached by the voting algo-
rithm. Three hypoglycemia thresholds of
70,80, and 90 mg/dl were evaluated, each
with three different prediction horizons
(V) of 35, 45, and 55 min and with three
voting thresholds of 3, 4, and 5.

Hypoglycemia Prediction Algorithm

The core of the HPA is a set of individual
alarms that are combined through a vot-
ing system into one combined alarm.
With each new CGM datum, each indi-
vidual alarm will run independently and
will indicate hypoglycemia or euglyce-
mia. Then, if the number of individual
alarms that have gone off in the last 10
min is above a preset voting threshold (V),
the voting alarm will trigger. A low voting
threshold will generate more alarms, giv-
ing more warning but less accuracy. Fi-
nally, the combined alarm will trigger if
either the voting alarm or the threshold
alarm goes off. Figure 1 shows the flow
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Figure 1—Hypoglycemia alarm flowchart. The overall alarming algorithm combines multiple
independent alarms into one single alarm using a voting system, where APS is the artificial
Pancreas Software (24) feeding the data to the algorithms, LP is the linear prediction algorithm,
SPis statistical prediction algorithm, KF is the Kalman filter algorithm, HIIR is the hybrid impulse
response filter, and NLA is the numerical logical algorithm.

of the combined hypoglycemic detec-
tion algorithm (14). Glucose predic-
tions and analysis from CGM data can
be performed in more than one way by
applying different mathematical meth-
ods such as optimal estimation tech-
niques (15,16), time series (17), and
other methods. The HPA system con-
sists of five prediction algorithms:

1. Linear projection: This alarm uses a
15-min linear extrapolation and un-
certainty threshold based on the SD of
the glucose measurements in the pre-
vious 15 min.

2. Kalman filtering: A Kalman filter is
used to estimate glucose and its rate of
change, which are then used to make
predictions about future glucose lev-
els. The filter is tuned to trade off the
probability that a measured glucose
change is real versus the result of sen-
sor noise. The approach is presented
in more detail in simulation studies by
Palerm et al. (16) and applied to clin-
ical hypoglycemic clamp data in Pal-
erm and Bequette (18) and as part of
a meal detection algorithm in Dassau
et al. (19).

3. Hybrid infinite impulse response fil-
ter: The infinite impulse response
filter takes advantage of a linear dis-
crete-time signal-processing method
(20) that generates output predictions
using previous output (measured glu-
cose concentration) without input
(insulin infusion). Predicted outputs
are recursively applied to the filter co-
efficients for a prediction horizon.
The filter coefficients are updated
when prediction and parameter er-
rors are larger than user-specified
bounds. The hybrid filter prediction
with a factor (o) between fixed and
adaptive filter coefficients is consid-
ered for safe and accurate glucose pre-
dictions. It is flexible to tune the filter
performance by adjusting the data
window length (WL), prediction hori-
zon (p), and error criteria (€, and €,).

4. Statistical prediction: Multiple empir-
ical, statistical models are used to es-
timate future blood glucose values
and their error bounds. From these, a
probability of hypoglycemia is gener-
ated and thresholded to produce an
alarm. The statistical prediction algo-
rithm is divided into three compo-
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Figure 2—An example hypoglycemic event and successful detection using an alarm threshold of 70 mg/dl and a prediction horizon of 55 min. A
high-quality digital representation of this figure is available in the online issue.

nents: 1) calibration, which converts
raw CGM and capillary blood glucose
measurements into a physiologically
consistent, accurate blood glucose
history; 2) prediction, which uses
training data and the recent calibrated
blood glucose history to generate pre-
dictions and associated accuracy esti-
mates; and 3) hypoglycemic alarming,
which transforms the predictions and
accuracy estimates into a probability of
the patient becoming hypoglycemic,
which is then thresholded into a binary
alarm (12,21).

5. Numerical logical algorithm: Numer-
ical logical algorithm feeds a three-
point calculated rate of change using
backward difference approximation
and the current glucose value into
logical expressions to detect impend-
ing hypoglycemia. The logical expres-
sions verify that the rate of change is
both negative and within an accept-
able range as well as that the CGM
glucose values are within predefined
boundaries and that a pending hypo-
glycemic event is predicted within the
threshold time window. Numerical

logical algorithm provides insensitiv-
ity to sensor signal dropouts and easy
tuning.

Voting system

The voting system, as described in Fig. 1,
polls each algorithm to determine whether
it should alarm. If the number of algorithms
that predict hypoglycemia is above the vot-
ing threshold (V) more than twice in a time
window of 10 min (first crossing will prime
the alarm and the second will fire the alarm)
or the sensor blood glucose is below the
hypoglycemic threshold, then the alarm
sounds. Therefore, an alarm sounds if one
of the following is true:

e The number of individual alarms meets
or exceeds the voting threshold,;

e The sensor interstitial glucose value is
below the hypoglycemic threshold.

RESULTS — The five hypoglycemic
prediction alarms were run for all pro-
posed parameter combinations on 18 sets
of data from 18 admissions. It should be
noted that the reported results are based

solely on the predictive part of the
method.

As can be seen from Fig. 2, hypogly-
cemia was reached at around noon (de-
fined as glucose =70 mg/dl). This event
has been predicted by the different algo-
rithms 55, 45, and 35 min ahead of the
event, and an alarm could have been
issued at this time depending on the
quorum threshold (e.g., 55-min warn-
ing time if two different algorithms were
to issue a positive vote twice ina 10 min
window). If the number of positive
alarms required was three or four, a
warning time would have been 40 and
35 min, respectively, sufficient time for
a suspension of the pump to have pre-
vented the event.

Table 1 shows the results from run-
ning the individual and combined algo-
rithms against the historical pump shut-
off data. The numbered columns (e.g., 1,
2,3, 4, and 5) indicate the voting thresh-
old for the case. The data also show that
the prediction rate declines as the voting
threshold increases. This can be seen in
the range of prediction times obtained by
varying the settings of the tuning param-
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Table 1—HPA ability to predict hypoglycemia events based on historical datasets with differ-

ent voting thresholds

Prediction  Alarm Percent predicted hypoglycemic events for the given alarm scenario
horizon threshold

(min) (mg/dD) 1 2 3 4 5 KF SP HIIR NLA LP
35 70 91 64 55 36 18 82 55 45 91 55
45 70 100 82 73 64 36 100 64 64 91 73
55 70 100 100 100 82 36 100 100 82 91 100
35 80 100 100 91 82 45 100 100 82 91 82
45 80 100 100 100 91 64 100 100 91 91 91
55 80 100 100 100 100 82 100 100 100 91 91
35 90 100 100 82 73 55 100 100 91 64 73
45 90 100 100 82 82 55 100 100 100 64 73
55 90 100 100 82 82 55 100 100 100 64 73

LP, linear prediction algorithm; KF, Kalman filter algorithm; HIIR, hybrid impulse response filter; NLA,
numerical logical algorithm; SP, statistical prediction algorithm.

eters, namely, hypoglycemia prediction
time, hypoglycemia threshold value, and
the voting threshold. As an example, 91%
of the events were predicted 35 min prior
to the event using a voting threshold of
three, where voting of four of five pre-
dicted 82% of the events 35-55 min
ahead with glucose threshold of 80 mg/dl.
However, in theory, a higher success rate
could be obtained by allowing any one of
five to issue an alarm. This balance be-
tween aggressiveness of the HPA and ef-

fectiveness is an important factor since
too many false alarms are a detriment to
safety systems will result in disconnecting
of the system by the user, rendering the
system useless. HPA tuning knobs (pre-
diction horizon, alarm threshold, and
voting threshold, as seen in Table 1) al-
lows the algorithm to be adjusted to meet
the subject preferences as far as defining
the hypoglycemia threshold, time to
alarm prior to the event, and aggressive-
ness of the algorithm. These settings

could vary between day and night and be
tuned to meet individual insulin sensitiv-
ity, allowing the user to enhance specific-
ity that would prevent false alarms
resulting in pump suspension, where
during the day a more aggressive tuning
can be set that can alert the user to take
corrective action prior to the need to sus-
pend the pump. The use of a CGM in
clinical decision making is the first step
toward the artificial pancreas. The pre-
vention of nocturnal hypoglycemia based
on glucose predictions as well as missed-
meal alarms will reduce glucose variabil-
ity and clinical complications resulting
from extreme blood glucose concentra-
tions. CGM technology, together with
telemedicine applications such as E911
(22), can provide remote glucose moni-
toring and triangulation as well as pump
suspension. This technology will help in
improving the well-being of people with
diabetes and peace of mind to families of
children with diabetes.

When a safety algorithm is sug-
gested, the false-positive rate is equally
as important as the true-positive rate.
The evaluation of the true positive has
been addressed based on retrospective
analysis of clinical data. The specificity
of the algorithm was further evaluated

160 1.6
140 -
1.2
120
a3 1 &
= :
w1 =
g 100 >
2 0.8 &
S E
<] 80 kS
0.6
60 ,
" \¢ 0.4
. \ = <" | —— Glucose profile with HPA (mg/dL)
40 ' 3" ~ e — — Glucose profile without HPA (mg/dL) | |
1 [] - 4
: g P e — - - Hypoglycemia threshold
' ' = = = Basal rate with HPA (U/h)
20 0
0 100 200 300 400 500 600 700 800 900
Time (min)

Figure 3—HPA evaluation using the UVa/Padova Metabolic Simulator following a clinical scenario in which an erroneous basal delivery, twice the
usual one, was set by the user. As can be seen in the plot, without the use of HPA the subject experienced severe hypoglycemia (red dashed line) and
with the algorithm this event was prevented (blue line) by suspending the basal rate for 90 min and restoring the correct basal (green dotted line).
The black dashed-dotted line denotes the hypoglycemia threshold as defined by blood glucose. A high-quality digital representation of this figure is

available in the online issue.
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prospectively using the UVa/Padova
FDA-accepted (23) Metabolic Simulator
and is currently under clinical evaluation
that will be reported in a subsequent pub-
lication. The frequency of false-positive
alarms of the HPA has been assessed by
running the simulator under standard
conditions with a meal at 5:00 p.m., start-
ing the hypoglycemia prediction algo-
rithms at 9:00 p.m. and running it until
7:00 a.m. the following morning before a
breakfast meal. Furthermore, the HPA
was evaluated overnight using twice the
usual basal insulin in order to induce hy-
poglycemia. The prospective analysis of
the algorithm with tuning of 80 mg/dl, 45
min, and two for hypoglycemia thresh-
old, prediction horizon and voting
threshold, respectively, is provided be-
low. This simulation supported the clini-
cal results with only four in silico subjects
crossing the 60 mg/dl blood glucose
threshold out of 100 in silico adult sub-
jects, where the glucose nadir is margin-
ally <60 mg/dl. As can be seen from Fig.
3, the HPA predicted a pending hypogly-
cemic event when glucose concentration
was ~104 mg/dl and suspended the
pump for 90 min. This resulted in preven-
tion of the event where, in successive sim-
ulation without the use of the algorithm,
the glucose dropped to extremely low val-
ues. The false-positive rate of the algo-
rithm with the same tuning was 9% based
on a population of 100 different in silico
subjects and noisy sensor. However, only
three out of the nine cases where a false
alarm was issued resulted in a glucose el-
evation of >20 mg/dl from the baseline
that resulted in hyperglycemic event. It
should be noted that this needs to be fur-
ther evaluated by extensive clinical trials
to better assess the algorithm.

The use of a sophisticated voting al-
gorithm allows an extra degree of safety
prior to issuing an alarm. In addition, vot-
ing enables the use of five different indi-
vidual algorithms to predict pending
hypoglycemia and not to rely on one al-
gorithm that may or may not be the most
suitable to address the variability among
type 1 diabetic subjects. Furthermore, the
use of a suite of algorithms allows a more
robust system that can cope with glucose
variability and the different glucose drop
patterns that may affect rate of change and
the ability to detect a pending event by a
single algorithm.

CONCLUSIONS — The use of the

HPA would allow for triggering of a warn-
ing alarm and/or suspension of an insulin

pump, which should decrease the risk of
severe hypoglycemia. Based on clinical
evaluation, insulin delivery will most
likely need to be suspended 30-50 min
before a projected hypoglycemic event in
order to prevent most hypoglycemic
events (12). On one hand, longer predic-
tion time may provide greater ability to
prevent hypoglycemia events; on the
other hand, it may be impractical to sus-
pend a pump too far from an event that
may not happen due to human factors
(e.g., a planned meal). The Hypoglycemia
Prediction Algorithm (HPA) tuning al-
lows flexibility in the aggressiveness of the
alarm and can be set to meet user prefer-
ences. Furthermore, this technology can
be easily implemented in current CGM
systems and as a safety net to further arti-
ficial pancreas development.
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