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Abstract

In some recent studies, a view emerged that stochastic dynamics governing the switching

of cells from one differentiation state to another could be characterized by a peak in gene

expression variability at the point of fate commitment. We have tested this hypothesis at

the single-cell level by analyzing primary chicken erythroid progenitors through their differ-

entiation process and measuring the expression of selected genes at six sequential time-

points after induction of differentiation. In contrast to population-based expression data,

single-cell gene expression data revealed a high cell-to-cell variability, which was masked

by averaging. We were able to show that the correlation network was a very dynamical

entity and that a subgroup of genes tend to follow the predictions from the dynamical net-

work biomarker (DNB) theory. In addition, we also identified a small group of functionally

related genes encoding proteins involved in sterol synthesis that could act as the initial

drivers of the differentiation. In order to assess quantitatively the cell-to-cell variability in

gene expression and its evolution in time, we used Shannon entropy as a measure of the

heterogeneity. Entropy values showed a significant increase in the first 8 h of the differenti-

ation process, reaching a peak between 8 and 24 h, before decreasing to significantly

lower values. Moreover, we observed that the previous point of maximum entropy
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precedes two paramount key points: an irreversible commitment to differentiation between

24 and 48 h followed by a significant increase in cell size variability at 48 h. In conclusion,

when analyzed at the single cell level, the differentiation process looks very different from

its classical population average view. New observables (like entropy) can be computed,

the behavior of which is fully compatible with the idea that differentiation is not a “simple”

program that all cells execute identically but results from the dynamical behavior of the

underlying molecular network.

Author Summary

The differentiation process has classically been seen as a stereotyped program leading

from one progenitor toward a functional cell. This vision was based upon cell popula-

tion-based analyses averaged over millions of cells. However, new methods have recently

emerged that allow interrogation of the molecular content at the single-cell level, chal-

lenging this view with a new model suggesting that cell-to-cell gene expression stochasti-

city could play a key role in differentiation. We took advantage of a physiologically

relevant avian cellular model to analyze the expression level of 92 genes in individual

cells collected at several time-points during differentiation. We first observed that the

process analyzed at the single-cell level is very different and much less well ordered than

the population-based average view. Furthermore, we showed that cell-to-cell variability

in gene expression peaks transiently before strongly decreasing. This rise in variability

precedes two key events: an irreversible commitment to differentiation, followed by a

significant increase in cell size variability. Altogether, our results support the idea that

differentiation is not a “simple” series of well-ordered molecular events executed identi-

cally by all cells in a population but likely results from dynamical behavior of the under-

lying molecular network.

Introduction

The classical view of a linear differentiation process driven by the sequential activation of mas-

ter regulators [1] has been increasingly challenged in the last few years both by experimental

findings and theoretical considerations.

Thanks to the recent development in single-cell profiling technologies, researchers are now

able to investigate qualitatively and quantitatively the cell-to-cell variability in gene expression

in more detail. In this context, several experimental studies at single-cell level involving the

regulation of self-renewal and differentiation processes in embryonic stem cells [2–8] and the

generation of induced pluripotent stem cells [9] have shown that gene expression variability

might be involved in cell differentiation. To support this claim, recent researches on hemato-

poietic stem cells highlighted the role of molecular heterogeneity in differentiation [10, 11].

Further evidence was also obtained during an ex vivo differentiation process [12], and in the

generation of cells of the immune system [13–18].

The overt cell-to-cell variability is deeply rooted in the inherent stochasticity of the gene

expression process [19–23]. Numerous explanations have been put forward regarding the

molecular and cellular sources for such variability (see [24] and references therein). Some of

those causes involve biophysical processes (e.g., the random partitioning during mitosis, as

Differentiation Analyzed at Single Cell Level

PLOS Biology | DOI:10.1371/journal.pbio.1002585 December 27, 2016 2 / 35

data for single cells (0 to 8 hours kinetics: Single

\_AR78\_1\_to\_2.csv; 0 to 72 kinetics: Single

\_AR85\_1\_to\_6.csv) the actinomycin D

experiment (export_RNA_deg_exp_Diff_0h.csv;

export_RNA_deg_exp_Diff_24h.csv;

export_RNA_deg_exp_Diff_72h.csv), as well as

data for Figures are available at osf.io/k2q5b (DOI

10.17605/OSF.IO/K2Q5B).

Funding: This work was supported by funding

from the Institut Rhônalpin des Systèmes
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discussed in [25]), whereas others are more related to biochemical regulation (e.g., the

dynamical functioning of the intracellular network [26] or the chromatin dynamics [27]).

At least three models of cell differentiation based on stochastic gene expression have been

proposed, in which a peak in the gene expression variability is expected to occur. In the first

model, stochastic gene expression is the driving force of cell differentiation that generates cell

type diversity, on which a selective constraint is then exerted [28]. In the second model, noise

in gene expression causes bifurcations in the dynamics of gene regulatory networks [21]. In

the third model, cell differentiation is viewed as a dynamical process in which differentiating

cells are thought of as particles moving around in a state space [29, 30]. This formal space can

be used to display gene expression patterns. Hence, when some parameters that describe gene

regulatory interactions change, the cell particle “moves” in the state space. In this view, discrete

identified cell states (e.g., self-renewing, differentiated) correspond to different regions of this

space that could be seen as different attractor states. The transition process between attractors

therefore first requires the exit from the original state that may be fueled by an increase in gene

expression stochasticity [31]. Regardless of the differences between these models, they all

assume that the differentiation process is represented by cell trajectories leading from one state

to another through a phase of biased random walk in gene expression. This phase is followed

by stabilization (convergence) toward a particular pattern of gene expression corresponding to

a stable attractor state, the differentiated final state, in which noisy fluctuations of gene expres-

sion is minimized by the stabilizing effect of the attractor. Therefore, changes in the extent of

cell-cell variability could be a new observable metric to characterize the cell differentiation

process.

The purpose of the present study was then to assess whether gene expression variability

changes during the differentiation process, as suggested by the above-quoted models, and

whether such variation concurs with any physiological cellular change. We investigated the

extent of gene expression variability at the single-cell level, both before and during the cell dif-

ferentiation process. To do this, we analyzed the differentiation process of T2EC, which is an

original cellular system consisting of non-genetically modified avian erythrocytic progenitor

cells grown from a primary culture [32]. These cells can be maintained ex vivo in a self-renewal

state under a combination of growth factors (TGF-α, TGF-β, and dexamethasone) and can

also be induced to differentiate exclusively toward erythrocytes by changing the combination

of the external factors present in the medium. The primary cause for differentiation is there-

fore known and relies upon change in the information carried by the extracellular environ-

ment. The differentiation process in those cells has been previously analyzed at the population

level [33–35].

We first selected a pool of 110 relevant genes on the basis of RNA-Seq analysis performed

on populations of T2EC in self-renewal state or induced to differentiate for 48 h. Multivariate

statistical analysis of the data allowed us to select 92 genes for further analysis. We then per-

formed high-throughput reverse transcription followed by reverse transcription quantitative

PCR (RT-qPCR) of the 92 selected genes on single-cells collected at six time-points of differen-

tiation. Several dimensionality reduction algorithms were used to visualize trends in the data-

sets. In agreement with the above hypothesis, cell heterogeneity, as measured by entropy,

significantly increased during the first hours of the differentiation process and reached a maxi-

mal value at 8 to 24 h before decreasing toward the end of the process. The peak in entropy

preceded an increase in cell size variability at 48 h. These observations suggested that 24 h is a

crucial turning point in the erythrocytic differentiation process, which was experimentally ver-

ified by showing that T2EC committed irreversibly to the differentiation process between 24 h

and 48 h.
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Results

Identification of Differentially Expressed Genes Between Self-Renewing

and Differentiating Progenitors

In order to identify a pool of genes potentially relevant in the differentiation process, we ana-

lyzed the transcriptome of self-renewing and differentiating primary chicken erythrocytic pro-

genitor cells (T2EC) using RNA-Seq. We sequenced two independent libraries from self-

renewing T2EC and two independent libraries from T2EC induced to differentiate for 48 h.

For each condition, we first verified that read counts between replicates were reproducible

(S3A and S3B Fig). We then identified 424 significantly differentially expressed genes

(p-value< 0.05, S3C Fig). Gene ontology analysis using the DAVID database [60] revealed a

clear over-representation of genes involved in sterol biosynthesis in this list (not shown). This

finding was in line with our previous analysis showing that the oxydosqualene cyclase (OSC),

which is involved in cholesterol synthesis, is required to maintain self-renewal in T2EC [35].

However, no other over-represented function emerged from the present analysis.

Identification of Genes Relevant to Analyze the Erythrocytic

Differentiation Process

To identify a smaller subset of relevant genes for further analysis by RT-qPCR using the Flui-

digm array (see below), we tested 56 down-regulated and 77 up-regulated genes among the

above 424 genes differentially expressed in self-renewing versus differentiating cells, which

had the smallest set of p-values. We also included 32 non-regulated genes, selected among the

most invariant ones. We then measured the expression of these 165 genes first using RNA

from bulk cell populations taken at five time-points during differentiation (0, 8, 24, 48, and 72

h). Based on qPCR primer efficiency, 55 genes were removed (see Materials and Methods),

which left a total of 110 genes for the subsequent analysis.

A principal component analysis (PCA) on the bulk gene expression levels (Fig 1A) showed

a clear separation of the time-point 0 h (self-renewal) from the differentiation time-points.

Samples along the differentiation process were well ordered according to the first principal

component (PC1). PC1 explained 56.2% of the data variability suggesting that the differentia-

tion process is the main source of variability at the population level for the selected genes.

We also performed a hierarchical cluster analysis (HCA), which again showed a clear

arrangement of the samples according to their position along the differentiation process (Fig

1B). We further noticed that the gene expression patterns at 0, 8, and 24 h time-points were

more similar to each other, while those at 48 h and 72 h time-points were also more similar to

each other.

Thus, the 110 selected genes allowed us to clearly distinguish cell populations according to

their progression along the differentiation sequence, indicating that they were relevant for ana-

lyzing this process. However, since the single-cell measurement technology used in this study

could only accommodate 92 genes (not including two spikes and two repeats for the RPL22L1
gene), we further refined our gene choice by performing a K-means clustering on the above

data. The algorithm grouped genes based on their expression profile, and identified seven dif-

ferent gene clusters with respect to expression kinetics (S4 Fig).

The patterns mainly showed decreasing or increasing gene expressions during the differen-

tiation process, while one cluster displayed a more complex dynamic (cluster 4). The latter was

composed of genes whose expression decreased during the first 8 h, then increased and stabi-

lized between 24 h and 48 h, before decreasing again until 72 h. Interestingly, all genes belong-

ing to this cluster were linked by their involvement in sterol biosynthesis, reinforcing the
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previously noted role of this pathway in erythroid differentiation. Based on the result of K-

means clustering, we selected around thirteen genes per group to represent each cluster

equally. This left us with 92 genes for further analysis (S1 Table).

We then used STRING database to search for known connections among these genes. The

result confirmed the existence of a strongly connected subnetwork associated with sterol syn-

thesis (S5B Fig). Moreover, this analysis also revealed the presence of another highly connected

subnetwork mostly composed of genes involved in signaling cascades and two transcription

factors (BATF and RUNX2). Those two main networks are linked by the gene HSP90AA1
which encodes the molecular chaperone HSP90alpha. Its activity is not only involved in stress

response but also in many different molecular and biological processes because of its impor-

tant interactome. HSP90alpha represents 1%–2% of total cellular protein in unstressed cells.

Interestingly, HSP90alpha level is up-regulated and correlated with poor disease prognosis in

leukemia [61]. HSP90alpha has also been shown to be involved in the survival of cancer cells

in hypoxic conditions [62].

Cell-to-Cell Heterogeneity Blurred Cell Differentiation Process

We measured the expression level of the selected 92 genes by single-cell RT-qPCR using 96

cells isolated from the most informative time-points of the differentiation sequence. Based

upon preliminary experiments, we decided to analyze cells from six time-points during differ-

entiation. After data cleaning (see Materials and Methods), we obtained the expression level of

90 genes in 55, 73, 72, 70, 68, and 51 single cells from 0, 8, 24, 33, 48, and 72 h of differentia-

tion, respectively.

One should note that the variability we observed at the single-cell level originates from

two types of sources: biological sources and experimental sources. We therefore tested the

Fig 1. Analysis of bulk-cell gene expression during the differentiation process. Gene expression data were produced by RT-qPCR in

triplicate from three independent T2EC populations collected at five differentiation time-points (0 h, 8 h, 24 h, 48 h, 72 h). The expression level of

110 genes (18 invariants, 50 down-regulated and 42 up-regulated) was analyzed by two different multivariate statistical methods: (A) Principal

component analysis (PCA), and (B) Dendogram resulting from hierarchical cluster analysis (HCA). The dots in (A) and leaves in (B) indicate the

different cell populations and the colors indicate the differentiation time-points at which they were collected.

doi:10.1371/journal.pbio.1002585.g001
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technical reproducibility of different RT-qPCR steps liable to generate such experimental

noise (see Materials and Methods). As expected, reverse transcription (RT) was the main

source of experimental variability, since pre-amplification and qPCR steps brought negligi-

ble amount of variability (S1 Fig). Moreover, using external RNA spikes controls whose Cq

value depends only on the experimental procedure, we noted that technical variability was

negligible compared to the biological variability (see Materials and Methods). Quality con-

trol (see Materials and Methods) led to the elimination of 2 genes, letting us with 90 genes

for subsequent analysis.

We first used PCA on the single-cell expression of these 90 genes (Fig 2A). In contrast to

the whole-population data, the single-cell data did not immediately demarcate into well-sepa-

rated clusters. The differentiation process was most apparent by looking at the second princi-

pal component (PC2), which explained 9.9% of the variability in the dataset. Hence, unlike in

the population-averaged data, the differentiation process did not represent the main source of

variability at the single-cell level.

The application of HCA further confirmed that the classification became more complex for

single-cell data (Fig 2B). Contrary to bulk analysis, individual cells from the same time-point

Fig 2. Analysis of single-cell gene expression during the differentiation process. Gene expression data were produced by RT-

qPCR from individual T2EC collected at six differentiation time-points (0, 8, 24, 33, 48, and 72 h). The expression of 90 genes was

analyzed in single-cells by five different multivariate statistical methods: (A) Principal component analysis (PCA), (B) Hierarchical cluster

analysis (HCA), (C) t-SNE, (D) Diffusion map, and (E) kernel PCA. The dots in (A, C, D, and E) and leaves in (B) indicate the single-cells,

and the colors indicate the differentiation time-points at which they were collected. t-SNE analysis was performed using the following

parameters: initial_dims = 30; perplexity = 60. Diffusion map was run using the following parameters: no_dims = 4, t = 1, and

sigma = 1000. Kernel PCA was run with a parameter for computing the “poly” and “gaussian” kernel of 0.1. Only the first two dimensions

are plotted.

doi:10.1371/journal.pbio.1002585.g002
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were not necessarily more similar to each other than to cells from neighboring time-points.

Consequently, the clustering of individual cells into groups became complicated. The picture

of cell differentiation process that emerged from the single-cell analysis thus far was more

complex than the one obtained from the population level analysis. This difference between sin-

gle-cell and population-level analysis arises from the unraveling of cell-to-cell heterogeneity in

the single-cell data, which could have been hidden by the averaging effect of the population

(see below).

PCA is a linear method for dimensionality reduction of single-cell data. In view of non-lin-

ear relationships of cell states in state space, recently nonlinear techniques like t-SNE [55] or

diffusion maps [63] have been applied in single-cell data analysis. t-SNE is a variation of Sto-

chastic Neighbor Embedding deemed capable of capturing more local structures than classical

PCA, while also revealing global structure such as the presence of clusters at several scales. Dif-

fusion maps use a non-linear distance metric (referred to as diffusion distance), which is

deemed conceptually relevant in view of noisy diffusion-like dynamics during differentiation

[63]. We therefore applied these algorithms on our datasets, as well as another non-linear ver-

sion of PCA, called Kernel PCA [64], not previously applied to single-cell gene expression data

(Fig 2C to 2E). The general conclusions obtained by PCA did not appreciably change when

using these non-linear dimensionality reduction techniques. There was again an obvious trend

reflecting the differentiation process, as well as a significant amount of intermingling of cells

from different time-points.

Single-Cell Data Embed Population Information and Reveal New

Discriminating Genes Involved in the Differentiation Process

In order to assess to what extent the differentiation process was still visible in the single-cell

data, we performed PCA on datasets from the two extreme time-points, 0 and 72 h (Fig 3A).

The result showed a clear separation of both time-points with only a few cells intermingled.

We also performed HCA on datasets from the same time-points (Fig 3B). Again, the segrega-

tion of the cells was still not perfect, but cells were not as mixed as before. Here, there exist two

clusters of self-renewing and differentiating cells. When compared to the analysis of the entire

time series, the separation between cells from the two extreme time-points looked clearer.

Therefore, the analysis of single-cell data confirmed that part of the information present in the

single-cell data is linked to the differentiation process.

The idea that shared information was present in single-cell and population-based data was

reinforced by the analysis of the correlation matrices within and between the two datasets (S6

Fig). It was apparent that (1) the global intensity of the correlations was higher with popula-

tion-based data and (2) there existed a co-structure between the two datasets. At the popula-

tion level, we showed that the set of genes selected was relevant to analyze the differentiation

process (Fig 1). The cross-correlation analysis strengthened this view and demonstrated that

when looking at the single-cell scale, the information held by these genes was not totally erased

by cell-to-cell variability.

We then looked at the genes that contributed the most to the PCA outcome (Fig 3C).

Among the genes that discriminate the most self-renewing cells, one could highlight LDHA
(Lactate deshydrogenase A), CRIP2, and Sca2. Sca2 is a gene that we previously have shown to

be associated with the self-renewal of erythroid progenitors [34]. LDHA is less expected and

will be discussed below. Among the genes that contributed the most to discriminating differ-

entiated cells, one could highlight RHPN2 and betaglobin. Since betaglobin is a part of hemo-

globin, the most abundant protein in erythrocytes, it was expected to be associated with

differentiating cells.

Differentiation Analyzed at Single Cell Level
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Fig 3. Gene expression-based discrimination between self-renewing and differentiating individual cells. Single-cell gene expression data

were analyzed considering only self-renewing cells and cells induced to differentiate since 72 h. (A) Principal component analysis (PCA); (B)

Hierarchical cluster analysis (HCA) was used to sort single-cells picked up at 0 h and 72 h of the differentiation process according to similarity

measurement; (C) Two-dimensional representation of the contribution of each variable (gene) to the inertia. The direction of the arrows displays the

contribution of that variable to the underlying component. The colored genes highlight genes of interest and genes that contributed the most to the

PCA outcome, associated with self-renewal (blue) and the erythroid differentiation process (red).

doi:10.1371/journal.pbio.1002585.g003
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Single-Cell Data Averaging Recapitulates Results from Population-Level

Analysis

Given that the analysis of single-cell gene expression did not produce a clear separation of the

temporal stages, in contrast to whole populations, we hypothesized that by averaging over a

population of individual cells, we should be able to reproduce the bulk results. For this pur-

pose, we generated three pseudo-populations (sub-populations) of about one-third of cells

from the single-cell data and computed their average gene expressions for each time-point. By

performing PCA on the mean gene expressions of these pseudo-populations, we noticed that

the averaged data showed more organization and, importantly, that the differentiation pro-

gression materialized along the PC1 dimension (Fig 4A).

The PCA result of the pseudo-population therefore looked much more like the population

than the single-cell results. Similarly, HCA generated a clustering that was not quite as clear as

the analysis of bulk RNA data, but much better than the single-cell analysis (Fig 4B). The HCA

results showed for example similarities between gene expressions from time-points 48 and 72

h. Together the pseudo-population analysis obtained by statistical averaging of single-cell data

mostly recapitulated, albeit not entirely, the population-based results, suggesting that the clear-

cut classification of bulk-cell-based data is due to the (physical) averaging effect in populations,

in line with a previous account [65].

The Correlation Networks are Very Dynamical Entities

Single-cell data offers access to the patterns of the relationship of genes with respect to both

their marginal (S7 Fig), as well as their full joint distribution (not shown). This provides us

with a new observable that we used to characterize the progression of the differentiation pro-

cess in finer details.

Fig 4. Analysis of single-cell data averaged over pseudo-populations. We separated single-cells into three pseudo-populations with around

one-third of single cells for each time-point. We then calculated the average gene expression over each pseudo-population, and analyzed the

resulting averaged data using multivariate statistical methods. (A) Principal component analysis (PCA); (B) Hierarchical cluster analysis (HCA).

doi:10.1371/journal.pbio.1002585.g004
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For each time-point, we computed a correlation matrix to evaluate how correlated the

expression of any pair of genes was, across all cells at a given time. Since data were log-nor-

mally distributed, we employed the Spearman correlation coefficient. We then calculated the

significance of the correlation and used a p-value below 0.05 as a cutoff. Two genes (the nodes

of a graph) that exhibited a significant correlation were connected by an edge. Finally, we sub-

sampled 85% of the cells for 10,000 iterations, so as to obtain robust correlation networks that

will not depend upon the sampling process. We then constructed a gene correlation network

for each time-point. Although both positive and negative correlations were computed, negative

correlations proved much less robust and were eliminated by the sub-sampling process, in

which we only kept significant correlations that appeared in all of the 10,000 subsampling.

As shown in (Fig 5A), the density of the resulting networks (number of significant correla-

tions) was clearly varying along the differentiation process.

Fig 5. Gene expression correlations. (A) Shown is the number of significant correlations, between any pair of genes, surviving 10,000 sub-

sampling iterations, per time-point; (B) Correlation variations between two consecutive time-points using the color code bar shown at the

bottom right of the panels. Cold colors (blue and green) indicate decreasing genes correlations and hot colors (from yellow to red) stand for

increasing gene correlations between the time-points considered. Intermediary variations (between −0.4 and +0.4) as displayed in black. The

bottom left red barplot indicates the number of increasing correlations, whereas the green barplot shows the number of decreasing

correlations between each pair of consecutive time-points; (C) The three genes that displayed the highest number of edges at each time-point

were listed in the table, as well as the number of edges connecting those genes. Data for this figure (A and B) can be found at osf.io/k2q5b.

doi:10.1371/journal.pbio.1002585.g005
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One observed a sudden drop in the number of correlations by 8 h that then steadily

increased to reach a maximum value at 72 h much higher than the initial value. Interestingly,

this global behavior resulted from both an increase and a decrease in gene-to-gene correlation

values (Fig 5B). Even between 48 and 72 h, some gene pair correlation decreased while the

overall net balance resulted in a global increase.

This fast-changing density of the networks was also accompanied by a progressive change

in the identity of the most highly correlated nodes (Fig 5C). Both Sca2 and LDHA that were

previously identified by the PCA also appeared as prominent among the correlation network

from 8 to 24 h, while later time-points were characterized by the appearance of other genes as

TBC1D7 and BCL11A.

One should note that such correlation networks are to be seen as resulting from the behav-

ior of the underlying mechanistic gene interaction networks, but can not be taken per se as a

faithful representation of such dynamical interaction networks.

Evidence for the DNB Theory

Contrary to previous accounts [12, 66], we observed a global decrease in the correlation inten-

sity between 0 and 8 h. Nevertheless, we noticed that some gene pairs showed an increased cor-

relation coefficient. We therefore reasoned that those genes could represent a putative

dynamical network biomarker (DNB), a subgroup of genes involved in the critical transition

phase of a dynamical system [51]. To qualify for a DNB, three conditions have to be fulfilled:

(1) the coefficent of variation (CV) of each variable in the DNB should increase, (2) the corre-

lation (PCCin) within the DNB should increase, and (3) the correlation (PCCout) between the

DNB and outside genes should decrease. All three conditions can be simultaneously quantified

using the I score (see Materials and Methods). We therefore first selected a group of 12 genes

by a two-stage process: (1) we first selected all of the genes that participated in at least one pair

that showed an increased correlation of at least 0.5 between 0 and 8 h and (2) among those

genes, we selected the genes that showed an increase in their CV value between 0 and 8 h. We

then computed the I score of that group of genes at each time-point (Fig 6).

Although PCCin slightly decreased with time, this group of genes nevertheless might still

qualify for a DNB since they matched two out of the three criteria used to identify DNBs.

Their I value first sharply increased before returning to lower values. This rise is mostly due to

a sharp decrease in PCCout between 0 and 8 h, accompanied by a more modest increase in

CV. As mentioned, the internal correlation value PCCin decreased, and therefore was not

driving the I value. One must note that we computed a Pearson correlation coefficient as advo-

cated [51]. We also tried a Spearman correlation value, which showed a slightly different

behavior with a modest increase in PCCin between 8 and 24 h and continued to increase

steadily up to 72 h, not affecting the global surge in I value (not shown).

The Initial Driver Genes belong to the Sterol Synthesis Pathway

Since we observed major changes after 8 h of differentiation, one asked how early changes in

gene expression could be detected. For this we performed a second single-cell kinetic experi-

ment, where we obtained the expression level of 90 genes in 48, 48, 39, and 41 single cells from

0, 2, 4, and 8 h of differentiation, respectively.

We then defined the first wave of response as genes that showed a significant difference

between 0 and 2 h. Two genes satisfied this criterion (Fig 7), establishing that the transcrip-

tional response to the medium change was a very fast process, but concerned only a very lim-

ited number of genes.
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The second wave was defined as genes not belonging to wave 1 and showing a significant

difference between 2 and 4 h of the response. Five genes satisfied this criterion (Fig 7). It was

remarkable that six out of the seven genes from waves 1 and 2 belonged to the same functional

group, that is the group of genes associated with sterol synthesis. This proved to be highly sta-

tistically significant (p = 1.8 × 10−6). We therefore can propose that the sterol synthesis path-

way could act as one of the drivers of the changes that will update the internal network from

the changes in external conditions. This would be in line with our previous demonstration for

the role of cholesterol synthesis in the decision making process in our cells [35].

A Surge in Cell-to-Cell Variability

A critical novel opportunity provided by single-cell analysis is to study cell-to-cell variability of

gene expression as an observable per se and also to add new insight to characterize the tempo-

ral progression of differentiation. The question as to what may be the best metrics for quantify-

ing gene expression variability is still open. An aggregated measure called the Jensen-Shannon

divergence has been proposed previously as a measure for gene expression noise [9]. One of

the main drawbacks of this metric is that it was not possible to assess whether or not the differ-

ences observed were statistically significant. We therefore decided to use a simpler Shannon

measure of the heterogeneity among the cells for their gene expression profile (see Materials

and Methods and S2 Fig). Such a measure provided a distribution of entropy values per gene

Fig 6. Identification of a dynamical network biomarker. Shown is the behavior of a subset composed of 12 genes fitting the following

criteria: increase in their standard deviation and participation to increasing correlations, between 0h and 8h. For this subset, we plotted the

mean coefficent of variation (CV), the mean of the correlation between any pair of genes belonging to the subset (PCCin), the mean of the

correlation between any one gene of the subset and any one gene outside of the subset (PCCout) and the resulting I-scores, at each time-

point. The DNB group included the following genes: ACSS1, ALAS1, BATF, BPI, CD151, CRIP2, DCP1A, EMB, FHL3, HSP90AA1, LCP1,

MTFR1. Data for this figure can be found at osf.io/k2q5b.

doi:10.1371/journal.pbio.1002585.g006
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per time-point, allowing to perform statistical tests. We observed that this entropy increased

gradually along the differentiation process, reaching its maximal value at 8 to 24 h, before

declining toward 72 h (Fig 8A).

Such an increase of entropy between 0 and 8h resulted from a global increase of each gene

entropy, except for a few (Fig 8B). The observed rise in entropy value was highly significant as

early as 8 h when compared to 0 h of differentiation. Furthermore, decrease in entropy also

became significant between 24 and 33 h of differentiation (Fig 8C). Consequently, since

entropy can be defined as a measure of the disorder of a system, this result suggested that a

maximal heterogeneity was achieved at 8–24 h of the differentiation process in the expression

of our 90 genes, before significantly decreasing to a much lower level of heterogeneity.

Potential Explanation for the Rise in Variability

Different potential causes can be envisioned to explain this increase in entropy, including cell

size and cell-cycle stage variations, asynchrony in the differentiation process, and more

dynamical causes.

Fig 7. Initial expression waves analysis. Genes are sorted according to the time of the first significant

expression variation. The first wave corresponds to genes with a significant variation detected during 0 h and

2 h. The second wave corresponds to genes with a significant variation detected during 2 h and 4 h but without

significant variation detected earlier. Genes labeled in red belong to the group of genes associated with sterol

synthesis. Significant variations (-*-) are detected by non-parametric Mann-Whitney test (p-value < 0.05) if

the test is positive in more than 90% of 1,000 bootstrap samples. Genes prefixed by * have a significant

variation between 0 h and 8 h detected in both experiments (0 to 72 h, as well as 0 to 8 h). The probability of

having 6 genes over 7 (in the first and second waves) belonging to the 10 sterol cluster genes among all 90

genes is estimated to p = 1.8 × 10−6 with the hypergeometric probability density function. Data for this figure

can be found at osf.io/k2q5b.

doi:10.1371/journal.pbio.1002585.g007
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Fig 8. Cell-to-cell heterogeneity measurement using Shannon entropy. (A) A Shannon entropy was calculated for

each time-point for each gene. Boxplots represent the distribution of the entropy values; (B) Gene entropy variation: for

each gene (i.e., lines), we represented the difference between entropy values at two consecutive time-points (Δ-entropy)

using a color gradient code. Negative and null delta entropies (i.e., for a given time-point, the entropy value for these

genes decreased or does not change, compared to the earlier time-point) are colored in blue and green. Positive delta

entropies are colored in orange or red; (C) We assessed the significance of the differences between any pair of time-point

through a Wilcoxon test. The robustness of the result was assessed by performing subsampling. The barplot shows the

results as the percentage of 1,000 iterations for which a significant difference (p-value < 0.05) was detected. Data for this

figure can be found at osf.io/k2q5b.

doi:10.1371/journal.pbio.1002585.g008
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As suggested in some previous works, cell size and cell-cycle stage variations could influ-

ence gene expression, and become confounding factors [67–69]. Nevertheless, variability due

to variations in cell cycle has been shown to be quantitatively negligible in erythroid precursors

[70]. We also added in our gene list the CTCF gene, known to be cell-cycle regulated in

chicken cells [71]. Almost no correlation was detected between this gene and any of the 91

other genes (Fig 9A) demonstrating that our gene list contained virtually no other cell-cyle-

regulated gene. Furthermore, we assessed whether or not the repartition of our cells within the

different phases of the cell cycle could have been modified at a time where entropy was peak-

ing. No significant difference in cell cycle repartition could be seen at 8 h of differentiation

(Fig 9B). Altogether, those results demonstrate that a potential effect of cell cycle variation

would only marginally explain our data. Regarding cell size, it is important to note that in our

system the peak in gene expression variability at 8–24 h occurs at a time where cell size is not

affected (Fig 10B). If anything, we observed a slight increase in cell size, which could be

responsible for a decrease, and not an increase, in noise [72].

We then assessed a potential effect of asynchrony in the differentiation process. For this, we

first employed the following algorithms: SCUBA [52], WANDERLUST [53] and TSCAN [54]

to reorder the cells according to the calculated pseudotimes. However, SCUBA led to a cell re-

ordering that was highly inconsistent with the actual time-points, where all self-renewing cells

(time 0 h) were placed in the middle of the SCUBA order (not shown). WANDERLUST and

TSCAN produced a more reasonable cell ordering. However, the trajectories of the gene

expression profiles following this ordering were quite erratic (not shown). Nevertheless, the

entropy of sub-populations of cells, grouped according to either their WANDERLUST pseu-

dotimes or TSCAN clusters, showed the same rise-then-fall profile as with the original single

cell data (Fig 9C and 9D).

In theory, these algorithms are supposed to reconstruct a posteriori the “hidden” order

along the differentiation pathway. Within this frame, the behavior of entropy in re-ordered

cells tends to support the idea that asynchrony in the differentiation process is not the leading

cause of our observed increase in entropy.

However the intrinsic burstiness of the gene expression process [24, 73–75] might cause

some issues in the use of cell re-ordering algorithms. We therefore examined this question by

using a more formal approach. We reasoned that a modeling strategy might be useful in estab-

lishing the role asynchrony might play, especially since forcing a synchronous differentiation

is not accessible in vitro, but can be done in silico. We used a two-state model of gene expres-

sion [27, 39–41, 56], for which we could learn the parameters from the data (see Materials and

Methods). In the synchronous case, we obtained a variation in entropy resembling the one we

calculated from the data (Fig 9E). The introduction of asynchrony induced a flatter time pro-

file of the entropy (Fig 9F).

This finding did not, however, prove that our cells are synchronously differentiating, but

only demonstrated the effect of asynchrony: in the background of bursty gene transcriptional

process, asynchrony will tend to smoothen (and not augment) the entropy of the system.

Therefore the observed surge in entropy can not be attributed to the asynchrony of the

process.

The rise-and-fall of entropy in our data is in line was examined in a different setting,

namely a reprogramming process [58]. The authors stated, “The initial transcriptional

response is relatively homogeneous,” offering the opportunity to examine the entropy time

profile in such a homogeneous process. Our analysis of this dataset produced a similar behav-

ior for entropy which significantly increased initially, before returning to lower values (S8 Fig).

Altogether our analysis is compatible with the notion that the rise and fall in entropy is the

consequence of the dynamical behavior of the underlying gene regulatory network.
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Fig 9. Exploration of potential cofounding factors. (A) Correlation of the CTCF gene with the rest of the 91 genes, at all

six time-points. (B) FACS analysis of the cell cycle repartition at 0 and 8 h of differentiation. The difference between the two

distributions was found not to be statistically significant (p = 0.18 using a Wilcoxon test). (C and D): calculation of the entropy

content per cluster of cells re-organized using either WANDERLUST (C) or TSCAN algorithm (D). (E and F) In silico

comparison of the effect of a synchronous versus an asynchronous differentiation process on the evolution of entropy. Data

for this figure (C to F) can be found at osf.io/k2q5b.

doi:10.1371/journal.pbio.1002585.g009
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The Point of No Return in T2EC Differentiation is Located between 24 h

and 48 h

The above analysis of single-cell transcript profiles displays the following pattern:

1. A decrease in correlation value is observed between 0 and 8 h, and then correlation

increases between 24 and 72 h.

2. An increase in I score value is observed between 0 and 8 h, then a return to its initial value

at about 33 h, before continuing to decrease gradually.

3. A surge in entropy is significant at 8–24 h, and significantly decreases between 24 and 72 h.

Altogether, those results point toward the 8 and 24 h time-points as being a possible deci-

sion point, hence, a “point-of-no-return” in the differentiation process, beyond which cells are

irreversibly committed toward erythrocytic differentiation. Consequently, we hypothesized

that committed cells would be unable to revert back to a self-renewal process after 24 h of dif-

ferentiation. To test this hypothesis we induced T2EC to differentiate for 24 h or 48 h, after

which cells were transferred back into the self-renewal medium, in order to determine whether

or not cells could revert back to the undifferentiated state after they had received differentia-

tion signals for a given period of time. We observed that T2EC induced to differentiate for 24

Fig 10. Evolution of physiological differentiation parameters. (A) T2EC were induced to differentiate for 24 and 48 h and subsequently seeded back in

self-renewal conditions. Cells were then counted every day for 5 d. The green curve represents the growth of cells induced to differentiate for 24 h and the

orange curve indicates the growth of cells induced to differentiate for 48 h. The data shown are the mean +/− standard deviation calculated on the basis of

three independent experiments for the time-points 72 h and 96 h and four experiments for all other time-points. The growth ratio was computed as the cell

number divided by the total cells at day 0. The significance of the difference between growth ratios at 24 h and 48 h was calculated using a Wilcoxon test.

(B) The boxplots of the mean size observed were based on four independent experiments, each using 50,000 cells, using FSC_A as a proxy for cell size.

All of the variances were compared by pairs using the F test and the * indicates when the variances were significantly different. Data for this figure can be

found at osf.io/k2q5b.

doi:10.1371/journal.pbio.1002585.g010
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h were still able to self-renew upon change of medium, while cells induced for 48 h could not

do so (Fig 10A).

T2EC induced for 48 h seemed to stay in a quiescent state until they died. We therefore con-

cluded that the physiological point of no return is located between 24 h and 48 h of our differ-

entiation process, as suggested by our in silico analysis. Finally we determined whether cell

size, a phenotypic integrated variable that has historically been used to monitor erythroid mat-

uration [76, 77] would manifest the behavior of the underlying molecular network with respect

to cell-cell variability. We therefore assessed cell size variation during the differentiation pro-

cess. As expected [32], mean cell size started to decrease during differentiation to reach a mini-

mum by 72 h (Fig 9B). Interestingly, cell size variability significantly peaked at 48 h before

dropping precipitously by 72 h. Thus the high variability of gene expression observed at 24 h

preceded a significant peak in cell size variability 1 d later.

Discussion

In the present work we assessed, using single-cell RT-qPCR, the temporal changes of gene

expression in individual cells in a population of cells undergoing differentiation. For this, we

used a physiologically relevant cellular system, which presents three main advantages: (i) those

cells are primary, non-transformed cells; (ii) they do not show any tendency to spontaneous

differentiation; and (iii) they can only differentiate along the erythrocytic lineage, excluding

heterogeneity arising from coexistence of cells differentiating along different lineages.

To quantitatively assess the role of gene expression variability, we first defined a subset of

genes relevant for analyzing the differentiation process. At the level of whole-population analy-

sis this gene subset allowed a clear distinction among differentiation time-points. However,

when assessed at the single-cell level, our analyses revealed a much higher cellular heterogene-

ity. Despite this heterogeneity, the selected genes were still effective in separating the two most

extreme time-points in T2EC differentiation, confirming that information associated with the

differentiation process is embodied in the gene expression data at the single-cell level. From

the dataset that we generated at the single-cell level, two main results could be obtained: (i)

regarding the biology of the erythroid differentiation, we identified previously unidentified

genes as being important components of the self-renewal and differentiation of erythroid pro-

genitors, and (ii) on a larger perspective, our results fully supported a dynamical view where

differentiation can be seen as a critical phase transition driven by stochasticity.

Identification of new genes involved in the erythroid differentiation

process

One question deals with the possible identification of important genes that can be seen as

“drivers” of the process. At least three list of genes were generated during the course of this

work that may qualify:

1. the “early drivers,” genes identified in the wave analysis;

2. the genes qualifying for the DNB, and

3. the most densely connected genes in the correlation graph;

Restricting only to the most densely correlated genes at 0 and 8 h (since the two other lists

were validated on those time-points), one observed a partial overlap between the three lists (S9

Fig), with no gene being common to all three lists. One possible explanation is simply that the

three lists were obtained through different approaches, not supposed to identify the same set

of genes. This result nevertheless suggests that although all of those genes might be functionally
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important for the differentiation process, they might be involved in the global response at dif-

ferent levels. The early drivers might be more important for informing the whole network at

early time points, whereas the two other genes sets might be involved in a more global recon-

figuration of the network at later time-points. In any case those gene lists are to be seen as

traces resulting from the behavior of the underlying dynamical network, and should not be

mistaken for the dynamical network itself. It would therefore be of utmost importance to be

able to correctly infer such a network. We are actively pursuing this goal in our group.

We discuss below possible functions of some of those genes, a full discussion for all genes

being out of the scope of the present paper.

As previously mentioned, Sca2 is a gene which we have previously shown to be associated

with the self-renewal of erythroid progenitors [34].

LDHA encodes an enzyme that catalyzes the conversion of pyruvate to lactate, and has been

involved in the Warburg effect (or anaerobic glycolysis), which is the propensity of cancer cells

to take up glucose avidly and convert it to lactate [78]. Furthermore, deletion of LDHA has

been shown to significantly inhibit the function of both hematopoietic stem and progenitor

cells during murine hematopoiesis [79].

Since LDHA expression is under the control of HIF1α transcription factor [79], it could be

involved in the response of immature erythroid progenitors to anemia. Those cells have to

show a significant amount of self-renewal for recovering from a strong anemia, implying low

oxygen condition [80]. It makes perfect sense that in this case the metabolism of self-renewing

progenitors would rely upon an anaerobic pathway.

Moreover, HIF1alpha has also been shown to be an upstream regulator of HSP90alpha
secretion in cancer cells in a protective way against the hypoxic tumoral environment [81].

Therefore, our results are in line with other findings showing that anaerobic glycolysis is

favored in hypoxic conditions, such as the bone marrow environment, and required for stem

cell maintenance [82]. Otherwise, since LDHA and HSP90alpha form part of the lists of poten-

tially important genes between 0 and 8 h, our finding suggests that erythroid differentiation

might be accompanied by a change from anaerobic glycolysis toward mitochondrial oxidative

phosphorylation, as recently proposed [83].

Finally, our analysis highlighted the importance of the sterol synthesis pathway in the self

renewal process since:

1. Among genes identified by RNAseq whose expression changed significantly, we found dif-

ferent genes associated to the sterol synthesis, such as HMGCS1, CYP51A1,DHCR24,

DHCR7, STARD4, and NSDHL (S4 Fig);

2. The expression of those genes decreased promptly after the change of the external condi-

tions, i.e the induction of the differentiation (Fig 7);

3. STARD4 was both an early driver and one of the genes that displayed the highest number of

edges at 0 h (Fig 5C). It has recently been demonstrated that STARD4 expression could be

used as poor prognosis gene in a six genes signature that defines aggressive subtypes in

adult acute lymphoblastic leukemia [84].

These observations support the importance of sterol synthesis in the maintenance of cellu-

lar self renewal state and the necessity of a decrease of some sterol associated genes expression

to allow the differentiation. The question as to why this group of genes act as the early sensors

of change in environmental conditions remains elusive. In line with our previous results [35],

one could hypothesize that cholesterol synthesis is a barrier toward differentiation/apoptosis

that has to be lowered for differentiation to proceed.
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A functional role for the surge in gene expression during critical

transition?

On a more global perspective, the importance of cell-to-cell heterogeneity as a “biological

observable” at the single-cell level, even among cells classified as belonging to the same “cell

type” [85], is increasingly recognized [86]. But to what extent and when is such heterogeneity

functionally important? Most single-cell transcript profile analyses of cell populations have so

far focused mostly on computational descriptive analysis to identify clusters, and temporal

progression, or to test dimensionality reduction and visualization tools, but less so to test a bio-

logical hypothesis. Here we used the single-cell granularity of gene expression analysis to test

the long-standing hypothesis that stochastic cell-cell variability is not simply the byproduct of

molecular noise but that such randomness of cell state plays a key role in differentiation [28].

In this Darwinian view, differentiation starts with an unstable gene expression pattern, gener-

ating cell type diversity. Therefore, one testable prediction was that an increase in gene expres-

sion heterogeneity should be observed during the critical phase of cell differentiation

whenever the irreversible decision to commit is made.

Our main contribution is a demonstration that the increase in molecular variability pre-

cedes critical functional variations in cellular parameters, most importantly including the com-

mitment status of the cells. Taken together, the timing of three observables achieved at single-

cell resolution provides a coherent picture of a temporal structure of differentiation that would

be invisible to traditional whole-population averaging techniques: (i) the surge in cell-to-cell

variability of gene expression patterns of individual cells at 8–24 h; (ii) a sudden drop in the

overall correlation, concomitant with the emergence of a DNB; and (iii) followed by the phe-

notypic marker of differentiation, the decrease of cell size, for which variability peaks at 48 h.

An important question is the relevance of that peak in variability. We demonstrated experi-

mentally that no cell was able to return to a self-renewal state after 48 h in a differentiation

medium. A similar timing for point-of-no return has previously been suggested in FDPC-mix

cells [87]. Such an irreversible commitment to differentiation preceded by a highly significant

increase in cell-to-cell variability is consistent with the explanation that cells differentiate by

passing through two phases [87]: a first phase in which the self-renewing state is destabilized

and primed by perturbation of their extracellular environment, followed by a second phase of

a stochastic commitment to differentiation.

These observables (emergence of a DNB, drop in correlation, significant increase in

entropy, surge in cellular parameters variations) jointly suggest a critical state transition, a

class of dynamical behaviors that has been proposed to explain the qualitative, almost discrete

and noise-driven “switching” into a new cell state as embodied by differentiation [88]. This

conceptual framework naturally explains the irreversibility of fate commitment [89]. Indeed

the maximum of the above three observables coincided with the functionally demonstrated

point-of-no return to the self-renewal state in T2EC differentiation process, which was located

between 24 and 48 h.

From a more biological perspective, we can view differentiation induction as a process of

adaptation in which the cell’s internal molecular network, adapted for growth in self-

renewal conditions, has to adjust to the new external conditions when differentiation is

induced by the change in external conditions. For example, in yeast, it has been shown that

a nonspecific transcriptional response reflecting the natural plasticity of the regulatory net-

work supports adaptation of cells to novel challenges [90]. The underlying mechanisms are

yet to be discovered, but one would expect global mechanisms to be involved. Modifications

of the chromatin dynamics [27] under the possible control of metabolic changes [91] are

obvious candidates for such a role. Fluctuation in important transcription factor level has
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also been proposed to be involved [92]. The surge of non-specific variability would allow

exploration of new regions in the gene expression space. Preventing such an increase in

variability has been associated to trapping cells in an undifferentiated state [93]. This

increase would lead to a reconfiguration of the gene expression network into a state which

is compatible with differentiation conditions and which is robust and consistent with a new

attractor state in the network [29]. Then the decrease of molecular variability might reflect

the implementation of the fully differentiated phenotype as cells settle down in the next sta-

ble state.

In this study, we exploited the wealth of information available in single-cell data by

highlighting the critical molecular changes occurring along the differentiation sequence.

First, the initial gene expression waves might represent a very early signal that happens

between 0 and 8 h, followed by a pre-transition warning signal revealed by the DNB analy-

sis, concomitant with the drop in gene correlations and the rise in cell-to-cell variability.

Such a pattern are thought to reflect the underlying dynamical molecular mechanisms that

drives the evolution of cells through the differentiation process. The first signals could be

seen as an adaptative response to environmental changes, as suggested above, whereas the

last warning signal, before irreversible commitment, could be seen as the point of cell deci-

sion making. At that stage it is hard to really be sure that the DNB genes actually drives the

critical transition, but at the very least they represent a clear signal that our cells are

experiencing such a transition. Until 24 h, at least, cells would still be able to functionally

respond to self-renewal signals. This implies that at that stage the state of the network would

be compatible with both a differentiation and a self-renewal process. One of the remaining

challenging questions is what makes the cell takes the irreversible decision to differentiate at

a point when the system seems to be totally disorganized. We strongly believe that this will

be an emerging properties from the behavior of dynamical high-dimensional molecular

network.

While the current study offers a single-cell resolution view on gene expression, it does so

only through snapshots at strategically selected time-points. In the future it would therefore be

of great importance to obtain a continuous measurement of the underlying gene expression

network in order to explain the state changes in individual cells and to reconstruct the entire

trajectory of each cell in gene expression state space. This information would expose the actual

process of diversification that leads to the maximal heterogeneity marking the point of no

return of differentiation.

NOTE ADDED IN PROOF: During the submission of this manuscript we became aware

of the work of Mojtahedi, et al., 2016 (doi: 10.1371/journal.pbio.2000640) which arrived at a

similar conclusion, and we cite that work in our discussion.

Materials and Methods

Cells and Culture Conditions

T2EC were extracted from bone marrow of 19-d-old SPAFAS white leghorn chickens embryos

(INRA, Tours, France). These primary cells were maintained in self-renewal in LM1 medium

(α-MEM, 10% Foetal bovine serum (FBS), 1 mM HEPES, 100 nM β-mercaptoethanol, 100 U/

mL penicillin and streptomycin, 5 ng/mL TGF-α, 1 ng/mL TGF-β and 1 mM dexamethasone)

as previously described [32]. T2EC were induced to differentiate by removing the LM1

medium and placing cells into the DM17 medium (α-MEM, 10% foetal bovine serum (FBS), 1

mM Hepes, 100 nM β-mercaptoethanol, 100 U/mL penicillin and streptomycin, 10 ng/mL

insulin and 5% anemic chicken serum (ACS)). Differentiation kinetics were obtained by col-

lecting cells at different times after the induction in differentiation.

Differentiation Analyzed at Single Cell Level

PLOS Biology | DOI:10.1371/journal.pbio.1002585 December 27, 2016 21 / 35

http://dx.doi.org/10.1371/journal.pbio.2000640


Cell Population Growth Measurement

Cell population growth was evaluated by counting living cells using a Malassez cell and Trypan

blue staining.

Propidium Iodide Staining

T2EC in self-renewal medium and T2EC induced to differentiate during 8 h were incubated

for 30 min on ice with 100% cold ethanol, and then 30 min at 37˚C with 1 mg/mL RNase A

(Invitrogen). Propidium Iodide (SIGMA) was added at 50 μg/mL 2 min prior to analysis and

fluorescence was measured with the BD FacsCalibur 4-color flow cytometer, using the FL-2

channel. Data files were then extracted and analyzed using the bioconductor flowCore

package.

T2EC Collection by Flow Cytometry

T2EC were collected individually in a 96-well plate using a flow cytometer (Facs ARIA I). Each

individual cell was immediately gathered into a lysis buffer (Vilo [Invitrogen], 6U SUPERase-

In [Ambion], 2.5% NP40 [ThermoScientific]), containing also Arraycontrol RNA spikes

(Ambion). After collection, single-cells were immediately frozen on dry ice and stored at

-80˚C.

Total RNA Extraction

Cell cultures were centrifuged and washed with 1X phosphate-buffered saline (PBS). Total

RNA were extracted and purified using the RNeasy Plus Mini kit (Qiagen). Then, RNA were

treated with DNAse (Ambion) and quantified using the Nanodrop 2000 spectrophotometer

(Thermoscientific).

RNA-Seq Libraries Preparation

RNA-Seq libraries were prepared according to Illumina technology, using NEBNext mRNA

library Prep Master Mix Set kit (New England Biolabs). Libraries were performed according to

manufacturer’s protocol. mRNA were purified using NEBNext Oligo d(T)25 magnetic beads

and fragmented into 200 nucleotides RNA fragments by heating at 94˚C for 5 min, in the pres-

ence of RNA fragmentation Reaction Buffer. Fragmented mRNA were cleaned using RNeasy

MinElute Spin Columns (Qiagen). Double strand cDNA were obtained by two-step RNA

reverse transcription (RT) with random primers and purified using Magnetic Agencourt

AMPure XP beads. To produce blunt ends, purified cDNA were incubated with NEBNext End

Repair reaction buffer and NEBNext End Repair enzyme mix for 30 min at 20˚C. cDNA were

purified again using Agencourt AMPure XP beads, and dA-tail were added to these cDNA

fragments by incubating them with NEBNext dA-Tailing reaction buffer and klenow fragment

for 30 min at 37˚C. After purification of the dA-tailed DNA, illumina adaptators were ligated

to cDNA in the presence of NEBNext quick ligation reaction buffer, quick T4 DNA ligase, and

USER enzyme. After size selection, purified adaptor-ligated cDNA were enriched by PCR with

NEBNext High-fidelity 2X PCR Master mix, universal PCR primers and Index primers, and

using thermal cycling conditions recommended by manufacturer’s procedure. Finally,

enriched cDNA were purified and sequenced by the Genoscope institute (Evry, France).

RNA-Seq Library Analysis

Sequencing files were loaded onto Galaxy (https://usegalaxy.org/). Quality was checked using

FastQC. Groomed sequences were aligned on the galGal4 version of the chicken genome,
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using TopHat [36]. The resulting .BAM files were transformed into .SAM files using SAM

Tools. The gene counts table was generated using HTSeq [37] and the chr_M_Gallus_gallus

.Galgal4.72.gtf annotated genome version. Differential gene expression was computed using

EdgeR and plotted with the plotSmear function [38].

High-Throughput Microfluidic-based RT-qPCR

Every experiment related to high-throughput microfluidic-based RT-qPCR was performed

according to Fluidigm’s protocol (PN 68000088 K1, p.157–172) and recommendations.

Reverse transcription of isolated bulk-cell RNA and single-cell RNA.

• Isolated bulk-cell RNA
Fifty nanograms of extracted bulk-cell RNA were reverse-transcribed using the Superscript

III First-Strand Synthesis SuperMix for qRT-PCR kit (Invitrogen). The reverse transcription

step and RNAse H treatments were performed according to manufacturer’s instructions.

Reverse transcription was performed during 30 min at 50˚C, followed by 5 min at 80˚C, and

RNAse H treatment was run at 37˚C during 20 min. Finally, cDNA were stored at -20˚C.

• Single-cell RNA
Single-cell lysates were thawed on ice and denatured for 1.5 min at 65˚C. RNA were reverse-

transcribed in presence of SuperScript III Reverse Transcriptase enzyme, from the Super-

Script VILO cDNA Synthesis kit (Invitrogen), and T4 gene 32 protein (New England Bio-

labs) to improve reverse transcription efficiency. The reaction thermal cycling conditions

were 5 min at 25˚C, 30 min at 50˚C, 25 min at 55˚C, 5 min at 60˚C and 10 min at 70˚C.

Specific target amplification of cDNA. Primers were designed using the Ensembl data-

base (http://www.ensembl.org/Gallus_Gallus/Info/Index/) and Primer3Plus software (http://

www.bioinformatics.nl/primer3plus/). For information about the primers sequences used,

please contact the authors.

The cDNA pre-amplification was performed using the TaqMan PreAmpMaster (Applied

Biosystems) mixed with all primer pairs of the genes of interest (Sigma-Aldrich), diluted at 500

M. For single-cell cDNA pre-amplification, this reaction mix was also composed of 0.5 M pH8

EDTA. The thermal cycling program used for single-cell cDNA is 10 min of enzyme activation

at 95˚C, followed by 22 cycles at 96˚C for 5 s and 60˚C for 4 min. For bulk-cell cDNA, the

enzyme activation step was followed by 14 cycles at 95˚C for 15 s and 60˚C for 4 min.

Exonuclease treatment. Exonuclease I (E. coli, New England BioLabs) was used on pre-

amplified cDNA to eliminate single-strand DNA. The treatment was performed at 37˚C dur-

ing 30 min and then the enzyme was inactivated at 80˚C during 15 min. For bulk-cell, cDNA

were diluted in TE (10 mM pH8 Tris, 1 mM EDTA). For single-cell, cDNA were diluted in

low EDTA TE buffer (10 mM pH8 Tris, 100 nM EDTA). All samples were then stored at

-20˚C.

RT-qPCR: data generation. Pre-amplified cDNA were mixed with Sso Fast EvaGreen

Supermix With Low ROX (Bio-Rad) and DNA binding dye sample loading reagent (Flui-

digm). Primer pairs of the genes of interest were diluted at 5 μM with the Assay Loading

Reagent (Fluidigm) and low EDTA buffer. First, the 96.96 DynamicArray IFC chip (Fluidigm)

was primed. Then, prepared cDNA and primer pairs were loaded in the inlets of this device.

To avoid chip-linked variability, when analyzing single-cell data we were careful to repre-

sent every time-point in each of the four microfluidic-based chip analyzed.

The prime step and transfer of cDNA samples and primers from the inlets into the chip

were performed using the IFC Controller HX (BioMark HD system). The chip was analyzed
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using the BioMark HD reader according to the GE 96 × 96 PCR + Melt v2.pcl program, thanks

to the data collection software. Then, raw data were analyzed with the Fluidigm Real-Time

PCR Analysis software.

Positive exogenous controls (RNA spikes) were used to validate the RT-qPCR experiment

as recommended by Fluidigm Company. We also used the RNA spikes to normalize the data

(see below). To determine qPCR efficiency of every primer pairs used, serial dilution scales of

bulk-cell cDNA were performed. PCR efficiencies were calculated as follows: E = 10−1/slope.

Primer pairs presenting PCR efficiency less than 80% or more than 120% were removed from

subsequent analyses.

RT-qPCR: low-level data analysis. First, a manual examination was performed regarding

data quality. RTqPCR data were exported from the BioMark HD data collection software. On

every microfluidic-based chip, each gene was controlled in a qualitative manner in order to

keep only reliable and good quality data. For this we manually edited the data files by adding a

new column named “DELETED.” Numbers “0” or “1” were appended in this column accord-

ing to various criteria. Quality control was based both upon amplification and melting curves

examination. For one given gene all the melting curves had to be centered on a unique melting

temperature. When a given melting curve peak shifted to a higher or lower Tm, “1” was added

into the DELETED column for this amplification. Moreover, data displaying a double peak

were also considered unreliable and annotated with a “1.” Finally, “noisy” amplification curves

departing from the smooth classical sigmoidal shape were also tagged as “1.” We allowed the

quantification cycle (Cq) to be as high as 30. For a higher number of cycles, the machine

returned a value of 999, meaning that there were not enough molecules to be detected. After

this quality control, Cq values of data tagged as “1” were replaced with UD (for “undefined”)

in the raw data file, since they would not be taken into account in later analysis. Then the new

table underwent an automatic formatting consisting in a second multiple-criteria cleaning

process using an in-house R script. Cq values were converted into (approximately) absolute

numbers of molecules according to the following steps. First, we selected cells with at least one

valid spike measurement (i.e., whose Cq is different from UD and 999). Then, we normalized

the raw value cCqi;j for cell i and RNA j according to the cell mean spike value Cqi (or the only

available spike if one is invalid), with the global mean spike value Cq0 as reference. That is, the

normalized value Cqi,j for cell i and RNA j is defined by

Cqi;j ¼ cCqi;j � Cqi � Cq0

� �
:

After removing cells with abnormally important amount of genes with low expression (high

Cqi,j values, suggesting the absence of a cell in the well), the numbers of mRNA molecules

were estimated, considering the following: a maximum Cq equal to 30 as the measurement of

1 molecule in the well after 22 cycles of pre-amplification, a dilution factor corresponding to 1

cell extract diluted in 96 wells, and a sampling of 1/45 for PCR measurement. Thus the number

mi,j of RNA j molecules in cell i is given by

mi;j ¼ 96� 45� 230� 22� Cqi;j :

We consistently set mi,j = 0 when Cqi,j = 999, and mi,j = UD when Cqi,j = UD.

Replacing missing values. Since some statistical tools (like PCA) do not support missing

values, the UDs had to be replaced with some appropriate numerical values, i.e., that do not

change the data distribution, nor introduce any artificial correlation.

To this end, we calibrated the marginal distribution of each gene at each time-point using

the 3-parameter Poisson-Beta family, which corresponds to the stationnary distribution of the

Differentiation Analyzed at Single Cell Level

PLOS Biology | DOI:10.1371/journal.pbio.1002585 December 27, 2016 24 / 35



widely-used “two-state” model of gene expression [39–41]. As emphasized in [41], it can be

obtained as the mixture distribution Dða; b; cÞ of X resulting from the hierarchical model

Z � Betaða; bÞ

X � PðcZÞ

(

where a, b, and c are positive. Thus for each time-point t and each gene j, we estimated the

parameters atj , b
t
j and ctj by taking the absolute value of the moment-based estimators proposed

in [39]. Note that these slightly modified estimators are also convergent since the parameters

are assumed to be positive. This estimation was only performed for genes with at least 20 valid

cells and conduced to delete genes with too many UDs. This led us to delete two genes, result-

ing in a total of 90 genes analysed. The data was fitted very well in practice, making it relevant

to simply replace the UDs with independent samples from the corresponding distributions

Dðatj ; b
t
j ; c

t
jÞ. Considering the actual inferred parameter regime (large values of c, meaning that

the numbers of molecules span a high range) and the continuous nature of our data, we actu-

ally ignored the Poisson step and sampled from ctj Beta ðatj ; b
t
jÞ � Dðatj ; b

t
j ; c

t
jÞ.

Obviously, such artificially generated values should not be seen as data, but they ensure that

the dimension-reduction algorithms perform at their best and compute relevant projection

axes (e.g., the main two axes for a PCA). We checked that indeed consistent PCA outputs were

generated from different UD replacement operations (not shown).

Technical Reproducibility

Since RT-qPCR experimental procedure introduces unavoidable technical noise, we decided

to explore which steps were the main sources of this variability (S1 Fig). We first assessed the

reproducibility of the cDNA pre-amplification step by amplifying four cDNA samples from

the same RT before analyzing it by qPCR. Gene expression levels differences between pre-

amplification replicates were found to be negligible (S1A and S1B Fig). We then checked the

RT-qPCR amplification step by analyzing the RPL22L1 gene three times per chip. Expression

levels between RPL22L1 triplicates were quantitatively extremely similar (S1C to S1E Fig), con-

firming that amplification brings a negligible amount of variability as previously shown [42,

43]. We also tested the experimental variability induced by the RT reaction. We observed sig-

nificant gene expression level differences between three RT from the same sample (S1A and

S1F Fig), contrary to replicates from other critical steps. Indeed, it has been demonstrated and

discussed that the RT reaction is the main source of technical noise, since it introduces biases

through priming efficiency, RNA integrity and secondary structures and reverse transcriptase

dynamic range [42, 44, 45]. In order to estimate the amount of variation introduced in our

experiments by this step, we used external RNA spikes. The variation affecting those spikes

spanned 5.8 Cqs (mean of Cqmax−Cqmin across the spikes) whereas the variability affecting the

genes spanned a much larger region of 22.9 Cqs (mean of Cqmax−Cqmin across the genes),

showing that the biological variability was much larger than the variability introduced by the

RT step.

Statistical Analysis

Software. Most of the statistical analyses were performed using R [46]. The k-means clus-

tering was performed using the stats R library. PCAs were performed using the ade4 pack-

age [47]. All PCAs were centered (mean subtraction) and normalized (dividing by the

standard deviation). All PCAs were displayed according to PC1 and PC2, which are the first

and second axis of the PCA respectively. Hierarchical cluster analysis was performed applying
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the R hclust function, using the complete linkage method on Euclidean distances. Dendro-

grams were built and plotted using the dendextendR library. Correlation analysis was per-

formed using rcorr from the HmiscR library. The p-value was corrected for multiple

testing using the Bonferroni method [48]. Networks were computed using Cytoscape [49].

Cross-correlation analysis was performed using the matcor function from the CCA R library.

Normality of the distributions was tested using the shapiro.test function. The variances

were compared using the F test with the var.test function. Wilcoxon test was performed

using the wilcox.test function. t-SNE and diffusion maps were computed using the

Matlab Toolbox for Dimensionality Reduction (http://lvdmaaten.github.io/drtoolbox/). The t-

SNE analysis was performed on a normalized version of the data, using zscore function.

Kernel PCA was computed using the Matlab kPCA script [50] applying polynomial with frac-

tional power 0.1. All linear analysis methods (PCA, HCA and correlation analysis) were per-

formed after applying the transformation m 7! ln(m + 1) to the data, which gives access to the

more linear Cq structure. All non-linear analysis methods (t-SNE, diffusion maps and Kernel

PCA) were performed using untransformed m values.

I score calculation. The I score was calculated as previously described in [51] as follows:

among the n = 90 studied genes, we defined a subset D containing nD genes. We then defined

the I score as:

I ¼ CV
PCCin

PCCout

with

CV ¼
1

nD

X

i2D

CVi ; PCCin ¼
1

nD2

X

i;j2D

Ci;j ; PCCout ¼
1

nDðn � nDÞ

X

i 2 D

j=2D

Ci;j

where CVi is the coefficient of variation of gene i and Ci,j stands for Pearson’s correlation coef-

ficient between genes i and j.
Wave analysis. One thousand boot-strap expression matrices were generated from genes

RNA counts distribution for each time-point (0, 2, 4, and 8 h). New expression matrices were

generated by uniform sampling of cells, which correspond to matrix lines, using the randsam-
pleMatlab command with replacement. For each time-point combination, a Mann-Whitney

U test was performed using the ranksumMatlab command to detect significant variation.

Wave membership was based on time variations. By definition a gene belongs to the wave at

time T if there is at least one variation detected between time T and a previous time-point and if

the gene does not belong to a previous wave. Only genes identified in a wave that displayed a

significant variation in more than 90% of boot-straped samples were kept in this wave.

Estimation of entropy. We estimated the Shannon entropy of each gene j at each time-

point t as follows: we computed basic histograms of the genes with N = Nc/2 bins, where Nc is

the number of cells, which provided the probabilities ptj;k of each class k. Finally, the entropies

were defined by

Etj ¼ �
XN

k¼1

ptj;k log 2ðp
t
j;kÞ:

When all cells express the same amount of a given gene, this gene’s entropy will be null. On

the contrary, the maximum value of entropy will result from the most variable gene expression

level (S2 Fig).
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Re-ordering algorithms. We performed the pseudotemporal ordering of cells using three

different algorithms: SCUBA [52], WANDERLUST [53] and TSCAN [54]. SCUBA is a two-

step cell-ordering algorithm, in which one first reduces the data dimensionality by using t-

SNE [55] and then determines the principal curve in the low-dimensional projection. We

applied SCUBA by reducing the data into 2-D using tSNE (perplexity = 30) and by adopting k-

segments algorithm (maximal number of segments = 8) as the option for the principal curve

analysis. Since the differentiation path estimated by SCUBA was undirected, we set LDHA as

the anchor-gene/marker to define the beginning and the end of pseudotime.

In contrast, WANDERLUST is a non-branching trajectory detection algorithm [53]. The

method estimates the pseudotimes by representing each single-cell as a node in an ensemble of

k-nearest-neighbor graph, followed by assigning a trajectory for each graph. This trajectory is

defined by connecting cells with similar gene expressions through the shortest path. To rein-

force this path assembly, a set of cells is randomly chosen as waypoints. The final cell ordering

corresponds to the average trajectories over the ensemble of graphs. Here, we adopted the

cosine similarity distance function for the trajectory detection, in which the single cell with the

maximum LDHA expression was used as the initial node. Each cell’s pseudotime has a value

normalized between 0 and 1, reflecting its position along the differentiation path. For the

entropy calculation, we grouped the cells into five pseudo-clusters, by collecting cells within

five evenly spaced pseudotime window between 0 and 1 (e.g., pseudo-cluster 1 contained cells

with pseudotime between 0 and 0.2, pseudo-cluster 2 contained cells with pseudotime between

0.2 and 0.4, and so on).

Finally, TSCAN is a cluster-based minimum spanning tree ordering algorithm [54]. The

algorithm begins with clustering cells according to the similarity in their gene expressions, and

continues with building the minimum spanning tree (MST) connecting the centroids of these

clusters. The pseudotime is calculated by projecting each single cell to the MST edges. The

algorithm also implements a preprocessing step involving gene clustering and dimensional

reduction in order to alleviate the effect of drop-out events [54]. The preprocessing of our data

produced 36 gene clusters, on which we employed the independent component analysis (ICA)

to obtain a 2-D projection. Finally, we applied TSCAN using five cell clusters to generate the

cell pseudotimes.

We computed the entropy for each cluster of cells following the procedure described above.

In silico simulations of mRNA level for single cells. In silico results were generated

using the two-state model of gene expression [27, 39–41, 56]. We first inferred a set of model

parameters (Kon, Koff, S0, D0) specific to each gene and depending on time. For that we used

an inference method based on moment analysis [39] from our single cell expression matrix

allowing to estimate three of these parameters (Kon, Koff and S0). To estimate D0 (mRNA

degradation rate) we used population data of mRNA decay kinetic using actinomycin D-

treated T2EC (osf.io/k2q5b). To simulate mRNA level we used the Gillespie algorithm [57]. In

order to validate this modeling approach, we simulated for a given gene its mRNA evolution

for 100 cells and extracted its distribution among cells at different time-points (0, 8, 24, 33, 48,

and 72 h). We then compared in vitro and in silico distributions with a non-parametric Mann-

Whitney U test. In silico measurements reproduced qualitatively the evolution of mean and

distributions measured in vitro (not shown).

In silico simulations of the differentiation process. In order to stabilize the model

before differentiation start, we ran the simulation for 100 h (model time) with constant

parameters (value corresponding to 0 h). In silico differentiation was induced by a change

in parameters values to now impose the parameters deduced from the in vitro data at differ-

ent time-points. At each time step we computed parameters value with a linear interpola-

tion between the two nearest time-points. For example at simulation time 4 h parameters
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values correspond to the mean value between 0 and 8 h. We simulated 100 cells at each

time-point. In order to study the impact of asynchronous differentiation, we compared two

situations:

1. All cells had their parameters changed simultaneously, corresponding to a synchronous

differentiation.

2. We randomly chose for each cell a time lag from a uniform distribution between 0 and 24

h. Then during the simulation, parameters started to change at t = 0 h + time lag. This cor-

responded to an asynchronous differentiation.

We then used the same metrics for analyzing those in silico distributions as those used for

analyzing the in vitro data.

scRNA-seq data analysis. Counting table from [58] was downloaded from the following

URL: http://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE67310. The original (Log2

[FKPM]) data were transformed into FKPM data for analysis using the BPglm algorithm [59].

Running the algorithm with an FDR value of less than 0.00005 and using the Bonferroni cor-

rection method for multiple testing led us to a list of 776 differentially expressed genes, on

which entropy was computed. Statistical significance was computed using the Wilcoxon non

parametric test.

Supporting Information

S1 Fig. Reproducibility of the pre-amplification and RT-qPCR amplification steps. (A) the

protocol used for assessing variation sources; (B) variations induced by four independent pre-

amplifications when assessing the level of expression of the OSC gene; (C–E) variations

induced by the PCR amplification step. The RPL22L1 gene expression was analyzed three

times per single-cell. Shown is the correlation between those three RT-qPCR replicates. The

corresponding correlation coefficients are plotted on the graphs. The slopes of the linear

regression lines are 0.99 for all three comparisons; (F) variations induced by three independent

reverse-transcriptions when assessing the level of expression of the OSC gene.

(PDF)

S2 Fig. Schematic description of the entropy value. On the left are shown gene expression

values that are transformed into probabilities (pj) to observe a given expression level in a cell

population. The upper case illustrates the deterministic case where all cells do express the same

expression level, resulting in a probability of 1 of observing such a level. This results in a null

entropy (see Materials and Methods for the calculation). The lower case illustrates the other

extreme case, where all the cells have different expression level, resulting in a much higher

entropy.

(PDF)

S3 Fig. Scatter and MA plots showing the reproducibility of read counts between replicates

and the differential expression during the differentiation process. (A,B) Relationship

between biological replicates of two independent RNA-Seq experiments: self-renewing

T2EC (left panel) and T2EC induced to differentiate for 48 h (right panel). For each condi-

tion, the x-axis represents the read counts of the first biological experiment, whereas read

counts of the second biological replicate are given on the y-axis. Each dot corresponds to the

expression level of one gene. (C) Comparative analysis of RNA-Seq data generated from two

independent libraries of T2EC in self-renewing state and T2EC induced to differentiate for

48 h. The x-axis shows the expression level of each gene (transcript raw counts divided by

the library size and multiplied by 1 million, averaged between the two independent libraries)
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while the fold change (self-renewal versus differentiation) appears in the y-axis. Red-colored

dots highlights genes that are significantly differentially expressed (p-value < 0.05).

(PDF)

S4 Fig. Identification of common patterns of expression during the differentiation process

using K-means clustering. K-means clustering was used to separate the 110 selected genes

into seven clusters regarding the expression profiles along the differentiation process. Starting

models of gene expression pattern, corresponding to the centroid of each cluster, are repre-

sented in the first graph (starting cluster). We identified seven patterns of gene expressions

with increasing, decreasing and one complex (cluster 4) dynamic profiles. The final centroid

was recalculated after gene allotment, and might slightly differ from the starting one.

(PDF)

S5 Fig. Representation of the 92 selected genes. (A) On the basis of RNA-Seq data and k-

means analysis (S4 Fig), the 92 genes selected for the single-cell analysis (S1 Table) can be sepa-

rated into three types: up-regulated (red circles), invariant (green circles), and down-regulated

genes (blue circles) at 48 h of the differentiation process. For each gene (x-axis) the fold-change

(FC) between the self-renewal state and the differentiation state at 48 h (Diff/SR) was plotted

along the y-axis. (B) Representation of known connections among the 92 genes selected

according to the STRING database (http://string.embl.de/). Each edge between two genes cor-

responds to a known association between those genes. The densely connected component at

the center of the network graph is composed of genes involved in sterol biosynthesis. A cluster

of gene encoding porteins involved in signal transduction is apparent on the top right part of

the network.

(PDF)

S6 Fig. Cross-correlation analysis between the gene expression value in populations and in

single cells. The correlation matrix is divided into four smaller matrices: the correlation matrix

of each dataset (populations: top-left panel; single-cells: bottom-right panel) and the correla-

tion matrix between the two datasets (top-right and bottom-left panels, showing the same val-

ues). The values of the correlations are color-coded according to the scale given below.

Correlation are calculated for each gene either accross populations samples or across single

cells.

(PDF)

S7 Fig. Distributions of the expression values for three genes up-, down-, and non-regu-

lated during the differentiation process. The histograms show the expression distribution of

three genes among single cells at 0 and 72 h differentiation time-points. The gene expression

levels (m value) are shown on the x-axis, the number of cells (count) is represented on the y-
axis.

(PDF)

S8 Fig. Variation of entropy during a reprogramming process. We computed differential

gene expression between 0 and 2 d using the scRNA-seq data from [58]. We then computed an

entropy value per time-point for the 776 resulting genes. Statistical significance was computed

using a Wilcoxon test.

(PDF)

S9 Fig. Overlapping genes between DNBs, early drivers and correlation network nodes at

0–8 h of differentiation. The Venn diagram shows the overlap of the three lists of genes

obtained from the initial expression waves analysis (green), the correlation networks (pink),

and the DNB theory (blue). The common genes between these lists were searched at 0 and 8 h
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when all three analyses have been performed (early driver genes were only identified between

0 and 8 h).

(PDF)

S1 Table. Supplementary Table 1. Shown is the complete list of the 92 genes we analyzed,

together with their expression value in the four RNA-Seq libraries (SR_1 and SR_2 being the

two independent libraries made using self-renewing cells and Diff_1 and Diff_2 being two

independent libraries made from cells differentiated for 48 h) and the group of variation at 48

h to which they belong (up-, down-, or non-regulated).

(CSV)
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